
Chapter 11

XML

Most research on data integration has, as described in the previous chapters of this
book, centered on the relational model. In many ways, the relational model (and
the Datalog query language) are the simplest and cleanest formalisms for data and
query representation, so many of the fundamental issues were considered first in that
setting.

However, as such techniques are adapted to meet real-world needs, they typically
get adapted to incorporate XML (or its close cousin JSON1). For instance, IBM’s
Rational Data Architect or Microsoft’s BizTalk Mapper both use XML-centric map-
pings.

The reason for this is straightforward. XML has become the default format for
data export from both database and document sources; and many additional tools
have been developed to export to XML from legacy sources (e.g., COBOL files, IMS
hierarchical databases). Prior to XML’s adoption, data integration systems needed
custom wrappers that did “screen scraping” (custom HTML parsing and content
extraction) to extract content from XML, and that translated to the proprietary wire
formats of different legacy tools. Today, we can expect most sources to have an XML
interface (URIs as the request mechanism and XML as the returned data format),
and thus the data integrator can focus on the semantic mappings rather than the
low-level format issues.

We note that XML brings standardization not only in the actual data format, but
also in terms of an entire ecosystem of interfaces, standards, and tools: DTD and XML
Schema for specifying schemas, DOM and SAX for language-neutral parser interfaces,
WSDL/SOAP or REST for invoking Web services, text editors and browsers with

1JSON, the JavaScript Object Notation, can be thought of as a “simplified XML” although it
also closely resembles previous semistructured data formats like the Object Exchange Model.

307

308 CHAPTER 11. XML

built-in support for XML creation, display, and validation. Any tool that produces
and consumes XML automatically benefits from having these other components.

This book does not attempt to cover all of the details of XML, but rather to
provide the core essentials. In this chapter, we focus first on the XML data model in
Section 11.1 and the schema formalisms in Section 11.2. Section 11.3 presents several
models for querying XML, culminating in the XQuery standard that is implemented in
many XML database systems. We then discuss the subsets of XQuery typically used
for XML schema mappings (Section 11.5) and then discuss XML query processing for
data integration (Section 11.4).

11.1 Data Model

Like HTML (HyperText Markup Language), XML (eXtensible Markup Language) is
essentially a specialized derivative of an old standard called SGML (Structured Gen-
eralized Markup Language). As with these other markup standards, XML encodes
document meta-information using tags (in angle brackets) and attributes (attribute-
value pairs associated with specific tags).

XML distinguishes itself from its predecessors in that (if correctly structured, or
well-formed) it is always parsable by an XML parser — regardless of whether the
XML parser has any information that enables it to interpret the XML tags. To
ensure this, XML has strict rules about how the document is structured. We briefly
describe the essential components of an XML document.

Processing instructions to aid the parser. The first line of an XML file tells
the XML parser information about the character set used for encoding the remain-
der of the document; this is critical since it determines how many bytes encode each
character in the file. Character sets are specified using a processing-instruction, such
as <?xml version="1.0" encoding="ISO-8859-1"?>, which we see at the top of the
example XML fragment in Figure 11.1 (an excerpt from the research paper bibliog-
raphy Web site DBLP, at dblp.uni-trier.de). Other processing instructions may
specify constraints on the content of the XML document, and we will discuss them
later.

Tags, elements, and attributes. The main content of the XML document
consists of tags, attributes, and data. XML tags are indicated using angle-brackets,
and must come in pairs: for each open-tag <tag>, there must be a matching close-
tag </tag>. An open-tag / close-tag pair and its contents are said to be an XML
element. An element may have one or more attributes, each with a unique name and a
value specified within the open-tag: <tag attrib1="value1" attrib2="value2">.

11.1. DATA MODEL 309

<?xml version="1.0" encoding="ISO-8859-1" ?>

<dblp>

<mastersthesis mdate="2002-01-03" key="ms/Brown92">

<author>Kurt P. Brown</author>

<title>PRPL: A Database Workload Specification Language</title>

<year>1992</year>

<school>Univ. of Wisconsin-Madison</school>

</mastersthesis>

<article mdate="2002-01-03" key="tr/dec/SRC1997-018">

<editor>Paul R. McJones</editor>

<title>The 1995 SQL Reunion</title>

<journal>Digital System Research Center Report</journal>

<volume>SRC1997-018</volume>

<year>1997</year>

<ee>db/labs/dec/SRC1997-018.html</ee>

<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>

</article>

...

</dblp>

Figure 11.1: Sample XML data from the DBLP Web site

Of course, an element may contain nested elements, nested text, and a variety of
other types of content we will describe shortly. It is important to note that every
XML document must contain a single root element, meaning that the element content
can be thought of as a tree and not a forest.

Example 11.1: Figure 11.1 shows a detailed fragment of XML from DBLP, as
mentioned on the previous page. The first line is a processing instruction specifying
the character set encoding. Next comes the single root element, dblp. Within the
DBLP element we see two sub-elements, one describing a mastersthesis and the
other an article. Additional elements are elided.

Both the MS thesis and article elements contain two attributes, mdate and key.
Additionally, they contain sub-elements such as author or editor. Note that ee

appears twice within the article. Within each of the sub-elements at this level is
text content, each contiguous fragment of which is represented in the XML data model
by a text node.

