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ABSTRACT
The number of potentially-related data resources available for query-
ing — databases, data warehouses, virtual integrated schemas —
continues to grow rapidly. Perhaps no area has seen this problem
as acutely as the life sciences, where hundreds of large, complex,
interlinked data resources are available on fields like proteomics,
genomics, disease studies, and pharmacology. The schemas of in-
dividual databases are often large on their own, but users also need
to pose queries across multiple sources, exploiting foreign keys
and schema mappings. Since the users are not experts, they typi-
cally rely on the existence of pre-defined Web forms and associated
query templates, developed by programmers to meet the particular
scientists’ needs. Unfortunately, such forms are scarce commodi-
ties, often limited to a single database, and mismatched with biol-
ogists’ information needs that are often context-sensitive and span
multiple databases.

We present a system with which a non-expert user can author
new query templates and Web forms, to be reused by anyone with
related information needs. The user poses keyword queries that are
matched against source relations and their attributes; the system
uses sequences of associations (e.g., foreign keys, links, schema
mappings, synonyms, and taxonomies) to create multiple ranked
queries linking the matches to keywords; the set of queries is at-
tached to a Web query form. Now the user and his or her associates
may pose specific queries by filling in parameters in the form. Im-
portantly, the answers to this query are ranked and annotated with
data provenance, and the user provides feedback on the utility of the
answers, from which the system ultimately learns to assign costs
to sources and associations according to the user’s specific infor-
mation need, as a result changing the ranking of the queries used
to generate results. We evaluate the effectiveness of our method
against “gold standard” costs from domain experts and demonstrate
the method’s scalability.

1. INTRODUCTION
The variety and complexity of potentially-related data resources

available for querying — databases, data warehouses, virtual inte-
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grated schemas — grows ever more rapidly. This is possibly most
marked in the life sciences, where hundreds of large, complex, in-
terlinked, and overlapping data resources have become available
on fields like proteomics, genomics, disease studies, and pharma-
cology. Within any of these databases, schemas are often massive:
for example, the Genomics Unified Schema [28], used by a variety
of parasite databases such as CryptoDB and PlasmoDB, has 358
relations, many of which have dozens of attributes each. Addition-
ally, biomedical researchers need to pose integrative queries across
multiple sources, exploiting foreign keys, similar terms, and other
means of interlinking data: using a plethora of sources can reveal
previously undiscovered relationships among biological entities [6,
33], and some of these may lead to scientific breakthroughs. Cur-
rently, biologists have been restricted to queries embodied in Web
forms, typically limited to a single database, that were created by
full-time database maintainers; or they have to become experts in
SQL, Web services, the different schemas, and scripting languages
to create their own queries that span multiple schemas.

Neither of these solutions is suitable for a biomedical researcher
who is not a database expert but needs to explore rich data sources
to create testable scientific hypotheses. At best, the researcher will
be able to obtain useful results by manually combining the results
of predefined queries on different databases. This cut-and-paste
process is error-prone and likely to miss data sources and less ev-
ident linkages. There is thus a great potential value for scientific
discovery in providing tools that support ad hoc creation of new
queries (or, more typically, query templates that may be parameter-
ized with different filter conditions and reused multiple times) by
end users. In this paper, we focus on supporting this need.

Of course, the problem of querying across large schemas is not
unique to the life sciences: there are many enterprise, business-to-
business, and Web shopping scenarios in which it would be desir-
able to query across large sets of complex schemas. Many have at-
tempted to address these needs through data integration (also called
EII [8]), warehousing, or middleware solutions, which present a
uniform interface (queriable schema and/or APIs) over all of the
data sources. Unfortunately, for large domains it is very difficult
to define that uniform interface and the mappings to it (the schema
mapping problem [35]). Beyond this problem, the uniform inter-
face must itself be large and complex in order to capture all rel-
evant concepts. Existing integration tools provide some level of
mapping and mediation among sources, but (1) there is still a need
to author queries that join and union together multiple relations in
the mediated schema; (2) the mappings are probably incomplete
with respect to any one EII environment, but there may be ways
of relating data with other, external databases or EII environments;
(3) some mapped sources may not be considered appropriate for a
given query (e.g., due to a lack of authoritativeness or accuracy).
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Figure 1: A sample query. Part (a) shows schema elements (nodes) matching a query about proteins, diseases, and genes related
to “plasma membranes.” The relations come from different bioinformatics sources, plus site-provided correspondence tables (e.g.,
InterPro2GO), the results of a record linking tool (RecordLink), a Term that may be used directly or combined with its superclasses
or synonyms through ontologies (GO Term2Term, Term Syn), and instance-level keyword matching (topic index). Rounded rectan-
gles represent conceptual entities and squared rectangles represent tables relating these entities; Q considers there to be a weighted
association edge based on the foreign key or link dereference. Part (b) shows the Web form representing a view, which allows users
to fill in selection conditions and execute a query.

CQ1: q(prot , gene, typ, dis) :- TblProtein(id , prot , . . .),Entry2Meth(ent , id , . . .), InterPro2Go(ent , gid),
Term(gid , typ),Gene2GO(gid , giId),GeneInfo(giId , gene, . . .),MIM2Gene(giId ,mId),MAIN (mId , dis, . . .),
typ =’plasma membrane’

CQ2: q(prot , gene, typ, dis) :- TblProtein(id , prot , . . .),Entry2Meth(ent , id , . . .), InterPro2Go(ent , gid1 ),
Term Syn(gid1 , gid2 ),Term(gid2 , typ),Gene2GO(gid2 , giId),GeneInfo(giId , gene, . . .),MIM2Gene(giId ,mId),
MAIN (mId , dis, . . .), typ = ’plasma membrane’

CQ3: q(prot , gene, typ, dis) :- TblProtein(id , prot , . . .),Entry2Meth(ent , id , . . .), InterPro2Go(ent , gid1 ),
Term2Term( , ’part of’, gid1 , gid2 ),Term(gid2 , typ),Gene2GO(gid2 , giId),GeneInfo(giId , gene, . . .),
MIM2Gene(giId ,mId),MAIN (mId , dis, . . .), typ = ’plasma membrane’

CQ4: q(protnam, gene, typ, dis) :- UniProt(ac,nam, . . .),RecordLink(ac,nam, ent , protnam),Entry(ent , protnam),
InterPro2Go(ent , gid1 ),Term2Term( , ’part of’, gid1 , gid2 ),Term(gid2 , typ),Gene2GO(gid2 , giId),
GeneInfo(giId , gene, . . .),MIM2Gene(giId ,mId),MAIN (mId , dis, . . .), typ = ’plasma membrane’

Table 1: Excerpts of some potential queries from the graph of Figure 1, with important differences highlighted in boldface.

An open challenge is how to provide a solution that:

• Enables community-driven creation of information resources tai-
lored to different needs.

• Allows non-expert users to author new families of queries that
may span multiple interlinked databases, even if these are not
under a single mediated schema.

• Provides a means for the user to distinguish or select among the
different data sources depending on the user’s information need.
Not all sources of data, or means of finding associations among
tables, are of interest to the user.

A potentially promising approach to authoring queries without
using SQL — primarily used within a single database — has been
to start with keyword queries and to match terms in tuples within
the data instance’s tables. If multiple keywords are provided and
match on different tables, foreign keys within the database are used
to discover “join paths” through tables, and query results consist
of different ways of combining the matched tuples [4, 23]. Path
lengths are used as costs for the joined results. In general, results
will be highly heterogeneous and specific to the keyword matches
in the tuples. It is also possible to support approximate, similarity-
based joins [11] or approximate keyword matches.

