Library Fsub_Soundness

Type-safety proofs for Fsub.

Authors: Brian Aydemir and Arthur Charguéraud, with help from Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.

In parentheses are given the label of the corresponding lemma in the appendix (informal proofs) of the POPLmark Challenge.

Table of contents:

Require Export Fsub_Lemmas.


Properties of subtyping



Reflexivity (1)


Lemma sub_reflexivity : forall E T,
  wf_env E ->
  wf_typ E T ->
  sub E T T.
Proof with eauto.
  intros E T Ok Wf.
  induction Wf...
  pick fresh Y and apply sub_all...
Qed.


Weakening (2)


Lemma sub_weakening : forall E F G S T,
  sub (G ++ E) S T ->
  wf_env (G ++ F ++ E) ->
  sub (G ++ F ++ E) S T.
Proof with simpl_env; auto using wf_typ_weakening.
  intros E F G S T Sub Ok.
  remember (G ++ E) as H.
  generalize dependent G.
  induction Sub; intros G Ok EQ; subst...
  Case "sub_trans_tvar".
    apply (sub_trans_tvar U)...
  Case "sub_all".
    pick fresh Y and apply sub_all...
    rewrite <- concat_assoc.
    apply H0...
Qed.


Narrowing and transitivity (3)


Definition transitivity_on Q := forall E S T,
  sub E S Q -> sub E Q T -> sub E S T.

Lemma sub_narrowing_aux : forall Q F E Z P S T,
  transitivity_on Q ->
  sub (F ++ [(Z, bind_sub Q)] ++ E) S T ->
  sub E P Q ->
  sub (F ++ [(Z, bind_sub P)] ++ E) S T.
Proof with simpl_env; eauto using wf_typ_narrowing, wf_env_narrowing.
  intros Q F E Z P S T TransQ SsubT PsubQ.
  remember (F ++ [(Z, bind_sub Q)] ++ E) as G. generalize dependent F.
  induction SsubT; intros F EQ; subst...
  Case "sub_top".
    apply sub_top...
  Case "sub_refl_tvar".
    apply sub_refl_tvar...
  Case "sub_trans_tvar".
    destruct (X == Z); subst.
    SCase "X = Z".
      apply (sub_trans_tvar P); [ eauto using fresh_mid_head | ].
      apply TransQ.
      SSCase "P <: Q".
        rewrite_env (empty ++ (F ++ [(Z, bind_sub P)]) ++ E).
        apply sub_weakening...
      SSCase "Q <: T".
        binds_get H.
        inversion H1; subst...
    SCase "X <> Z".
      apply (sub_trans_tvar U)...
      binds_cases H...
  Case "sub_all".
    pick fresh Y and apply sub_all...
    rewrite <- concat_assoc.
    apply H0...
Qed.

Lemma sub_transitivity : forall Q,
  transitivity_on Q.
Proof with simpl_env; auto.
  unfold transitivity_on.
  intros Q E S T SsubQ QsubT.
  assert (W : type Q) by auto.
  generalize dependent T.
  generalize dependent S.
  generalize dependent E.
  remember Q as Q' in |-.
  generalize dependent Q'.
  induction W;
    intros Q' EQ E S SsubQ;
    induction SsubQ; try discriminate; inversion EQ; subst;
    intros T' QsubT;
    inversion QsubT; subst; eauto 4 using sub_trans_tvar.
  Case "sub_all / sub_top".
    assert (sub E (typ_all S1 S2) (typ_all T1 T2)).
      SCase "proof of assertion".
      pick fresh y and apply sub_all...
    auto.
  Case "sub_all / sub_all".
    pick fresh Y and apply sub_all.
    SCase "bounds".
      eauto.
    SCase "bodies".
      lapply (H0 Y); [ intros K | auto ].
      apply (K (open_tt T2 Y))...
      rewrite_env (empty ++ [(Y, bind_sub T0)] ++ E).
      apply (sub_narrowing_aux T1)...
      unfold transitivity_on.
      auto using (IHW T1).
Qed.