Namespaces and qualified names. Sometimes an XML document consists of

310 CHAPTER 11. XML

content merged from multiple sources. In such situations, we may have the same
tag names in several sources, and may wish to differentiate among them. In such a
situation, we can give each of the source documents a namespace: this is a globally
unique name, specified in the form of a Uniform Resource Indicator (URI). (The
URI is simply a unique name specified in the form of a qualified path, and does
not necessarily represent the address of any particular content. The more familiar
Uniform Resource Locator, or URL, is a special case of a URI where there is a data
item whose content can be retrieved according to the path in the URI.) Within an
XML document, we can assign a much shorter name, the namespace prefix, to each of
the namespace URIs. Then, within the XML document, we can “qualify” individual
tag names with this prefix, followed by a colon, e.g., <ns:tag>. The default namespace
is the one for all tags without qualified names.

Document order. XML was designed to serve several different roles simultane-
ously: extensible document format generalizing and replacing HTML; general-purpose
markup language; structured data export format. It distinguishes itself from most
database-related standards in that it is order-preserving and generally order-sensitive.
More specifically, the order between XML elements is considered to be meaningful,
and is preserved and queriable through XML query languages: this enables, e.g.,
ordering among paragraphs in a document to be maintained or tested. Perhaps
surprisingly, XML attributes (which are treated as properties of elements) are not
order-sensitive, although XML tools will typically preserve the original order.

We typically represent the logical or data model structure of an XML document as
a tree, where each XML node is represented by a node in the tree, and parent-child
relationships are encoded as edges. There are seven node types, briefly alluded to
above:

• Document root: this node represents the entire XML document, and generally
has as its children at least one processing instruction (representing the XML
encoding information) and a single root element.

• Processing instruction: these nodes instruct the parser on character encod-
ings, parse structure, etc.

• Comment: as with HTML comments, these are human-readable notes.

• Element: most data structures are encoded as XML elements, which include
open and close tags plus content. A content-free element may be represented
as a single empty tag of the form <tag/>, which is considered equivalent to an
open-tag / close-tag sequence.

11.2. XML STRUCTURAL AND SCHEMA DEFINITIONS 311

?xml ... dblp

mastersthesis article

mdate
key

author title year school editor title yearjournal volume eeee

mdate
key

2002-01-03

ms/Brown92

Kurt P. Brown

PRPL: ...

1992

Univ. of W...

2002-01-03

tr/dec/SRC...

Paul R. McJones

The 1995...

Digital Sys...

SRC1997...

1997

db/labs/dec/...

http://www.mcjones.org/...

processing

instruction
element textroot attribute

...

Figure 11.2: Example data model representation for the XML fragment of Fig-
ure 11.1. Note that the different node types are represented here using different
shapes.

• Attribute: an attribute is a name-value pair associated with an element (and
embedded in its open tag). Attributes are not order-sensitive, and no single tag
may have more than one attribute with the same name.

• Text: a text node represents contiguous data content within an element.

• Namespace: a namespace node qualifies the name of an element within a
particular URI. This creates a qualified name.

Each node in the document has a unique identity, as well as a relative ordering
and (if a schema is associated with the document) a datatype. A depth-first, left-to-
right traversal of the tree representation corresponds to the node ordering within the
associated XML document.

Example 11.2 : Figure 11.2 shows an XML data model representation for the
document of Figure 11.1. Here we see five of the seven node types (comment and
namespace are not present in this document).

11.2 XML Structural and Schema Definitions

In general, XML can be thought of as a semi-structured hierarchical data format,
whose leaves are primarily string (text) nodes and attribute node values. To be most
useful, we must add a schema describing the semantics and types of the attributes
and elements — this enables us to encode non-string datatypes as well as inter- and
intra-document links (e.g., foreign keys, URLs).

312 CHAPTER 11. XML

<!ELEMENT dblp((mastersthesis | article)*)>

<!ELEMENT mastersthesis(author,title,year,school,committeemember*)>

<!ATTLIST mastersthesis(mdate CDATA #REQUIRED

key ID #REQUIRED

advisor CDATA #IMPLIED>

<!ELEMENT author(#PCDATA)>

<!ELEMENT title(#PCDATA)>

<!ELEMENT year(#PCDATA)>

<!ELEMENT school(#PCDATA)>

<!ELEMENT committeemember(#PCDATA)>

...

Figure 11.3: Fragment of an example DTD for the XML of Figure 11.1. Note that
each definition here is expressed using a processing instruction.

11.2.1 Document Type Definitions (DTDs)

When the XML standard was introduced, the focus was on document markup, and
hence the original “schema” specification was more focused on the legal structure
of the markup than on specific datatypes and data semantics. The document type
definition or DTD is expressed using processing instructions, and tells the XML parser
about the structure of a given element.

In DTD, we specify for each element which sub-elements and/or text nodes are
allowed within an element, using EBNF notation to indicate alternation or nesting.
A sub-element is represented by its name, and a text node is designated as #PCDATA

(“parsed character” data).

Example 11.3: Figure 11.3 shows a fragment of a DTD for our running exam-
ple in this section. We focus in this portion of the example on the element defini-
tions (ELEMENT processing instructions). The DBLP element may have a sequence
of mastersthesis and article sub-elements, interleaved in any order. In turn the
mastersthesis has mandatory author, title, year, and school sub-elements, fol-
lowed by zero or more committeemembers. Each of these sub-elements contains text
content.