Unfortunately, the above work may be insufficient for scientific
users, because such work assumes query-insensitive costs for path
length, attribute similarity, and other matching steps, when scien-
tists may need costs specific to the context of the query (i.e., the
setting under which the query is being posed). Preferences for
sources may depend on whether users are posing “what-if” types of
exploratory queries or refining previous answers; they may depend

on the specific query domain; or they may depend on the (perceived
or actual) quality of the individual data sources. Recent bioinfor-
matics work [6, 33] shows that there are often many combinations
of data sources that can reveal relationships between biological en-
tities, and biologists need ways of discovering, understanding, and
assessing the quality of each of the possible ways of linking data.

Rather than simply answering queries by matching keywords to
tuples and finding associations, we propose a method for defining
and interactively refining families of queries, based on keywords.
This family of queries is associated with a parameterized Web form
in a way that is familiar with biologists. (For simplicity of exposi-
tion, in the remainder of this paper, we will term this parameteriz-
able family of queries a view — note, however, that it really repre-
sents a view template to which different values may be bound.)

Learning the Right View for a Web Form
We sketch a sample interaction with our system, which we call

the Q System. Figure 1 shows a running example in this paper
that we will revisit in more detail in Section 3: a biologist wants
to author a new Web form for the members of her lab to use. We
assume Q has pre-encoded knowledge of the different schema ele-
ments (tables, attributes, XML nodes, objects, etc.) and, in special
cases, tuples, in the bioinformatics domain. It also has information
about associations between these elements: record linking tables,
foreign keys, references, ontologies, etc. Such associations come
from the schemas (e.g., they were specified as foreign keys, URLs,
or ontology subclasses), or they may also be produced offline by
human experts, schema mappers [35], or record linking [16] tools.
Schema elements are modeled as nodes in a graph (Figure 1a); as-
sociations can be thought of as edges, each with a cost (the c’s in
the figure) that quantifies the system’s bias against using that asso-



ciation to create a query template. The cost may for instance reflect
the fact that an association comes from automatic schema matching
tools, and is thus error prone; that an association contains suspect
data; or that an association is based on approximate matches. Costs
are typically pre-initialized to a default “neutral” value, and they
will be adjusted by the system through learning to reflect user pref-
erences conveyed by user feedback.

Suppose our biologist has a particular information need that de-
pends on her domain of expertise, the precision of queries to be
posed (e.g., exploratory vs. answer refinement queries), and prefer-
ence for certain data sources.

1. The biologist specifies a set of keywords. In this case, these
are to create a (parameterizable) view for proteins, diseases, and
genes related to the plasma membranes of cells. The biologist
accepts the defaults, which are to create the view using the 4 most
promising data integration queries the Q System can find.

2. By matching the keywords against the schema graph, finding
trees in the graph that contain a match to each keyword, and sum-
ming the costs of the edges within each tree (which represents a
conjunctive query), Q finds the 4 best-ranked conjunctive queries
(CQs), shown in Datalog notation in Table 1. The top-ranked query
follows associations and intermediate relations to connect TblPro-
tein, a single GO Term, an entry in GeneInfo, and an entry in OMIM
MAIN (identified as a disease database). The next two queries con-
sider alternative means of using two different GO Terms T1 and
T2 (using Term Synonyms or Term2Term relationships such as par-
ent concept-subconcept), to relate TblProtein and associated Inter-
Pro Entry tuples with a GeneInfo tuple. The final query uses the
UniProt table instead of TblProtein, and here needs a cross refer-
ence from a record linking tool in order to find the corresponding
Interpro Entry.

3. The biologist takes the output of Q — a suggested union over
CQ1-CQ4 — and makes final refinements (projecting out attributes
that are uninteresting). (See the Appendix for a screen shot.) The
result is a Web form (Figure 1b), which is saved to a permanent
URL.

4. The biologist, and others in her lab, make use of this Web form,
parameterizing it with specific disease features or protein names.
When they get query results, some of these are more meaningful
than others. Each result tuple will be given the rank of the (highest-
ranked) query that produced it. Suppose it is more useful to exploit
parent concept-subconcept relationships among GO Terms than to
exploit Term synonyms. The users provide feedback on answers
from CQ3, specifying that these should be ranked above answers
returned by CQ2. (The Appendix includes a screen capture.)

5. The system will accept this feedback on the answers, determine
the queries that produced those answers (via data provenance [7,
13, 20]), and adjust the ranking of the queries. (Note that the
feedback on single tuples is generalized to other tuples from the
same query. In turn, adjustments to one query may generalize to
other queries, e.g., those that use synonyms and parent concept-
subconcept relationships). Q will recompute the new top-4 queries,
which may include queries that previously had lower ranking.

Challenges. This mode of interaction creates a number of funda-
mental challenges. First, we must have a unified, end-to-end model
that supports computation of ranked queries, which produce cor-
respondingly ranked results, and it must be possible to learn new
query rankings from feedback over the results, ultimately converg-
ing to rankings consistent with user expectations. In support of
this, we must be able to find the top-k queries, begin producing

answers, and learn from feedback at interactive-level speeds. We
must always be able to determine results’ provenance, as a means
of connecting feedback to the originating query or queries. Ad-
ditionally, it is essential that we be able to generalize feedback to
results other than the one to which the user directly reacted. In part
this is due to the “curse of dimensionality”: we must generalize if
we are to learn from small numbers of examples.

Contributions. In our approach, edge weights encode shared learn-
ed knowledge about the usefulness of particular schema elements,
across multiple queries and users with similar preferences and goals.
Multiple users in the same lab or the same subfield may wish to
share the same view and continuously refine it. They may also
wish to pose other related queries, and have feedback affect the en-
tire set of queries together. On the other hand, groups of users with
very different goals (say, highly speculative exploration of asso-
ciations, versus refinement of results to find the highest-reliability
links) can have their own set of views with a different set of weight
assignments. In essence, each sub-community is defining its own
integrated schema for viewing the data in the system — which in-
cludes not only a set of schema mappings (associations) but also a
set of weights on the mappings and source relations. This repre-
sents a bottom-up, community-driven scheme for integrating data.
Our paper makes the following contributions:

• We bring together ideas from data integration, query-by-example,
data provenance, and machine learning into a novel unified frame-
work for authoring through feedback families of queries corre-
sponding to a bioinformatics Web form, but potentially spanning
many databases. We exploit the output from record linking and
schema mapping tools.

• We develop efficient search strategies for exploring and ranking
associations among schema elements, links, synonyms, hyper-
nyms, and mapping tables — producing top-ranked queries at in-
teractive speeds. This depends on a new approximation scheme
for the K-best Steiner tree problem (explained in Section 5),
which scales to much larger graphs than previous methods.

• We develop efficient techniques for integrating data provenance
and online learning techniques — learning at interactive speeds.

• We experimentally validate the efficacy of our solutions, using
real schemas and associations.

Roadmap. Section 2 briefly reviews the state of the art in related
work. Section 3 presents our basic architecture and operation. Sec-
tion 4 describes how queries are answered in our system, and Sec-
tion 5 describes how feedback is given and processed. We present
experimental results showing scalability and rapid learning in Sec-
tion 6, and we conclude and discuss future work in Section 7.

2. RELATED WORK
The problem of providing ranked, keyword-based answers to

queries has been the subject of many studies. Most focus on pro-
viding answers based on the keywords, rather than on constructing
persistent views that can be used for multiple keywords. We briefly
review this work and explain why our problem setting is different.

Information retrieval [1] focuses on providing ranked documents
as query answers, given keyword queries. It does not generate or
learn structured queries that combine data from multiple databases.
Similarly, while natural-language query interfaces have been stud-
ied that create structured queries over databases, e.g., [34], our goal
is to take keyword queries, not natural language, and a large and
diverse set of data sources and associations, and to learn the appro-
priate structural queries.
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Figure 2: Architectural stages of the Q System.