Lemma sub_narrowing : forall Q E F Z P S T,
  sub E P Q ->
  sub (F ++ [(Z, bind_sub Q)] ++ E) S T ->
  sub (F ++ [(Z, bind_sub P)] ++ E) S T.
Proof.
  intros.
  eapply sub_narrowing_aux; eauto.
  apply sub_transitivity.
Qed.


Type substitution preserves subtyping (10)


Lemma sub_through_subst_tt : forall Q E F Z S T P,
  sub (F ++ [(Z, bind_sub Q)] ++ E) S T ->
  sub E P Q ->
  sub (map (subst_tb Z P) F ++ E) (subst_tt Z P S) (subst_tt Z P T).
Proof with
      simpl_env;
      eauto 4 using wf_typ_subst_tb, wf_env_subst_tb, wf_typ_weaken_head.
  intros Q E F Z S T P SsubT PsubQ.
  remember (F ++ [(Z, bind_sub Q)] ++ E) as G.
  generalize dependent F.
  induction SsubT; intros G EQ; subst; simpl subst_tt...
  Case "sub_top".
    apply sub_top...
  Case "sub_refl_tvar".
    destruct (X == Z); subst.
    SCase "X = Z".
      apply sub_reflexivity...
    SCase "X <> Z".
      apply sub_reflexivity...
      inversion H0; subst.
      binds_cases H3...
      apply (wf_typ_var (subst_tt Z P U))...
  Case "sub_trans_tvar".
    destruct (X == Z); subst.
    SCase "X = Z".
      apply (sub_transitivity Q).
      SSCase "left branch".
        rewrite_env (empty ++ map (subst_tb Z P) G ++ E).
        apply sub_weakening...
      SSCase "right branch".
        rewrite (subst_tt_fresh Z P Q).
          binds_get H.
            inversion H1; subst...
          apply (notin_fv_wf E); eauto using fresh_mid_tail.
    SCase "X <> Z".
      apply (sub_trans_tvar (subst_tt Z P U))...
      rewrite (map_subst_tb_id E Z P);
        [ | auto | eapply fresh_mid_tail; eauto ].
      binds_cases H...
  Case "sub_all".
    pick fresh X and apply sub_all...
    rewrite subst_tt_open_tt_var...
    rewrite subst_tt_open_tt_var...
    rewrite_env (map (subst_tb Z P) ([(X, bind_sub T1)] ++ G) ++ E).
    apply H0...
Qed.


Properties of typing



Weakening (5)


Lemma typing_weakening : forall E F G e T,
  typing (G ++ E) e T ->
  wf_env (G ++ F ++ E) ->
  typing (G ++ F ++ E) e T.
Proof with simpl_env;
           eauto using wf_typ_weakening,
                       wf_typ_from_wf_env_typ,
                       wf_typ_from_wf_env_sub,
                       sub_weakening.
  intros E F G e T Typ.
  remember (G ++ E) as H.
  generalize dependent G.
  induction Typ; intros G EQ Ok; subst...
  Case "typing_abs".
    pick fresh x and apply typing_abs.
    lapply (H x); [intros K | auto].
    rewrite <- concat_assoc.
    apply (H0 x)...
  Case "typing_tabs".
    pick fresh X and apply typing_tabs.
    lapply (H X); [intros K | auto].
    rewrite <- concat_assoc.
    apply (H0 X)...
Qed.


Strengthening (6)


Lemma sub_strengthening : forall x U E F S T,
  sub (F ++ [(x, bind_typ U)] ++ E) S T ->
  sub (F ++ E) S T.
Proof with eauto using wf_typ_strengthening, wf_env_strengthening.
  intros x U E F S T SsubT.
  remember (F ++ [(x, bind_typ U)] ++ E) as E'.
  generalize dependent F.
  induction SsubT; intros F EQ; subst...
  Case "sub_trans_tvar".
    apply (sub_trans_tvar U0)...
    binds_cases H...
  Case "sub_all".
    pick fresh X and apply sub_all...
    rewrite <- concat_assoc.
    apply H0...
Qed.