Attributes are specified in a series of rows within the ATTLIST processing instruc-
tion: each attribute specification includes a name, a special type, and an annotation
indicating whether the attribute is optional (#IMPLIED) or mandatory (#REQUIRED).
The types are as follows: text content is called CDATA (“character data”), which is

11.2. XML STRUCTURAL AND SCHEMA DEFINITIONS 313

somewhat more restricted than the PCDATA allowed in elements; ID designates that the
attribute contains an identifier that is globally unique within the document; IDREF or
IDREFS specifies that the attribute contains a reference or space-separated references,
respectively, to ID-typed attributes within the document. IDs and IDREFs can be
thought of as special cases of keys and foreign keys, or anchors and links.

Example 11.4: Figure 11.3 defines three attributes related to the mastersthesis.
The mdate is mandatory and of text-type. The key is also mandatory, but a unique
identifier. Finally, the advisor string is optional.

Oddly enough, the DTD does not specify what element is the root within a doc-
ument. The root element is instead specified within the processing instruction in the
source XML that references the DTD. The DTD can be directly embedded within
the document using a syntax like:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE dblp [

<!ELEMENT dblp((mastersthesis | article)*)>

<!ELEMENT mastersthesis(author,title,year,school,committeemember*)>

...

]>

<dblp>

...

but more commonly, the DTD is in a separate file that must be referenced using the
SYSTEM keyword:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE dblp SYSTEM "dblp.dtd">

<dblp>

...

In both cases, the first parameter after DOCTYPE is the name of the root element, and
the XML parser will parse the DTD before continuing beyond that point.

Pros and cons of DTD. DTD, as the first XML schema format, is very commonly
used in practice. It is relatively simple to understand and concise (if syntactically awk-
ward), it is supported by virtually every XML parser in existence, and it is sufficient
for most document structural specifications. Unfortunately, it has many limitations
for data interchange. One cannot directly map the database concepts of key and

314 CHAPTER 11. XML

foreign key to ID and IDREFS (there is no support for compound keys, and the value
of a key must be globally unique within a document, even to the exclusion of ID-typed
attributes with other names). The concept of null values does not map to any aspect
of DTD-based XML, meaning that relational database export is awkward. Primitive
datatypes such as integers and dates are not possible to specify.

All of these limitations, as well as a variety of other desiderata, led to the devel-
opment of a newer specification in the early 2000s, called XML Schema.

11.2.2 XML Schema (XSD)

XML Schema (commonly abbreviated to its standard 3-letter file extension, XSD)
is an extremely comprehensive standard designed to provide a superset of DTD’s
capabilities, to address the limitations mentioned in the previous section, and to
itself be an XML-encoded standard.

Since an XML Schema is itself specified in XML, we will always be dealing
with (at least) two namespaces: the namespace for XML schema itself (used for
the built-in XSD definitions and datatypes), and the namespace being defined by
the schema. Typically, we will use the default namespace for the tags defined in
the schema, and will use a prefix (commonly xs: or xsd:) associated with the URI
www.w3.org/2001/XMLSchema to refer to the XML Schema tags.

Beyond the use of XML tags, XML Schema differs significantly from DTD in
two respects. First, the notion of an element type has been separated from the
element name. Now we define an element type (either a complexType representing
a structured element, or a simpleType representing a scalar or text node) and later
associate it with one or more element names. Second, the use of EBNF notation
has been completely eliminated, and instead we group sequences of content using
sequence or choice elements, and specify a number of repetitions using minOccurs

and maxOccurs attributes.

Example 11.5 : Figure 11.4 shows an XML Schema fragment for our running
example. We see first that the schema definition has a root tag schema within the
XML Schema namespace (abbreviated here as xsd).

The fragment shows the definition of a complex element type for a thesis. Associ-
ated with this element type are three attributes (mdate, key, and optional advisor).
Observe that each of the attributes has a particular type (one of the built-in XML
Schema simple types): date, string, and string, respectively. Within the ThesisType

is a sequence of subelements: an author string, a title string, a year integer, a
school string, and a sequence of zero or more committeemembers of a complex type

11.2. XML STRUCTURAL AND SCHEMA DEFINITIONS 315

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

...

<xsd:complexType name="ThesisType">

<xsd:attribute name="mdate" type="xsd:date"/>

<xsd:attribute name="key" type="xsd:string"/>

<xsd:attribute name="advisor" type="xsd:string" minOccurs="0"/>

<xsd:sequence>

<xsd:element name="author" type="xsd:string"/>

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="year" type="xsd:integer"/>

<xsd:element name="school" type="xsd:string"/>

<xsd:element name="committeemember" type="CommitteeType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CommitteeType">

...

</xsd:complexType>

...

<xsd:element name="mastersthesis" type="ThesisType"/>

...

</xsd:schema>

Figure 11.4: Example XML Schema fragment corresponding to the XML of Fig-
ure 11.1. This excerpt focuses on defining the structure of the mastersthesis.

called CommitteeType. The ThesisType can be used for more than one element; we
finally associated it with the mastersthesis near the bottom of the figure.

XML Schema allows for the definition of both keys and foreign keys, which we
shall discuss later in this chapter when we have introduced XPath. It also has many
features that we do not discuss at all: it is possible to define simple types that restrict
the built-in types (e.g., positive integers, dates from 2010-2020, strings starting with
“S”), to make use of inheritance in defining types, and to create reusable structures.
For more detail we suggest consulting the many resources available on the Web.

XML Schema and its associated data model are the “modern” schema format
for XML, and used by most XML-related Web standards. Examples include SOAP,
the Simple Object Access Protocol used to pass parameters across systems; WSDL,
the Web Service Description Language; the datatype primitives of RDF Schema, the

316 CHAPTER 11. XML

schema language for the Resource Description Framework used in the Semantic Web
(see Section 12.3); and XQuery, the XML query language we describe later in this
chapter.