At a high level, our work seems most similar to keyword search
over databases [4, 5, 23, 25]. There, keyword matches involve both
data items and metadata. Results are typically scored based on a
combination of match scores between keywords and data values,
length of the join path between the matched data items, and possi-
bly node authority scores [2, 21]. The NAGA system [26] addition-
ally considers an ontology-like knowledge graph and a generative
model for ranking query answers. In many of these systems, rank-
ing is based on costs that are computed in additive fashion (much
like the cost model we adopt). In contrast to all of these systems,
we seek to learn how to score results based on user preferences,
since associations between scientific data sources do not necessar-
ily reflect authority, and in any case perceived authority may vary
with user characteristics and needs. This naturally complements
a number of existing bioinformatics query authoring systems that
rely on expert-provided scores [6, 33].

Existing “top-k query answering” [11, 18, 30, 31] provides the
highest-scoring answers in answering ranked queries. Our goal is to
identify possible queries to provide answers by connecting terms,
to separately rank each combination, to output the results using
this rank, and finally to enable feedback on the answers. The step
in which results are output could be performed using top-k query
processing algorithms.

Our work uses machine learning in a way that is complemen-
tary to other learning-based tools and techniques for data integra-
tion. Schema matching tools [35] provide correspondences and
possibly complete schema mappings between different pre-existing
schemas: we use mappings as input, in the form of associations that
help our system to create cross-site queries. We can also learn the
quality of the mappings based on feedback. Finally, recent work fo-
cuses on learning to construct mashups [36], in a way that general-
izes the information extraction problem and suggests new columns
to be integrated: this is also complementary to our work, which
focuses on determining how to decide which queries and answers
should be used to populate the results.

3. ARCHITECTURE AND OPERATION
We divide system operation into four major phases: initial setup,

query template creation, query execution, and learning through feed-
back. We discuss each of these phases in order, focusing on the
modules and dataflow.

3.1 Initial Setup
Refer to Figure 2 to see the components of the Q System. Dur-

ing initial setup, Q’s Schema Loader (the box highlighted with
the numeral 1 in the figure) is initially given a set of data sources,
each with its own schema. Data items in each schema might op-
tionally contain links (via URLs, foreign keys, or coded accession
numbers) to other data sources. Additionally, we may be given
certain known correspondences or transformations as the result of
human input or data integration tools: for instance, we may have
schema mappings between certain elements, created for data im-

port, export, or peer-to-peer integration [22]; some data items may
be known to reference an externally defined taxonomy or ontology
such as GeneOntology (GO); and tools may be able to discover
(possibly approximate) associations between schema elements. All
such information will be encoded in the schema graph, which is
output by the Schema Loader and saved in a metadata repository.

Figure 1 features two classes of relations as nodes: blue rounded
rectangles represent entities, and orange elongated rectangles rep-
resent cross-references, links, or correspondence tables. Edges rep-
resent associations between nodes (generally indicating potential
joins based on equality of attributes). The schema graph in the
example illustrates a common feature of many bioinformatics data-
bases, which is that they frequently contain cross-referencing ta-
bles: Entry2Meth, InterPro2GO, etc., represent the database main-
tainers’ current (incomplete, possibly incorrect) information about
inter-database references. Additionally, our example includes a
correspondence table, RecordLink, that was created by a schema
mapping/record linking tool, which matches UniProt and InterPro
tuples. As previously described, any of the associations encoded
as edges may have a cost that captures its likely utility to the user:
this may be based on reliability, trustworthiness, etc., and the sys-
tem will attempt to learn that cost based on user feedback. These
costs are normally initialized to the same default value.

3.2 Query Template Creation
The user defining a query template poses a keyword query

protein "plasma membrane" gene disease

which is matched against the schema graph by the Steiner Tree
Generator (box #2 in Figure 2). A pre-processing step consists of
matching keywords against graph elements: We can see from the
figure that the first term matches against UniProt and TblProtein
(based on substring matching against both relation and attribute
names). The term “plasma membrane” does not match against
any table names or attributes — but rather against a term in the
GO ontology, which includes (as encoded data) standardized terms.
Terms in the ontology have both subclasses (Term2Term) and syn-
onyms (Term Syn), and hence the system must consider these in the
query answers as well. The keyword “gene” matches as a substring
against GeneInfo, and finally, “disease” matches against an entry in
an index from topics to databases. Implicitly, as part of the keyword
matching process, the Q System adds a node to the schema graph
for each keyword, and an edge to each matching node. (For visual
differentiation in the figure, we indicate these edges by drawing a
dashed rectangle around each keyword and its matching nodes.)

Now, given keyword matches against nodes, the Steiner Tree
Generator can determine the best (top-k) queries matching the key-
words. Its goal is to find the k trees of minimal cost contained in the
schema graph, each of which includes all of the desired (keyword)
nodes, plus any additional nodes and edges necessary to connect
them. This is technically a Steiner tree; the cost of each Steiner
tree is the sum of edge costs. (We discuss below how edge costs
are obtained.) Note the subtlety that this module does not gener-
ate queries to compute the top-k answers; rather, it produces the
top-k-scoring queries according to our schema graph. These may
return more or fewer than k answers; but commonly each query
will return more than one answer.

The Query Formulator (box 3) takes each of the top-k Steiner
trees and converts it into a conjunctive query (nodes become re-
lations, edges become joins, and the cost of the query is the sum
of the costs of the edges in the Steiner tree). Consider, e.g., two
queries from Table 1:

• One query, CQ1, might represent the tree connecting TblProtein



through Entry2Meth to Entry, followed by joining InterPro2GO
to get to Term, then joining with Gene2GO to get a GeneInfo,
and finally joining with MIM2Gene and OMIM MAIN to get a
complete result. This query is shown in Datalog form as the first
row in Table 1, and its cost would be computed as c1 +c3 +c5 +
c6 + c11 + c12 + c13 + c14 + c15.

• A different query, CQ4, uses a correspondence table from a record
linking (entity matching) tool that produces potential matches
between UniProt proteins and InterPro Entry tuples. In general,
the quality of those matches might vary with the matched tuple,
and the corresponding cost contribution would then depend on
the tuple. However, as we discuss below in more detail, we sim-
plify the problem here to pay a single cost for any use of record
linking, obtaining the tree cost c2 + c4 + c5 + c6 + c11 + c12 +
c13 + c14 + c15.

In principle, queries like CQ4 may assign different scores to differ-
ent tuples, because record linking is not equally reliable for all tu-
ples. However, we believe there are several disadvantages in fully
adopting a per-tuple ranking model. First, in general the overall
score of a tuple is based on features it likely shares with other tu-
ples. We would like knowledge about scores to transfer to other
tuples with similar features — to take what we learn on a per-tuple
basis, discover common classes among the tuples, and then apply
what we learned to our classes. Unfortunately, the finer-grained our
ranking model, the more examples we would need to learn anything
useful; this mirrors the so-called “curse of dimensionality” that is
often discussed in the data mining literature. Second, simply pro-
cessing queries in such a model creates a very large top-k-results
query processing problem: for a large schema graph we may have
thousands of potential queries to merge together, and current top-k
query processing algorithms have not tackled this scale.

Our approach is to use a “binning” strategy whereby tuples within
a relation are grouped or binned according to administrator-defined
partitioning functions — typically common features or score ranges.
For example, in an ontology we may wish to put all direct super-
classes into one “bin”; all grandparent classes into a different bin;
all sibling or synonymous classes into yet another bin; etc. (This
binning is indicated, for instance, in Figure 1 for the Term rela-
tion.) For a record linking table, we may wish to group together all
associations above a certain threshold into one “high confidence”
bin; another range of values into “medium confidence”; etc. Now
we treat each bin as a separate node in the schema graph, and we
separately handle each bin with respect to top-k query generation
and learning. This approach allows us to “share learning” across a
group of tuples, and also to efficiently prune the space of possible
top-k queries at query generation time, rather than choosing among
tuples at runtime.