Narrowing for typing (7)


Lemma typing_narrowing : forall Q E F X P e T,
  sub E P Q ->
  typing (F ++ [(X, bind_sub Q)] ++ E) e T ->
  typing (F ++ [(X, bind_sub P)] ++ E) e T.
Proof with eauto 6 using wf_env_narrowing, wf_typ_narrowing, sub_narrowing.
  intros Q E F X P e T PsubQ Typ.
  remember (F ++ [(X, bind_sub Q)] ++ E) as E'.
  generalize dependent F.
  induction Typ; intros F EQ; subst...
  Case "typing_var".
    binds_cases H0...
  Case "typing_abs".
    pick fresh y and apply typing_abs.
    rewrite <- concat_assoc.
    apply H0...
  Case "typing_tabs".
    pick fresh Y and apply typing_tabs.
    rewrite <- concat_assoc.
    apply H0...
Qed.


Substitution preserves typing (8)


Lemma typing_through_subst_ee : forall U E F x T e u,
  typing (F ++ [(x, bind_typ U)] ++ E) e T ->
  typing E u U ->
  typing (F ++ E) (subst_ee x u e) T.

We provide detailed comments for the following proof, mainly to point out several useful tactics and proof techniques.

Starting a proof with "Proof with <some tactic>" allows us to specify a default tactic that should be used to solve goals. To invoke this default tactic at the end of a proof step, we signal the end of the step with three periods instead of a single one, e.g., "apply typing_weakening...".

Proof with simpl_env;
           eauto 4 using wf_typ_strengthening,
                         wf_env_strengthening,
                         sub_strengthening.

The proof proceeds by induction on the given typing derivation for e. We use the remember tactic, along with generalize dependent, to ensure that the goal is properly strengthened before we use induction.

  intros U E F x T e u TypT TypU.
  remember (F ++ [(x, bind_typ U)] ++ E) as E'.
  generalize dependent F.
  induction TypT; intros F EQ; subst; simpl subst_ee...

The typing_var case involves a case analysis on whether the variable is the same as the one being substituted for.

  Case "typing_var".
    destruct (x0 == x); subst.

In the case where x0=x, we first observe that hypothesis H0 implies that T=U, since x can only be bound once in the environment. The conclusion then follows from hypothesis TypU and weakening. We can use the binds_get tactic, described in the Environment library, with H0 to obtain the fact that T=U.

    SCase "x0 = x".
      binds_get H0.
        inversion H2; subst.

In order to apply typing_weakening, we need to rewrite the environment so that it has the right shape. (We could also prove a corollary of typing_weakening.) The rewrite_env tactic, described in the Environment library, is one way to perform this rewriting.

        rewrite_env (empty ++ F ++ E).
        apply typing_weakening...

In the case where x0<>x, the result follows by an exhaustive case analysis on exactly where x0 is bound in the environment. We perform this case analysis by using the binds_cases tactic, described in the Environment library.

    SCase "x0 <> x".
      binds_cases H0.
        eauto using wf_env_strengthening.
        eauto using wf_env_strengthening.

Informally, the typing_abs case is a straightforward application of the induction hypothesis, which is called H0 here.

  Case "typing_abs".

We use the "pick fresh and apply" tactic to apply the rule typing_abs without having to calculate the appropriate finite set of atoms.

    pick fresh y and apply typing_abs.

We cannot apply H0 directly here. The first problem is that the induction hypothesis has (subst_ee open_ee), whereas in the goal we have (open_ee subst_ee). The lemma subst_ee_open_ee_var lets us swap the order of these two operations.

    rewrite subst_ee_open_ee_var...

The second problem is how the concatenations are associated in the environments. In the goal, we currently have

([(y, bind_typ V)] ++ F ++ E),


where concatenation associates to the right. In order to apply the induction hypothesis, we need

(([(y, bind_typ V)] ++ F) ++ E).