11.3 Query Language

Given that XML represents documents and data in a standard way, it quickly became
apparent that applications and developers would need standardized mechanisms for
extracting and manipulating XML content.

Over the years, models emerged for parsing XML into objects (DOM) and mes-
sages (SAX), the XPath primitive, and ultimately the XQuery language. We discuss
the parsing standards in Section 11.3.1, XPath in Section 11.3.2, and XQuery in
Section 11.3.3. Another XML transformation language, XSLT (XML Stylesheet Lan-
guage: Transformations), is used in many document and formatting scenarios, but is
not well-suited to data manipulation and hence we do not discuss it in this book.

11.3.1 Precursors: DOM and SAX

Prior to the creation of XML query primitives, the XML community established a
series of language-independent APIs for parsing XML: the goal was that any parser
would implement these APIs in a consistent way, making it easy to port code to a
variety of platforms and libraries.

The first standard, the Document Object Model or DOM, specifies a common
object-oriented hierarchy for parsed HTML and XML. DOM actually emerged from
the internal object models supported by HTML web browsers, but it was generalized
to XML as well. DOM establishes a common interface, the DOM Node, to encompass
all of the various XML node types; instances include, e.g., the Document Node,
Element Node, and Text Node. A DOM parser typically builds an in-memory object
tree representing a parsed document, and returns the document root node to the
calling program. From here the application can traverse the entire document model:
Every DOM node has methods for traversing to the node’s parent and children (if
applicable), testing the node type, reading the text value of the node, and so on. An
interface also exists to retrieve nodes directly by their name, rather than through the
document hierarchy. Later versions of DOM also support updates to the in-memory
document model.

DOM is a fairly heavyweight representation of XML: each node in an XML docu-
ment is instantiated as an object, which typically consumes significantly more space
than the original source file. Moreover, early versions of DOM were not in any way

11.3. QUERY LANGUAGE 317

incremental : no processing would happen until the entire document was parsed. To
meet the needs of applications that only wanted to manipulate a small portion of an
XML document — or to incrementally process the data — the SAX, the Simple API
for XML, was created. SAX is not an object representation, but rather a standard
parser API. As an XML parser reads through an input XML file, it calls back to
user-supplied methods, notifying them when a new element is beginning, when an
element is closing, when a text node is encountered, etc. The application can take
the information provided in the callback, and perform whatever behaviors it deems
appropriate. The application might instantiate an object for each callback, or it might
simply update progress information or discard the callback information entirely.

Both SAX and DOM are designed for developers in object-oriented languages to
manipulate XML; they are not declarative means for extracting content. Of course,
such declarative standards have also been developed, and we discuss them next.

11.3.2 XPath: A primitive for XML querying

XPath was originally developed to be a simple XML query language, whose role is
to extract subtrees from an individual XML document. Over time it has become
more commonly used as a building block for other XML standards: e.g., it is used to
specify keys and foreign keys in XML Schema, and it is used to specify collections of
XML nodes to be assigned to variables in XQuery (described below).

XPath actually has two versions, the original XPath 1.0 and the later XPath 2.0.
The original version was limited to expressions that did not directly specify a source
XML document (i.e., one needed to use a tool to apply the XPath to a specific XML
file). Version 2.0 was revised during the development of XQuery, in order to make
it a fully integrated subset of that language: it adds a number of features, with the
most notable being the ability to specify the source document for the expression, and
a data model and type system matching that of XQuery. As of the writing of this
book, many tools still use the original XPath 1.0 specification.

Path expressions. The main construct in XPath is the path expression, which
represents a sequence of steps from a context node. The context node is by default
the root of the source document to which the XPath is being applied. The result of
evaluating the path expression is a sequence of nodes (and their subtree descendants),
with duplicates removed, returned in the order they appear in the source document.
(This sequence is often termed a “node set” for historic reasons.)

The context node. XPaths are specified using a Unix path-like syntax. As in
Unix, the current context node is designated by “.” If we start the XPath with a
leading “/” then this starts at the document root. In XPath 2.0, we can also specify

318 CHAPTER 11. XML

a particular source document to use as the context node: the function doc("URL ")

parses the XML document at URL and returns its document root as the context node.

From the context node, an XPath typically includes a sequence of steps and op-
tional predicates. If we follow the usual interpretation of an XML document as a
tree, than a step in an XPath encodes a step type describing how to traverse from the
context node, and a node restriction specifying which nodes to return. The step-type
is typically a delimiter like “/” or “//” and the node-restriction is typically a label of
an element to match; we specify these more precisely in a moment.

By default, traversal is downwards in the tree, i.e., to descendants. We can start
at the context node and traverse a single level to a child node (specified using the
delimiter “/”) or through zero or more descendant sub-elements (specified using “//”).
We can restrict the matching node in a variety of ways:

• A step “· · ·/label” or “· · ·//label” will only return child or descendant ele-
ments, respectively, with the designated label. (Any intervening elements are
unrestricted.)

• A step with a “*” will match any label: “· · ·/*” or “· · ·//*,” will return the set
of all child elements, or descendant elements, respectively.

• A step “· · ·/@label” will return attribute nodes (including both label and value)
that are children of the current element, which match the specified label; the step
or “· · ·//@label” will return attribute nodes of the current or any descendant
element, if they have the specified label.

• A step “· · ·/@*” or “· · ·//@*” will return any attribute nodes associated with
the current element, or the current and any descendant elements, respectively.