At the View Refinement stage (box 4), the top-scoring queries
are combined into a disjoint union (i.e., aligning like columns and
padding elsewhere with nulls, as described in Section 5), forming
what we term a union view. Next, the query author may refine the
query, adding projections, renaming or aligning columns, and so
on. At this stage, the view is optionally given a name and made
persistent for reuse. An associated Web form is automatically gen-
erated, as in Figure 1b. (Recall that our “view” actually represents
a template for a family of queries with similar information needs,
which are to be parameterized by the user to actually pose a query.)

3.3 Query Execution
Any user with permissions (not only the author) may access the

Web Form Interface (box 5), parameterize the fields of the query
through the Web form, and execute it. This invokes the Query

Processor (box 6), which is a distributed relational query engine
extended to annotate all tuples with their provenance or lineage [7,
13, 20], which is essential for later allowing the system to take feed-
back on tuples and convert it into feedback on queries. Of course,
the query processor must also return these annotated results in in-
creasing order of cost, where they receive the cost of the query that
produces them. (If a tuple is returned by more than one query, it
is annotated with the provenance of all of its producer queries, and
given the cost of the lowest-cost query.)

3.4 Learning through Feedback
Once the user has posed a query, he or she may look over the

results in the Results/Feedback Page (box 7) and provide feed-
back to the system, with respect to the relative ordering and set of
answers. The system will generalize this feedback to the queries
producing the answers. Then the Learner (box 8) will adjust costs
on the schema graph, thus potentially changing the set of queries
associated with the Web form, and altering the set of answers to
the query. The new results are computed and returned at interactive
speeds, and the user may provide feedback many times. Our goal
is to learn the costs corresponding to the user’s mental model of the
values of the respective sources.

In the subsequent two sections, we discuss the implementation
of the main modules in detail. We omit further discussion of Mod-
ule 1, the Schema Loader, as it is straightforward to implement.
Our discussion begins with the query creation and answering stages
(boxes 2-6), and then we move on to discuss the feedback and learn-
ing stages (boxes 7 and 8).

4. QUERIES AND QUERY ANSWERS
In this section, we begin by discussing the details of the schema

graph (Section 4.1) and cost model (Section 4.2), which form the
basis of all query generation. Section 4.3 then considers how key-
words are matched against the graph, and Section 4.4 addresses the
key problem of finding the best queries through Steiner tree genera-
tion. Finally, we discuss how Steiner trees are converted into query
templates (Section 4.5), and how these templates are parameterized
and executed (Section 4.6).

4.1 Foundation: the Schema Graph
As its name connotes, the schema graph is primarily at the schema

and relationship level: nodes represent source relations and their
attributes and edges represent associations between the elements.
Our query system additionally supports matches at the tuple level
— which is especially useful when searching topic indices and on-
tologies (as in Figure 1) — but our emphasis is primarily on the
metadata level, as explained in the previous section.

Nodes. Nodes represent source relations containing data that may
be of interest. The query answers should consist of attributes from
a set of source nodes.

Edges. Within a given database, the most common associations are
references: a foreign key pointing to another relation, a hyperlink
pointing to content in another database, etc. However, a variety
of additional associations may relate nodes, particularly across dif-
ferent sources: subclass (“is-a”) is very common in ontologies or
class hierarchies; maps-to occurs when there exists a view, schema
mapping, synonym, or correspondence table specifying a relation-
ship between two different tables; similar-to describes an associa-
tion that requires a similarity join. All edges have cost expressions
associated with them.

4.2 Cost Model
The costs associated with edges in the schema graph are sim-

ple weighted linear combinations of edge features. Features are



domain-specific functions on edges that encode the aspects of those
edges that are relevant to user-ranking of queries: in essence, they
capture distinctions that may be relevant to a user’s preference for
an edge as part of the query. The identities of edge end-nodes are
the simplest and most obvious features to use: the cost will be
a function of the nodes being associated by the edge. However,
more general features, for instance the type of association (sub-
class, maps-to, similar-to) used to create an edge, are also poten-
tially useful. Each feature has a corresponding weight, represent-
ing the relative contribution of that feature to the overall cost of the
query: this is set to a default value and then learned. Crucially,
the use of common features in computing costs allows the Q Sys-
tem to share information about relevance across different queries
and edges, and thus learn effectively from a small number of user
interactions.

We discuss features and how they are learned in Section 5. For
purposes of explaining query answering in this section, we note that
the cost of a tree is a weighted linear combination of the features
of the edges in the tree. This model was carefully chosen: it allows
simple and effective learning of costs for the features from user
feedback [12].

Intuitions behind the cost model. An edge cost in our model can
be thought of as the logarithm of the odds (in the sense of betting)
that using that edge in a query leads to worse answers (from the
user’s point of view) than including the average alternative edge.
Conversely, lower costs correspond to better odds that using the
edge will lead to better answers. Since the costs are parameterized
by a shared weight vector w, feedback from a few queries will
typically affect edges involved in many different queries. Selecting
query trees according to the updated weights will increase the odds
that user-favored answers are shown first.

We observe that our cost model somewhat resembles that of other
keyword query systems (e.g. [25]), which do not use features or
learning, but often use an additive model based on edge costs. Our
notion of cost and its use in query construction is different from the
probabilities in probabilistic databases [14], which represent uncer-
tainty about whether specific relationships hold. A low-cost answer
tuple in our model is not necessarily very probable, but simply one
that was derived by a query that involves associations favored by
the user. Our costs are also different from edge capacities in au-
thority flow models [2, 37], which encode the relative strength of
edges as carriers of authority between nodes. A low-cost edge in
our model is not necessarily one that passes more authority from
its source to its target, but simply one that supports a join that has
proven useful.

4.3 Matching Keyword Queries
Given a user’s keyword query, the Q System begins by matching

it against nodes in the schema graph. A keyword query consists of
a set of terms Q = {q1, . . . , qn}. Let Nq be the set of nodes in the
schema graph that match q ∈ Q, and let N =

S
q∈Q Nq . A node

matches a term if its label (consisting of the relation and attribute
names) contains the term as a substring, or, in special cases (e.g.,
for taxonomies and synonym tables), the instance of the relation
represented by the node contains the term.

For each q ∈ Q, we add a special keyword node q to the graph,
and also edges (q, n) for all n ∈ Nq . These new edges can be
assigned costs according to an appropriate scoring function, for in-
stance TF/IDF. The system now attempts to find the k lowest-cost
Steiner trees that contain all of the keyword nodes.

Each such tree T also includes non-keyword nodes that are need-
ed to complete a (connected) tree. As discussed previously, the cost
of T is the sum of costs of its edges, and those costs are weighted
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Figure 3: Steiner trees for queries CQ2 and CQ3 in Table 1.
Nodes matching query keywords are shaded, with blue text.

STEINER (G, S, C) :

min
x,y

r∈V (G)

X
(i,j)∈E(G)

C(i, j)× yij

s.t. S′ = S − {r}X
h∈V (G)

xk
rh −

X
j∈V (G)

xk
jr = 1 ∀k ∈ S′ (C1)

X
h∈V (G)

xk
kh −

X
j∈V (G)

xk
jk = −1 ∀k ∈ S′ (C2)

X
h∈V (G)

xk
ih −

X
j∈V (G)

xk
ji = 0 ∀i ∈ V (G) \ S (C3)

xk
ij ≤ yij ∀(i, j) ∈ E(G), k ∈ S′ (C4)

xk
ij ≥ 0 ∀(i, j) ∈ E(G), k ∈ S′ (C5)

yij ∈ {0, 1} (C6)

Figure 4: Mixed integer program for min-cost Steiner trees.

combinations of edge features. Formally, the feature weights form
a weight vector w, and the cost C(T,w) of T is the sum of w-
dependent edge costs:

C(T,w) =
X

e∈E(T )

C(e,w) (1)

where E(T ) is the set of edges of T .
We next discuss the process of finding Steiner trees. The goal

here is to quickly (at interactive rates) produce an ordered list of
subtrees of the schema graph that purport to satisfy the information
need specified by a set of keywords. That ordered list is determined
by the current feature weight vector w. Later, the learning process
will adjust this weight vector so that the order of the returned query
trees corresponds better to user preferences about the order of the
corresponding answers.