We can use the rewrite_env tactic to perform this rewriting, or we can rewrite directly with an appropriate lemma from the Environment library.

    rewrite <- concat_assoc.

Now we can apply the induction hypothesis.

    apply H0...

The remaining cases in this proof are straightforward, given everything that we have pointed out above.

  Case "typing_tabs".
    pick fresh Y and apply typing_tabs.
    rewrite subst_ee_open_te_var...
    rewrite <- concat_assoc.
    apply H0...
Qed.


Type substitution preserves typing (11)


Lemma typing_through_subst_te : forall Q E F Z e T P,
  typing (F ++ [(Z, bind_sub Q)] ++ E) e T ->
  sub E P Q ->
  typing (map (subst_tb Z P) F ++ E) (subst_te Z P e) (subst_tt Z P T).
Proof with simpl_env;
           eauto 6 using wf_env_subst_tb,
                         wf_typ_subst_tb,
                         sub_through_subst_tt.
  intros Q E F Z e T P Typ PsubQ.
  remember (F ++ [(Z, bind_sub Q)] ++ E) as G.
  generalize dependent F.
  induction Typ; intros F EQ; subst;
    simpl subst_te in *; simpl subst_tt in *...
  Case "typing_var".
    apply typing_var...
      rewrite (map_subst_tb_id E Z P);
        [ | auto | eapply fresh_mid_tail; eauto ].
      binds_cases H0...
  Case "typing_abs".
    pick fresh y and apply typing_abs.
    rewrite subst_te_open_ee_var...
    rewrite_env (map (subst_tb Z P) ([(y, bind_typ V)] ++ F) ++ E).
    apply H0...
  Case "typing_tabs".
    pick fresh Y and apply typing_tabs.
    rewrite subst_te_open_te_var...
    rewrite subst_tt_open_tt_var...
    rewrite_env (map (subst_tb Z P) ([(Y, bind_sub V)] ++ F) ++ E).
    apply H0...
  Case "typing_tapp".
    rewrite subst_tt_open_tt...
Qed.


Preservation



Inversion of typing (13)


Lemma typing_inv_abs : forall E S1 e1 T,
  typing E (exp_abs S1 e1) T ->
  forall U1 U2, sub E T (typ_arrow U1 U2) ->
     sub E U1 S1
  /\ exists S2, exists L, forall x, x `notin` L ->
     typing ([(x, bind_typ S1)] ++ E) (open_ee e1 x) S2 /\ sub E S2 U2.
Proof with auto.
  intros E S1 e1 T Typ.
  remember (exp_abs S1 e1) as e.
  generalize dependent e1.
  generalize dependent S1.
  induction Typ; intros S1 b1 EQ U1 U2 Sub; inversion EQ; subst.
  Case "typing_abs".
    inversion Sub; subst.
    split...
    exists T1. exists L...
  Case "typing_sub".
    auto using (sub_transitivity T).
Qed.

Lemma typing_inv_tabs : forall E S1 e1 T,
  typing E (exp_tabs S1 e1) T ->
  forall U1 U2, sub E T (typ_all U1 U2) ->
     sub E U1 S1
  /\ exists S2, exists L, forall X, X `notin` L ->
     typing ([(X, bind_sub U1)] ++ E) (open_te e1 X) (open_tt S2 X)
     /\ sub ([(X, bind_sub U1)] ++ E) (open_tt S2 X) (open_tt U2 X).
Proof with simpl_env; auto.
  intros E S1 e1 T Typ.
  remember (exp_tabs S1 e1) as e.
  generalize dependent e1.
  generalize dependent S1.
  induction Typ; intros S1 e0 EQ U1 U2 Sub; inversion EQ; subst.
  Case "typing_tabs".
    inversion Sub; subst.
    split...
    exists T1.
    exists (L0 `union` L).
    intros Y Fr.
    split...
    rewrite_env (empty ++ [(Y, bind_sub U1)] ++ E).
    apply (typing_narrowing S1)...
  Case "typing_sub".
    auto using (sub_transitivity T).
Qed.