• A step “/..” represents a step up the tree to the parent of each node matched
by the previous step in the XPath.

• A step with a node-test will restrict the type of node to a particular class: e.g.,
· · ·/text() returns child nodes that are text nodes; · · ·/comment() returns child
nodes that are comments; · · ·/processing-instruction() returns child nodes
that are processing instructions; · · ·/node() returns any type of node (not just
elements, attributes, etc.).

Example 11.6: Given the data of Figure 11.1, the XPath ./dblp/article would
begin with the document root as the context node, traverse downward to the dblp root
element and any article subelements, and return an XML node sequence containing
the article elements (which would still maintain all attachments to its subtree).
Thus, if we were to serialize the node sequence back to XML, the result would be:

11.3. QUERY LANGUAGE 319

<article mdate="2002-01-03" key="tr/dec/SRC1997-018">

<editor>Paul R. McJones</editor>

<title>The 1995 SQL Reunion</title>

<journal>Digital System Research Center Report</journal>

<volume>SRC1997-018</volume>

<year>1997</year>

<ee>db/labs/dec/SRC1997-018.html</ee>

<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>

</article>

...

(Note that if there were more than one article, the result of the XPath would be a
forest of XML trees, rather than a single tree. Hence the output of an XPath is often
not a legal XML document since it does not have a single root element.)

Example 11.7: Given the example data, the XPath //year would begin at the doc-
ument root (due to the leading “/”), traverse any number of subelements downward,
and return:

<year>1992</year>

<year>1997</year>

...

where the first year comes from the mastersthesis and the second from the article.

Example 11.8: Given the example data, the XPath /dblp/*/editor would begin
at the document root, traverse downwards to match first the mastersthesis and look
for an editor. No such match is found, so the next traversal will occur in the article.
From the article, an editor can be found, and the result would be:

<editor>Paul R. McJones</editor>

...

where, of course, further results might be returned if there were matches among the
elided content in the document.

More complex steps: axes. While they are by far the most heavily used step
specifiers, “/” and “//” are actually considered to be a special abbreviated syntax for
a more general XML traversal model called axes. Axes allow an XPath author to not

320 CHAPTER 11. XML

only specify a traversal to a descendant node, but also an ancestor, a predecessor, a
successor, etc. The syntax for axes is somewhat cumbersome: instead of using “/” or
“//” followed by a node restriction, we instead use “/” followed by an axis specifier
followed by “::”, then the node restriction. The axes include:

• child: traverses to a child node, identically to a plain “/”.

• descendant: finds a descendant of the current node, identically to a plain “//”.

• descendant-or-self: returns the current node or any descendant.

• parent: returns the parent of the current node, identically to “..”.

• ancestor: finds any ancestor of the current node.

• ancestor-or-self: returns the current node or an ancestor.

• preceding-sibling: returns any sibling node that appeared earlier in the doc-
ument order.

• following-sibling: returns any sibling node that appeared later in the docu-
ment order.

• preceding: returns any node, at any level, appearing earlier in the document.

• following: returns any node, at any level, appearing later in the document.

• attribute: matches attributes, as with the “” prefix.

• namespace: matches namespace nodes.

Example 11.9: The XPath of Example 11.6 could be written as:

./child::dblp/child::article

and Example 11.7 as:

/descendant::year

An XPath to return every XML node in the document is:

/descendant-or-self::node()

Predicates. Often we want to further restrict the set of nodes to be returned, e.g.,
by specifying certain data values we seek. This is where XPath predicates come in.
A predicate is a Boolean test that can be attached to a specific step in an XPath;
the Boolean test is applied to each result that would ordinarily be returned by the

11.3. QUERY LANGUAGE 321

XPath. The Boolean test may be as simple as the existence of a path (this enables
us to express queries that test for specific tree patterns as opposed simply to paths),
it could be a test for a particular value of a text or attribute node, etc.

Predicates appear in square brackets, [and]. The expression within the brackets
has its context node set to the node matched by the previous step in the XPath.

Example 11.10: If we take the XPath expression /dblp/*[./year/text()="1992"]

and evaluate it against Figure 11.1, then first mastersthesis is matched (becoming
the context node becomes the mastersthesis), and then the predicate expression
is evaluated. Since it returns true, the mastersthesis node is returned. When the
article node is matched (becoming the context node for the predicate), the predicate
is again evaluated, but this time it fails to satisfy the conditions.

Predicates referring to position. Predicates can also be used to select only
specific values from a node set, based on the index position of the nodes. If we use an
integer value i as the position, e.g., p[5], this selects the ith node in the node sequence.
We can also explicitly request the index of a node with the position() function, and
the index of the last node in the node sequence with the last() function.

Example 11.11: To select the last article in the XML file of Figure 11.1, we could
use the XPath:

//article[position()=last()]

11.3.3 XQuery: Query capabilities for XML

The XPath language is not expressive enough to capture the kinds of data transforma-
tions that are employed in a typical database query or schema mapping: for instance,
there is no support for cross-document joins, changing of labels, restructuring, etc.
To address these needs, the XQuery language was developed. Intuitively, XQuery is
the “SQL of XML”: the single standard language that is intended to be implemented
by XML databases, document transformation engines, and so on.

XQuery currently consists of a core language, plus a series of extensions: the core
language provides exact-answers semantics and supports querying and transforma-
tion. There exist extensions for full-text querying with ranked answers (XQuery Full
Text) and for XQuery updates (the XQuery Update Facility). In this book we focus
on the “core” XQuery.