4.4 Steiner Tree Generation
The task of our Steiner Tree Generator is not merely to find a

single Steiner tree in the graph, as is customary in the literature —
but to find the top k Steiner trees in order to find the k best queries.
Here, we are faced with the question of whether to find the actual
k lowest-cost Steiner trees, or to settle for an approximation. For
small graphs we use an exact algorithm for finding the k lowest-
cost Steiner trees, and for larger graphs we develop a heuristic. This
allows us to find the optimal solution for small schema graphs, and
yet to scale gracefully to larger schemas.

4.4.1 Steiner Trees via Integer Programming
We first formalize the Steiner tree problem. Let G be a directed



STEINERIE(G, S, I, X, C) :

min
x,y
r∈S

X
(i,j)∈E(G)

c(i, j)× yij

S+ = S ∪ {i : (i, j) ∈ I} (T1)
s.t.

Constraints C1-C6 from STEINER(G, S+, C)X
h∈V (G)

yhr = 0 (C7)

X
h∈V (G)

yhi ≤ 1 ∀i ∈ V (G) \ {r} (C8)

X
k∈S′

xk
ij ≥ 1 ∀(i, j) ∈ I (C9)

yij = 0 ∀(i, j) ∈ X (C10)

Figure 5: MIP for Steiner tree with inclusions and exclusions.

graph with nodes and edges given by V (G) and E(G), respec-
tively. Each edge e = (i, j) ∈ E(G) has a cost C(e). We also have
a set of nodes S ⊆ V (G). A directed subtree T in G connecting the
nodes in S is known as a Steiner tree for S. The nodes in V (T )\S
are called Steiner nodes. The cost of T is C(T ) =

P
e∈E(T ) C(e).

Finding the minimum cost Steiner tree on a directed graph (STDG)
is a well-known NP-hard problem [41, 17].

Finding a minimum-cost Steiner tree on a directed graph [41]
can be expressed as a mixed integer program (MIP) [40] in a stan-
dard way (Figure 4) [41]. This encoding requires one of the nodes
r in V (G) to be chosen as root of the Steiner tree. Hence, the min-
imum cost Steiner tree can be obtained by running the appropriate
MIP with each node in V (G) taken as root separately and then se-
lecting the lowest-cost tree from at most |V (G)| candidates. This
can be time consuming especially for large schema graphs. For
the experiments reported in this paper, we convert every schema
graph edge (which, despite describing a foreign key, is really a
bidirectional association) to a pair of directed edges. With such
bi-directional edges, one can find the minimum cost Steiner tree
by solving STEINER (G, S, C) with any of the nodes in S fixed as
root, avoiding the need to iterate over all the vertices in the graph.
Unless otherwise stated, we assume the graph to be bi-directional
in what follows. In STEINER (G, S, C), an edge (i, j) ∈ E(G) is
included in the solution iff yij = 1. The MIP STEINER (G, S, C)
that finds the lowest-cost (according to cost function C) Steiner
tree in G and containing nodes S can be viewed as a network flow
problem where xk

ij specifies the amount of flow of commodity k
flowing on edge (i, j). Flow on an edge (i, j) is allowed only if
that edge is included in the solution by setting yij = 1. This is
enforced by constraint C4. All flows are nonnegative (constraint
C5). Flow of commodity k originates at the root r (constraint C1)
and terminates at node k (constraint C2). Conservation of flow at
Steiner nodes is enforced by constraint C3.

However, we need more than just the minimum-cost tree: we
need the k lowest-cost trees. To achieve this, we modify the MIP
of Figure 4 so that it can be called multiple times with constraints
on the sets of edges that the solution can include. The modified
program is shown on Figure 5.

The MIP STEINERIE(G, S, I, X, C) finds the lowest cost (ac-
cording to cost function C) Steiner subtree of G rooted at r that
contains the nodes in S, which must contain the edges in I and can-
not contain any edge in X . C9 guarantees that there is flow of at
least one commodity on all edges in I . T1 with C7-C9 enforce the
inclusion constraints, while the exclusion constraints are enforced

by C10. We must also ensure the result will be a tree by requiring
flow to pass through the source nodes of the edges in I . Step T1
expands S by including source nodes of the edges in I . This en-
sures there is a directed path from root r to the source nodes of the
edges that must be included. C7 ensures that there is no incoming
active edge into the root. C8 ensures that all nodes have at most
one incoming active edge.

4.4.2 K-Best Steiner Trees

Algorithm 1 KBESTSTEINER(G, S, C, k). Input: Schema graph
G, keyword nodes S, edge cost function C, number of returned
trees k. Output: List of at most k trees sorted by increasing cost.
1: Q← empty priority queue
{Q contains triples (I, X, T ) sorted by T ’s cost.}

2: T = STEINERIE(G, S, ∅, ∅, C)
3: if T 6= null then
4: Q.INSERT((∅, ∅, T ))
5: end if
6: A← empty list
7: while Q 6= ∅ ∧ k > 0 do
8: k = k − 1
9: (I, X, T )← Q.DEQUEUE()

10: A.APPEND(T )
11: Let {e1, . . . , em} = E(T ) \ I
12: for i = 1 to m do
13: Ii ← I ∪ {e1, . . . , ei−1}
14: Xi ← X ∪ {ei}
15: Ti ← STEINERIE(G, S, Ii, Xi, C)
16: if Ti is a valid tree then
17: Q.INSERT((Ii, Xi, Ti))
18: end if
19: end for
20: end while
21: return A

To obtain the k lowest-cost Steiner trees, where k is a prede-
termined constant, we use KBESTSTEINER (Algorithm 1), which
uses the MIP STEINERIE as a subroutine. KBESTSTEINER is a
simple variant of a previous top k answers algorithm [27, algorithm
DQFSearch], which in turn generalizes a previous k-best answers
algorithm for discrete optimization problems [29].

We are not the first to use lowest-cost Steiner trees to rank key-
word query results, but we are the first to use the resulting rankings
for learning. In addition, in the previous work [27], the graph repre-
sents actual data items and their associations, and the Steiner trees
are possible answers containing given keywords. Since data graphs
can be very large, the method is primarily of theoretical rather than
practical interest. In our application, however, we work on much
smaller schema graphs, and each tree corresponds to a whole query
that may yield many answers, not a single answer.

4.4.3 K-Best Steiner Tree Approximation
As we show in Section 6, our Steiner formulation works for

medium-scale schema graphs (around 100 nodes). To scale k-best
inference to much larger schema graphs, we developed the follow-
ing novel pruning heuristic.

Shortest Paths Complete Subgraph Heuristic (SPCSH) We ex-
plore using reductions [15, 39] to prune the schema graph to scale
up KBESTSTEINER to larger schema graphs. SPCSH keeps only
the subgraph induced by the m shortest paths between each pair
of nodes in S. The intuition for this is that there should be signifi-



cant edge overlap between the k-best Steiner trees and the subgraph
induced by the m-shortest paths, thereby providing good approxi-
mation to the original problem while reducing problem size signifi-
cantly. SPCSH then computes the k-best Steiner trees by invoking
KBESTSTEINER on the reduced subgraph.