Preservation (20)


Lemma preservation : forall E e e' T,
  typing E e T ->
  red e e' ->
  typing E e' T.
Proof with simpl_env; eauto.
  intros E e e' T Typ. generalize dependent e'.
  induction Typ; intros e' Red; try solve [ inversion Red; subst; eauto ].
  Case "typing_app".
    inversion Red; subst...
    SCase "red_abs".
      destruct (typing_inv_abs _ _ _ _ Typ1 T1 T2) as [P1 [S2 [L P2]]].
        apply sub_reflexivity...
      pick fresh x.
      destruct (P2 x) as [? ?]...
      rewrite (subst_ee_intro x)...
      rewrite_env (empty ++ E).
      apply (typing_through_subst_ee T).
        apply (typing_sub S2)...
          rewrite_env (empty ++ [(x, bind_typ T)] ++ E).
          apply sub_weakening...
        eauto.
  Case "typing_tapp".
    inversion Red; subst...
    SCase "red_tabs".
      destruct (typing_inv_tabs _ _ _ _ Typ T1 T2) as [P1 [S2 [L P2]]].
        apply sub_reflexivity...
      pick fresh X.
      destruct (P2 X) as [? ?]...
      rewrite (subst_te_intro X)...
      rewrite (subst_tt_intro X)...
      rewrite_env (map (subst_tb X T) empty ++ E).
      apply (typing_through_subst_te T1)...
Qed.


Progress



Canonical forms (14)


Lemma canonical_form_abs : forall e U1 U2,
  value e ->
  typing empty e (typ_arrow U1 U2) ->
  exists V, exists e1, e = exp_abs V e1.
Proof.
  intros e U1 U2 Val Typ.
  remember empty as E.
  remember (typ_arrow U1 U2) as T.
  revert U1 U2 HeqT HeqE.
  induction Typ; intros U1 U2 EQT EQE; subst;
    try solve [ inversion Val | inversion EQT | eauto ].
  Case "typing_sub".
    inversion H; subst; eauto.
    inversion H0.
Qed.

Lemma canonical_form_tabs : forall e U1 U2,
  value e ->
  typing empty e (typ_all U1 U2) ->
  exists V, exists e1, e = exp_tabs V e1.
Proof.
  intros e U1 U2 Val Typ.
  remember empty as E.
  remember (typ_all U1 U2) as T.
  revert U1 U2 HeqT HeqT.
  induction Typ; intros U1 U2 EQT EQE; subst;
    try solve [ inversion Val | inversion EQT | eauto ].
  Case "typing_sub".
    inversion H; subst; eauto.
    inversion H0.
Qed.


Progress (16)


Lemma progress : forall e T,
  typing empty e T ->
  value e \/ exists e', red e e'.
Proof with eauto.
  intros e T Typ.
  remember empty as E. generalize dependent HeqE.
  assert (Typ' : typing E e T)...
  induction Typ; intros EQ; subst...
  Case "typing_var".
    inversion H0.
  Case "typing_app".
    right.
    destruct IHTyp1 as [Val1 | [e1' Rede1']]...
    SCase "Val1".
      destruct IHTyp2 as [Val2 | [e2' Rede2']]...
      SSCase "Val2".
        destruct (canonical_form_abs _ _ _ Val1 Typ1) as [S [e3 EQ]].
        subst.
        exists (open_ee e3 e2)...
  Case "typing_tapp".
    right.
    destruct IHTyp as [Val1 | [e1' Rede1']]...
    SCase "Val1".
      destruct (canonical_form_tabs _ _ _ Val1 Typ) as [S [e3 EQ]].
      subst.
      exists (open_te e3 T)...
    SCase "e1' Rede1'".
      exists (exp_tapp e1' T)...
Qed.