322 CHAPTER 11. XML

1 for $docRoot in document("http://my.org/dblp.xml"),

2 $rootElement in $docRoot/dblp,

3 $rootChild in $rootElement/article

4 let $textContent := $rootChild//text()

5 where $rootChild/author/text() = "Bob"

6 return <BobResult>

7 { $rootChild/editor }

8 { $rootChild/title }

9 { for $txt in $textContent

10 return <text> { $txt } </text>

11 }

12 </BobResult>

Figure 11.5: Simple XQuery example

Basic XQuery Structure: “FLWOR” Expressions

SQL is well-known for its basic “SELECT...FROM...WHERE” pattern for describing query
blocks (with an optional “ORDER BY” and “GROUP BY...HAVING”. XQuery similarly has
a basic form for a query block, called a FLWOR (“flower”) expression. FLWOR is
an acronym for “for...let...where...order by...return.” (Note that XQuery keywords
must be in lowercase, in contrast to SQL, which is case-insensitive.) (In reality, the
different XQuery clauses can be interleaved in a variety of orders, and several clauses
are optional, but the FLWOR ordering is by far the prevalent one.)

Intuitively, the XQuery for/let clauses correspond to the FROM clause in SQL; the
XQuery where corresponds to its namesake in SQL; and the return clause corresponds
to the SELECT clause in SQL. However, there are a number of key differences in the
semantics of the clauses: the relational model consists of tables and tuples, with
completely different operators that apply to each. In XML, a document or any subtree
is represented as a node with a set of subtrees. Hence XQuery distinguishes between
nodes, scalar types, and collections, and operators are defined in a relatively clean
way over these. XQuery also allows for the outputs of multiple (possibly correlated)
queries to be nested, in order to form nested output.

for: iteration and binding over collections. The most common way of spec-
ifying an input operand for a query is to bind a variable to each node matching a
pattern. The for clause allows us to define a variable that ranges over a node sequence
returned by an XPath. The syntax is for $var in XPath-expression. To bind multiple
variables, we can nest for clauses. For each possible valuation of the variables, the
XQuery engine will evaluate the where condition(s) and optionally return content.

11.3. QUERY LANGUAGE 323

Example 11.12: Suppose we have a document called dblp.xml located on the
my.org server. If we use the following sequence of nested for clauses:

for $docRoot in document("http://my.org/dblp.xml")

for $rootElement in $docRoot/dblp

for $rootChild in $rootElement/article

then the variable $docRoot will take on a single value, that of the document root
node of the XML source file. The variable $rootElement will iterate over the child
elements of the document root — namely, the (single) root element of the XML file.
Next $rootChild will iterate over the child element nodes of the root element.

We can abbreviate nested for clauses using an alternate form, in which a comma
is used to separate one expression from the next, and the second for clause is omitted.

Example 11.13: The above example can be rewritten as in Lines 1–3 of Figure 11.5.

let: assignment of collections to variables. Unlike SQL, XQuery has a notion
of collection-valued variables, where the collection may be a sequence of nodes or of
scalar values. The let clause allows us to assign the results of any collection-valued
expression (e.g., an XPath) to a variable. The syntax is let $var := collection-
expression.

Example 11.14: Continuing our example from above, the first 4 lines of Figure 11.5
will assign a different value to $textContent for each value of $rootChild: namely,
the set of all text nodes that appear in the element’s subtree.

where: evaluation of conditions against bindings. For each possible valuation
of the variables in the for and let clauses, the XQuery engine will attempt to evaluate
the predicates in the where clause. If these are satisfied, then the return clause will be
invoked to produce output. We can think of XQuery’s execution model as being one
in which “tuples of bindings” (one value for each variable from each source) are joined,
selected, and projected; the where clause performs the selection and join operations.

Example 11.15: We can restrict our example from above to only consider $rootChild
elements that have editor subelements with value “Bob,” as seen in Lines 1–5 of Fig-
ure 11.5.

324 CHAPTER 11. XML

return: output of XML trees. The return clause gets invoked each time the
where conditions are satisfied, and in each case it returns a fragment of output that
is typically an XML tree. The content output by the return clause may be literal
XML, the results of evaluating some expression (even XPath expression) based on
bound variables, or the results of evaluating a nested XQuery.

If a return clause begins with an angle-bracket or a literal value, the XQuery
engine assumes that it is to output whatever it reads as literal text. To instead force
it to interpret the content as an expression, we use the escape characters { and }
around the expression.

Example 11.16: The full query in Figure 11.5 completes our example, where we
return an XML subtree each time “Bob” is matched. Within the subtree, we output
the editor and title within the $rootChild subtree. Then we use a nested XQuery
to iterate over all of the text nodes in $textContent, outputting each in an element
labeled text.

Aggregation and Uniqueness

SQL allows the query author to specify duplicate removal using a special DISTINCT
keyword in the SELECT clause or an aggregate function (e.g., COUNT DISTINCT). In
XQuery, the notion of computing distinct values or items is handled as a collection-
valued function, which essentially converts an ordered sequence into an ordered set.
There are two functions in most XQuery implementations, fn:distinct-values and
fn:distinct-nodes, which take node sequences, and remove items that match on
value equality or node identity, respectively. These functions can be applied to the
results of an XPath expression, to the output of an XQuery, etc.; fn:distinct-values
can even be applied to a collection of scalar values.

As with computing unique values, aggregation in XQuery is accomplished in a way
that is entirely different from SQL. In XQuery, there is no GROUP BY construct, and
hence aggregate functions are not applied to attributes in grouped tables. Instead,
an aggregate function simply takes a collection as a parameter, and returns a scalar
result representing the result of the function: fn:average, fn:max, fn:min, fn:count,
fn:sum.