Heuristic 2 SPCSH(G, S, C, k, m). Input: Schema graph G,
keyword nodes S, edge cost function C, number of returned trees
k, number of shortest paths to be used m. Output: List of at most
k trees sorted by increasing cost.
1: L← empty list
2: for all (u, v) ∈ S × S do
3: P ← G.SHORTESTPATHS(u, v, C, m)
4: L.APPEND(P )
5: end for
6: G(S,C,m) ← G.SUBGRAPH(L)
7: return KBESTSTEINER(G(S,C,m), S, C, k)

In SPCSH, G.SHORTESTPATHS(u, v, C, m) returns at most m
shortest (least costly) paths between nodes u and v of G using C
as the cost function. Efficient algorithms to solve this problem are
known [42]. SPCSH is similar to the distance network heuristic
(DNH) for Steiner tree problems on undirected graphs [38, 39],
but there are crucial differences. First, DNH works on the set S-
induced complete distance network in G while SPCSH uses a sub-
graph of G directly. Second, DNH uses a minimum spanning tree
(MST) approximation while we use exact inference, implemented
by KBESTSTEINER, on the reduced subgraph. Third, DNH con-
siders only the shortest path for each vertex pair in S × S, while
SPCSH considers m shortest paths for each such vertex pair.

4.5 From Trees to Query Templates
The next task is to go from top k Steiner trees to a set of con-

junctive queries, all outputting results in a common schema and
returning only attributes in which the query author is interested.
This is accomplished by first converting the top Steiner trees into
conjunctive queries; then combining the set of conjunctive queries
into a union view that produces a unified output relation; next, sup-
porting user refinement of the view, e.g., to add projections; finally,
naming and saving the view persistently with a Web form.

Converting Steiner trees to conjunctive queries. The task of gen-
erating conjunctive queries from Steiner trees is fairly straightfor-
ward. Each node in the Steiner tree typically represents a relation;
traversing an edge requires a join. (In a few cases, a keyword may
match on a tuple in, e.g., a topic index or ontology, and now the
match represents a selection predicate.) In our implementation, the
edges in our schema graph are annotated with the appropriate deref-
erencing information, typically foreign keys and keys. Here the
query is formed by adding relations plus predicates relating keys
with foreign keys. We require a query engine that supports queries
over remote sources (such as the ORCHESTRA engine we use, de-
scribed in Section 4.6), and we assume the existence of “wrappers”
to abstract non-relational data into relational views.

Union view. The union of the queries derived from the top k
Steiner trees form a single union view. Since each tree query may
consist of source data from relations with different schemas, an im-
portant question is how to represent the schema for the union view.
To create an initial version of the union view, we adopt a varia-
tion of the outer union (disjoint union) operator commonly used in
relational-XML query processing [9]. Essentially, we “align” keys
and attributes that have the same name, and pad each result with
nulls where it does not have attributes.

View refinement. Next, allow the user to refine the view definition
by adding projections, or aligning additional attributes from dif-
ferent source relations. This is done through an AJAX-based Web
interface, which provides rapid feedback on how user selections af-
fect the output. Projection and attribute alignment are achieved as
follows. In a scrollable pane, we create a column for each keyword
ki. Then, for each conjunctive query in the view, we output a row
in this pane, in which we populate each column i with the schema
of the relation ri that matches ki. Each attribute in the schema
is associated with a check box — unchecking the check box will
project the attribute out from the view. Additionally, there is a text
field through which the attribute can be renamed as it is output in
the view. If two source attributes are renamed to the same name,
then their output will be automatically aligned in the same output
column.

Web form. The result of refinement is an intuitive Web-based form
created from (and backed by) the view, as previously shown in Fig-
ure 1b. To reiterate, this form represents not one query but a family
of queries, as it may be parameterized the the user. The query au-
thor will name and save the view and Web form, making it available
for parameterization and execution.

4.6 Executing a Query
The user of a Web form (who may or may not be its creator) may

retrieve the form via a bookmark, or by looking it up by its name
and/or description. Each field in the Web form has a check box,
which can be deselected to further project out information. The
biologist may add selection predicates by filling in values in text
boxes, or, for attributes with only a few values, by selecting from
a drop-down list. Finally, alongside each item, there is a descrip-
tion of one or more sources from which the attribute is obtained —
depending on space constraints — to help the biologist understand
what the attribute actually means.

Query execution with provenance. Once the query is parame-
terized, the user will request its execution. Based on the query or
queries that produced it, each tuple output by the query proces-
sor receives a score, which is the cost of the query that generated
it. If a tuple is derived from multiple queries, it receives the low-
est (minimum-cost) score. Rather than build our own query engine
specifically for the Q System, we adopt the query processor used in
the ORCHESTRA system [19].

When computing query results, ORCHESTRA also records their
provenance in the form of a derivation graph, which can be tra-
versed and retrieved. The same tuple may be derived from more
than one query: hence in queries produced by the Q System, the
provenance of a tuple is a tree-structured representation specify-
ing which queries were applied to which source tuples, in order to
derive the result tuple.

The existing ORCHESTRA system encodes provenance as a graph
represented in relations, since it must support recursive queries
whose provenance may be cyclic. Since all queries from the Q
System are tree-structured and thus acyclic, we modified the query
answering system to compute the provenance in-line with the query
results: each tuple is annotated with a string-typed attribute con-
taining the provenance tree expression, including the keys and names
of the specific source tuples, and any special predicates applied
(e.g., tests for similarity). This annotation adds only the overhead
of casting attributes to strings and concatenating them to query pro-
cessing — rather than materializing extra relations.

We note that, for situations in which all of the top k queries’ cost
expressions are independent of tuple data, we can simplify even
further, and simply tag each tuple with the ID of the query. How-



TblProtein

Entry2Meth

 0.81 

Term(T1)

Term2Term

 0.03 

Term(T2)

Gene2GO

 0.91 

GeneInfo

MIM2Gene

 0.09 

Index

InterPro2GO

 0.90 

 0.06 

 0.05 

 0.63 

MAIN

 0.27 

 0.81 

(a) Cost=4.56

TblProtein

Entry2Meth

 0.81 

Term(T1)

Term_Syn

 0.05 

Term(T2)

Gene2GO

 0.91 

GeneInfo

MIM2Gene

 0.09 

Index

InterPro2GO

 0.90 

 0.06 

 0.05 

 0.63 

MAIN

 0.27 

 0.81 

(b) Cost=4.58
Figure 6: Re-ranked Steiner trees with costs updated as dis-
cussed in the text. The updated edge is thicker and red.

ever, for regularity across all answers, we use the previous scheme
that encodes full details about the source tuples.

In our experience and that of our collaborators, the majority of
bioinformatics queries have selective conditions, so we work un-
der the assumption that any given query typically returns few an-
swers. This has an important benefit in our context: it means that
we can compute the entire set of answers satisfying the top queries
— and as a result, compute the complete provenance for each tuple
in terms of the queries. We need this complete information in or-
der to provide proper feedback to the learning stages of the system,
which we describe next.

5. LEARNING FROM FEEDBACK
Interaction with the Q System does not stop once query answers

have been returned. Instead, the user is expected to provide feed-
back that helps the system learn which answers — thus, which
queries and ultimately which features in the schema graph — are
of greater relevance to the user.

The user provides feedback through the Results/Feedback Page,
which shows query results in a table. When the user “mouses over”
a tuple, Q provides a pop-up balloon showing the provenance of
the tuple, in terms of the Steiner tree(s) that produced it; in many
situations this is useful in helping the user understand how the tuple
was created. The user may click on a button to tell our Q System
that a given tuple should be removed from the answer set, another
button instructing Q to move the tuple to the top of the results, or
may input a number to indicate a new position this tuple should
have in the output. In the cases we consider here, the cost (and
thus rank) of a tuple is dependent solely on the query, and therefore
the feedback applies to all tuples from the same query. (Recall that
our binning process can divide tuples from the same relation into
closely related groups, each of which corresponds to a different
query, hence per-query feedback need not be coarse-grained.)

5.1 Basis of Edge Costs: Features
As we discussed previously, edge costs are based on features that

allow the Q System to share throughout the graph what it learned
from user feedback on a small number of queries. Such features
may include the identity of nodes or edge end-nodes, or the overall
quality of the match for an edge representing an approximate join.
We now define features and their role in costs more precisely. Let
the set of predefined features be F = {f1, . . . , fM}. A feature
maps edges to scalar values. In this paper, all feature values are
binary, but in general they could be real numbers measuring some
property of the edge. For each edge (i, j), we denote by f(i, j)
the feature vector that specifies the values of all the features of the
edge. Each feature fm has a corresponding weight wm. Informally,
lower feature weights indicate stronger preference for the edges

that have those features. Edge costs are then defined as follows:

C((i, j),w) =
X
m

wm × fm(i, j) = w · f(i, j) (2)

where m ranges over the feature indices.
To understand features, weights, and the learning process, con-

sider an example with the two Steiner trees in Figure 3, which cor-
respond to queries CQ2 and CQ3 in Table 1. Their costs are derived
from features such as the following, which test the identity of edge
end-nodes:

f8(i, j) =


1 if i = Term(T1) & j = Term2Term
0 otherwise

f25(i, j) =


1 if i = Term(T1)
0 otherwise

Suppose that w8 = 0.06, w25 = 0.02. Then the score of the
edge (i = Term(T1), j = Term2Term) in Figure 3(b)1 would be
C(i, j) = w8 × f8(i, j) + w25 × f25(i, j) = 0.08.

Now suppose that, as mentioned in the previous section, the
user is presented with tuples generated by the tree queries of Fig-
ures 3(a) and (b), annotated with provenance information. Since
CQ2’s tree has a lower cost than CQ3’s tree, tuples generated by
executing CQ2 are ranked higher. The difference between CQ2
and CQ3 is that while CQ2 uses the synonym relation (Term Syn),
CQ3 uses the ontology relation (Term2Term). Suppose that the user
prefers tuples produced by CQ3 to those produced by CQ2. To
make that happen, the learning algorithm would update weights to
make the cost of the second tree lower than the cost of the first tree
so that in a subsequent execution, tuples from the second tree are
ranked higher. Setting w8 = 0.01, w25 = 0.02 would achieve this,
causing the two tree costs be as shown in Figure 6. Of course, the
key questions are which weights to update, and by how much. We
now discuss the actual learning algorithm.

5.2 Learning Algorithm
We use an online learning algorithm, i.e., an algorithm that up-

dates its weights after receiving each training example. Algorithm 3
is based on the Margin Infused Ranking Algorithm (MIRA) [12].
MIRA has been successfully applied to a number of learning prob-
lems on sequences, trees, and graphs, including dependency pars-
ing in natural-language processing [32] and gene prediction in bioin-
formatics [3].

The weights are all zero as Algorithm 3 starts. After receiving
feedback from the user on the rth query Sr about a top answer,
the algorithm computes the list B of the k lowest-cost Steiner trees
using the current weights. The user feedback for interaction r is
represented by the keyword nodes Sr and the target tree Tr that
yielded the query answers most favored by the user. The algo-
rithm then updates the weights so that the cost of each tree T ∈ B
is worse than the target tree Tr by a margin equal to the mis-
match or loss L(Tr, T ) between the trees. If Tr ∈ B, because
L(Tr, Tr) = 0, the corresponding constraint in the weight update
is trivially satisfied. The update also requires that the cost of each
edge be positive, since non-positive edge costs are not allowed in
the Steiner MIP. An example loss function, which is used in the
experiments reported in this paper, is the symmetric loss:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (3)

1For the sake of simplicity, we consider only simple paths here.
However, the Q System is capable of handling arbitrary tree struc-
tures. This is an improvement over previous systems [6] that can
handle path queries only.



Algorithm 3 ONLINELEARNER(G, U, k). Input: Schema graph
G, user feedback stream U , required number of query trees k. Out-
put: Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()

6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G, Sr, Cr−1, K)

8: w(r) = arg minw

‚‚‚w −w(r−1)
‚‚‚

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ) ∀T ∈ B
10: w · fij > 0 ∀(i, j) ∈ E(G)
11: end while
12: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
13: Return C

The learning process proceeds in response to continued user feed-
back, and finally returns the resulting edge cost function.

The edge features used in the experiments of the next section are
simply the identities of the source and target nodes, plus a single
default feature that is on for all edges. The default feature weight
serves as a cost offset that is automatically adjusted by Algorithm 3
to ensure that all edge costs are positive.

6. EXPERIMENTAL RESULTS
Our Q prototype consists of four primary components. The k-

best Steiner tree algorithm uses the MOSEK 5.0 integer linear pro-
gram solver, run on a dual-core Linux machine (2.6.18.8 kernel)
with 12GB RAM. Query refinement is provided by a Java servlet
running on Apache Tomcat 6.0.14. Query answering with data
provenance is performed by the ORCHESTRA system [19], imple-
mented in Java 6 and supported by IBM DB2 9.1 on a Windows
2003, Xeon 5150 server. (Note that we do not evaluate ORCHES-
TRA in this paper; only the quality of the query results). Finally,
the machine learning component is also implemented in Java 6.

6.1 Experimental Roadmap
In this paper, we answer the following questions experimentally:

• Can the system start with default costs on all edges, and based
on limited feedback over query answers, generalize the feedback
to learn new rankings that enable it to produce “gold standard”
(i.e., correct and complete according to expert opinion) queries?
How many feedback iterations are necessary?

• How long is the response time (1) in processing feedback and
generating new top-k queries, and (2) simply in generating top-k
queries from the schema graph?

• How does our performance scale to large, real cross-database
schema graphs?

We note that our evaluation focuses purely on the tasks of learn-
ing and generating queries. Our interest is not in measuring the
response times of the query engine, which is orthogonal to this
work. The Q System returns the top k queries in pipelined fashion,
and most modern data integration query processors begin pipelin-
ing query answers as soon as they receive a query [10, 24]. We
also do not duplicate the work of [6, 33] by performing user stud-
ies, e.g., in comparison with existing keyword search systems. That
previous work already demonstrated that query answers need to be
ranked by source authority/quality and not according to keyword
search metrics like path length or term similarity.

Data Sets and Methodology
We conducted our experiments (except for the final experiment
focusing on very large schema graphs) using data from a previ-
ous biomedical information integration system, BioGuide (www.
bioguide-project.net) [6]. BioGuide is, to a significant
extent, a baseline for comparison, as it provides ranked answers
over a schema graph, given weights set by biological domain ex-
perts. The data that the BioGuide developers kindly supplied in-
cludes schema graphs with record linking tables between bioin-
formatics data sources, edge costs determined by a panel of ex-
perts based on reliability and completeness judgments, and expert
queries. An example of an expert query is, “What are the related
proteins and genes associated with the disease narcolepsy?” From
such queries, a set of keywords on concepts can be easily extracted.
These form our query workload.

Since BioGuide does not support the kind of learning from feed-
back we describe here, we used the BioGuide schema graph and
set the expert-determined edge costs to create a “gold standard”
against which to compare automatic learning. For a given query,
the lowest-cost Steiner tree according to expert costs is taken to be
what the simulated user prefers, and is used both as feedback in the
learning process and as the gold standard for evaluation. Our goal
in the near future is to work with our bioinformatics collaborators
to deploy the Q System in real applications, and to conduct user
studies in this context to confirm our preliminary results.

6.2 Learning against Expert Costs
We first investigate how quickly (in terms of feedback steps) the

Q System can learn edge costs that yield the same query rankings
as the gold standard obtained from expert-provided costs. Note
that this is stronger than simply learning, based on feedback, which
query the user prefers: our goal is to take feedback over a subset
of the queries, and generalize that in a way that lets the system
correctly predict which future queries are preferred.