Example 11.17: Suppose we want to count the number of theses or articles written
by each author (assuming author names are canonicalized), for a document of the form
shown in Figure 11.1. Rather than using a GROUP BY construct, we express this by
computing the set of all authors, then finding the papers for each author.

11.3. QUERY LANGUAGE 325

let $doc := doc("dblp.xml")

let $authors := fn:distinct-values($doc//author/text())

for $auth in $authors

return <author>

{ $auth }

{ let $papersByAuth := $doc/*[author/text() = $auth]

return <papers> <count> { fn:count(papersByAuth) } </count>

<titles> { $papersByAuth/title } </titles>

</papers> }

</author>

Here, the inner query computes the set of all papers by the author, then returns the
count as well as the complete list of titles.

Functions

XQuery does not expressely have the notion of a view, as in SQL. Rather, XQuery
supports arbitrary functions that can return scalar values, nodes (as the roots of
XML trees), or collections (of scalars or XML nodes/trees). Since a function can
return an XML forest or tree, one can think of it as a view that might optionally be
parameterized.

Note that XQuery allows for recursion as well as if/else and iteration within func-
tions, hence the language is Turing-complete, unlike SQL. A function in XQuery is
specified using the keywords declare function, followed by the function name, its
parameters and their types, the keyword as, and the function return type. Note that
the types for the parameters and return type are the XML Schema types. If there
is no accompanying schema, a generic element can be specified using element(), and
an untyped element with a particular name n can be specified using element(n).

Example 11.18: The following function returns all authors in the dblp.xml docu-
ment.

declare function paperAuthors() as element(author)* {

return doc("dblp.xml")//author

}

Note that the return type here is specified to be zero or more elements (hence the
asterisk) called author, for which we may (or might not) have an accompanying XML
Schema type.

326 CHAPTER 11. XML

Example 11.19: The following function returns the number of coauthors who wrote
an article with the author whose name is specified as an input parameter $n. It does
this by finding the sets of authors for each article authored by $n, then doing duplicate
removal, and finally counting the number of entries and then subtracting 1 to avoid
counting $n himself or herself.

declare function paperAuthors($n as xs:string) as xs:integer {

let $authors := doc("dblp.xml")/article[author/text()=$n]/author

return fn:count(fn:distinct-values($authors)) - 1

}

Note that the return type here is specified to be zero or more elements (hence the
asterisk) called author, for which we may (or might not) have an accompanying XML
Schema type.

11.4 Query Processing for XML

Now that we are familiar with the form of XML and its query languages, we consider
the problem of processing XPaths and XQueries over XML data. Inherently, XML is
a tree-structured, non-first-normal-form data format. The bulk of work on large-scale
XML query processing, especially in terms of matching XPaths over the input, has
focused on settings in which the data is stored on disk, e.g., in a relational DBMS.
Here the challenges are how to break up the XML trees and index them (if using a
“native” XML storage system) or how to “shred” the XML into relational tuples.

For the latter case, the goal is to intuitively to take each XML node and create a
corresponding tuple in a relational table. Each such tuple is encoded in a way that
enables it to be joined with its parent (and possibly ancestors) and children (and
possibly descendants). A common approach is to annotate each tuple T with an
interval code describing the position of the first and last item in the tree rooted at
the node corresponding to T : then we can compare the intervals of tuples T1 and T2

for containment to see if one tree is a subtree of the other.

In data integration, the time-consuming portion of evaluation is often reading an
XML source file and extracting subtrees that match particular XPath expressions.
Rather than store the XML before extracting relevant trees, our goal is to, in a single
pass, read, parse, and extract XPath matches from each source document. This is
often referred to as “streaming XPath evaluation.”

Streaming XPath evaluation relies on two critical observations:

11.4. QUERY PROCESSING FOR XML 327

1. SAX-style XML parsing very efficiently matches against XML as it is read from
an input stream (e.g., across a network), and uses a callback interface to trigger
an event handler whenever specific content types, start tags, or end tags are
encountered. This enables parsing as data is being pipelined into the query
processor’s system.

2. A large subset of XPath expressions can be mapped to regular expressions,
where the alphabet consists of the set of possible edge labels plus a wildcard
character. In general, we end up with a set of nested regular expressions for
each XPath (since, e.g., predicates must be separately matched).

These observations have led to a variety of XML streaming XPath matchers, based
on event handlers and modified finite state machines. A streaming XPath matcher
typically returns sets of nodes, or, if it matches multiple XPaths simultaneously as for
XQuery, tuples of bindings to nodes (i.e., tuples in which there exists one attribute per
variable, whose value is a reference to a node, or a set of references to nodes). These
tuples of bindings are typically processed by an extended version of a relational-style
query processor, which has the standard set of operators (e.g., select, project, join)
as well as a few new ones (in particular, evaluating an XPath against a tree-valued
attribute in a tuple, adding XML tags, collecting sequences or sets of tuples into an
XML tree). Finally, XML content is assembled at the end and output in the form of
a tree, using a combination of tagging and grouping operators.