We converted each expert query into a query template in which
each keyword picks out a single table. For instance, for the nar-
colepsy query mentioned above, the template would be “What are
the related proteins (in [DB1]) and genes (in [DB2]) associated
with disease Narcolepsy in [DB3]?”. Here, [proteins], [genes]
and [disease] are entities while [DB1], [DB2] and [DB3] are ta-
ble names that need to be filled in. Using substring matching on
table names, we populated these query templates by filling in the
[DB] slots; each such instantiated template forms a query. For the
experiments reported in this section, we generated 25 such queries
and matched them over the BioGuide schema graph.

We created a feedback stream by randomly selecting a sequence
in which the queries will be posed. For each such stream, we paired
each query with the corresponding lowest-cost Steiner tree over our
schema graph according to expert edge costs. We then applied
Algorithm 3 to each stream, with the goal of learning the feature
weightings that returned top query. At each point in the stream, our
goal is to measure how well the top k algorithm’s results for all of
the 25 queries agree with the gold standard for those queries.

Thus, we simulate the interaction between the algorithm and a
user who poses successive queries, examines their answers, sup-
plies feedback about which is the best answer to this query, and
moves on to the next query. However, to measure the quality of
learning at each point, we need more than just the current query.
We also need all the queries that could have been posed, both past
and future ones, since the algorithm may change its weights in re-
sponse to a later interaction in a way that hurts performance with
previously submitted queries. The system behavior we aim for is
that as this process continues, the queries preferred by the system

www.bioguide-project.net
www.bioguide-project.net
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Figure 7: Learning curves of top k trees, k = 1, 2, 3 against gold standard as feedback is provided, with error bars showing
best/worst performance, based on different feedback orders. There are 25 expert queries and the results are averaged over 3
random permutations of the queries.

will agree better with the user’s preferences.
The results appear in Figure 7. For k = 1, 2 & 3, we plot the

mean and min/max error bars (across the different random query-
feedback stream sequences; note these are not confidence intervals)
of how many of the 25 queries fail to have the gold standard tree
within the top k trees computed with current weights. We conclude
that the learning algorithm converges rapidly: that is, it quickly
learns to predict the best Steiner tree consistent with the experts’
opinion. After 10-15 query/feedback steps, the system is returning
the best Steiner tree into one of the top three positions, and often the
top position: Q begins to return the correct queries for all queries,
given feedback on 40-60% of them.

6.3 Feedback and Query Response Time
Given that our goal is to provide an interactive query interface

to the user, it is vital that our feedback process, as well as the cre-
ation of new top queries based on the feedback, be at a rate that is
sufficient for interactivity.

To evaluate the feedback and query generation times, we fix the
schema graph and measure (1) the time to process a “typical” user
feedback given over a set of top answers, and (2) the time to create
a set of queries based on that feedback. Assuming a search engine-
like behavior pattern, the user will not look at answers that are be-
yond the first page of results; moreover, the user will only provide
feedback on a few items. Hence, we measured the time taken to re-
train and regenerate the set of top queries based on feedback. This
took an average of 2.52 sec., which is easily an interactive rate.

A separate but related question is how quickly we can generate
queries, given an existing set of weight assignments. Such a case
occurs when a user retrieves an existing Web form and simply poses
a query over the existing schema graph. We term this the decoding
time, and Table 2 shows the total time it takes to generate the top
1, 5, 10, and 20 queries over the BioGuide schema graph (whose
parameters are shown). In general, 5-10 queries should be sufficient
to return enough answers for a single screenful of data — and these
are returned in 2-4 seconds. Particularly since query generation and
query processing can be pipelined, we conclude that response rates
are sufficient for user interaction.

Test K Graph (G) Size Decoding
(Nodes, Edges) Time (s)

1 (28, 96) 0.11
5 (28, 96) 2.00
10 (28, 96) 4.02
20 (28, 96) 8.32

Table 2: Average per-query decoding times (sec.) for request-
ing top-1 through -20 results over BioGuide schema.

6.4 Schema Graph Size Scalability
We have shown that the Q system scales well to increased user

demand for answers. A second question is how well the system

scales to larger schema graphs — a significant issue in the life sci-
ences. Given that the Steiner tree problem is NP-hard, we will need
to use our SPCSH algorithm (Sec. 4.4.3), but now the question is
how well it performs (both in running time and precision.) To eval-
uate this, we used a different real-world schema graph based on
mappings between the Genomics Unified Schema (www.gusdb.org),
BioSQL (www.biosql.org), and relevant portions of Gene Ontol-
ogy (www.geneontology.org). We call this the GUS-BioSQL-GO
schema. The schema graph had 408 relations (nodes) and a total of
1366 edges. The edge weights were set randomly.

K KBEST- SPCSH Speedup Approx. Symm.
STEINER (s) (s) Ratio (α) Loss

1 1.2 0.1 12.0 1.0 0
2 43.8 3.0 14.6 1.0 0
3 111.8 5.5 20.3 1.0 0
5 1006.9 13.9 72.4 1.0 0

Table 3: Decoding times (sec.) of KBESTSTEINER and SPCSH
with K ranging from 1 to 5, and m from 1 to 3. Also shown are
the speedup factors, the approximation ratio, α, between the
cost of SPCSH’s and KBESTSTEINER’s top predictions (α =
1.0 is optimal) and the symmetric loss (Equation 3) between
the top predictions of the two methods. Results were averaged
over 10 queries, each consisting of 3 keywords.

We use SPCSH to compute top-K Steiner trees on the GUS-
BioSQL-GO schema graph. SPCSH is an approximate inference
scheme, while KBESTSTEINER performs exact inference. Hence,
the top prediction of KBESTSTEINER is always optimal. In Ta-
ble 3, SPCSH’s decoding time and inference quality is compared
against KBESTSTEINER on the GUS-BioSQL-GO schema. Ta-
ble 3 demonstrates that SPCSH computes the k-best Steiner trees
(for various values of k) at a much faster rate than the previous
method, while maintaining quality of prediction (α is 1.0). In fact,
in our experiments, SPCSH’s predictions were always optimal. We
believe this demonstrates that our approach scales to large schema
graphs without sacrificing result quality. We also reiterate that the
time to generate the first query is of primary importance here: other
queries can be pipelined to execution as they are produced.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the problem of helping sci-

entific users author queries over interrelated biological and other
data sources, without having to understand the full complexity of
the underlying schemas, source relationships, or query languages.
In general, such scientists would like to rely on expert-provided
weightings for data sources and associations, and use the best of
these to guide their queries. However, experts are not always avail-
able to assess the data and associations, and moreover, the utility of
a given association may depend heavily on the user’s context and
information need.



Our approach is based on matching keywords to a schema graph
with weighted edges, allowing the user to refine the query, then
providing answers with data provenance. As the user provides feed-
back about the quality of the answers, we learn new weightings for
the edges in the graph (associations), which can be used to refine
the query and any related future queries.

We have demonstrated that our approach balances the task of
finding the top-k queries with the ability to learn new top queries
based on feedback. The Q System learns weights that return the
top answers rapidly — both in terms of number of interactions, as
well as in the computation time required to process the interactions.
Using real schemas and mappings, we have shown that we can use
an exact top-k solution to handle schema graphs with dozens of
nodes and hundreds of edges, and we can easily scale to hundreds
of nodes and thousands of edges with our SPCSH approximation
algorithm, which in all cases returned the same top answers as the
exact algorithm.

We showed that our approach is highly promising for practical
bioinformatics query authoring, and we believe the results extend
to other domains as well. As future work, we hope to investigate ap-
proximation guarantees of SPCSH and look into other approxima-
tion algorithms for computing Steiner trees, to evaluate our system
in real biological applications, and to more fully investigate settings
where it is feasible to incorporate data-level keyword matching.
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Appendix: Q System Screenshots

Figure 8: Query Refinement Interface

Figure 9: User Feedback Interface

Figures 8 (the query refinement interface that allows for final modifications to the view before it is converted to a Web form) and 9 (the
feedback interface after query answers are returned) are included to give a better sense of the user interface and interaction.
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