Example 11.20: We see an example of a typical XML query plan in Figure 11.6, cor-
responding to the query of Figure 11.5. Starting from the bottom, we see a streaming
XPath operator that fetches dblp.xml and begins parsing it, looking for trees corre-
sponding to the root element, its child, and any descendent text content. This opera-
tor returns tuples with values for rootElement, rootChild, and textContent, of which
the first two are trees and the last is a forest. These tuples are then left-outerjoined
with a nested expression: the nested expression matches an XPath against the forest
in textContent, and returns a sequence of tuples with values for txt. These tuples
are tagged within text elements, then grouped into a single forest. The results of the
left outerjoin are then fed into further XPath matching, which extracts the editor

and title from the rootChild. After further projection, the element BobsResult is
created for each the tuple, and its children are set to be the editor, title, and results
of the nested expression. The result is a sequence of BobsResult tuples that can be
written to disk, a data stream, etc.

Let us now look at the specifics of how the operators are implemented.

328 CHAPTER 11. XML

dblp.xml

Streaming

XPath

<dblp>...

 (<dblp>…</dblp>, <article>…</article>, [“Paul R. McJones”,”The 1995…”, …])

 ... dblp

article

$ rootElement

$ rootChild

set
text()

$ textContent
Σ

=

“B

ob”

author

dblp.xml

 (<dblp>…</dblp>, <article>…</article>, [“Paul R. McJones”,”The 1995…”, …])

 ...

⊐⋈

XPath

matcher

$textContent

XML

tagging

$ txt

(“Paul R. McJones”)

(“The 1995…”)

XML

grouping

(<text>Paul R. McJones</text>)

(<text>The 1995…</text>)

(<text>Paul R. McJones</text><text>The 1995…</text>)

XML

tagging

 (<editor>Paul R. McJones</editor>,

 <title>The 1995…</title>,

 <text>Paul R. McJones</text><text>The 1995…</text>)

Π

 (<article>…</article>,

 [“Paul R. McJones”,”The 1995…”, …])

 ...

 (<article>…</article>, [“Paul R. McJones”,”The 1995…”, …],

 <editor>Paul R. McJones</editor>,

 <title>The 1995…</title>,

 <text>Paul R. McJones</text><text>The 1995…</text>)

Π

 (<BobResult><editor>Paul R. McJones</editor>

 <title>The 1995…</title><text>Paul R. McJones</text>

 <text>The 1995…</text></BobResult>)

XPath

matcher

editor
$ editor

set
title

$ title
$rootChild

Figure 11.6: Sketch of a query plan for the query of Figure 11.5. Most of the engine
remains a tuple processor, where tuples are no longer in first-normal-form, but rather
binding tuples containing (references to) trees.

11.4.1 XML path matching

The XML Path matching operator appears in two guises, one based on streaming
evaluation over incoming data, and the other based on traversal of the tree represen-
tation within an attribute of a binding tuple. Both can be implemented using the
same mechanisms, as handlers to an event-driven XML tree parser.

A variety of design points have been considered for XML path matchers.

Type of automaton. In general, within a single XPath segment (series of steps
separated by / or //), the presence of wildcards or the // step allows for multiple
matches at each level. This introduces nondeterminism into the picture. Several dif-
ferent schemes have been considered: building a single nondeterministic finite state

11.4. QUERY PROCESSING FOR XML 329

dblp article

year

Σ

Figure 11.7: Nondeterministic finite automata for the XPaths /dblp/article and
//year. Note that the Σ on the edge label in the automata represents the alphabet
of all possible labels, i.e., a wildcard.

machine (NFA) for the XPath, and keeping track of multiple possible matches simul-
taneously; converting the expression to a deterministic finite state machine (DFA);
or creating an NFA that is “lazily” expanded to a DFA as needed (where portions of
the expansion are cached).

Example 11.21: We can see the NFAs for two of the example XPaths of Exam-
ples 11.6 and 11.7 in Figure 11.7. Depending on the specific style of XPath match,
this NFA might be directly represented in memory and used to match against events
from input; or it might be converted to a DFA (either eagerly or lazily) and used to
match.

Different schemes for evaluating sub-paths. Many XPaths have “subsidiary”
segments — for instance, nested paths within predicates. One can create a single
automaton with different final states indicating which XPaths have been matched; or
one can create a series of nested automata, where matching one automaton activates
the others.

Predicate push-down and short-circuiting. In any case, predicates may include
operations beyond simple path-existence tests, which can often be “pushed” into the
path-matching stage. Here the XPath matcher must invoke subsidiary logic to, e.g.,
test for value equality of a text node. Any non-match must be discarded.

XPath versus XQuery. If the query processor is computing XPath queries, then
the XPath matcher’s goal is to return a node set for each query. Sometimes, however,
the goal is to provide a set of input binding tuples for the FOR (or, in some cases,
LET) clauses of an XQuery. Here, we want the Cartesian product of the possible node
matches to a set of XPaths. The x-scan operator combines XPath matching with an

330 CHAPTER 11. XML

dblp

article

$ rootElement

$ rootChild

set
text()

$ textContent

Σ

= “Bob”
author

Figure 11.8: Hierarchy of nondeterministic finite automata for matching the set of
XPaths in the XQuery of Figure 11.5. Note that upon reaching the final state of one
machine, we may activate other (nested) XPaths, and we may need to test the match
against a value or collect it within a set.

extension of the pipelined hash join, such that it can incrementally output tuples of
bindings to be evaluated.

Example 11.22: In evaluating an XQuery within a streaming operator, the first
stage simultaneously matches a hierarchy of XPaths corresponding to for and let

expressions. See Figure 11.8, which corresponds to the leftmost leaf operator from
Figure 11.6. For this streaming XPath matcher, reaching the final state in one NFA
may trigger certain behaviors. One such behavior is that a match to the first NFA
may activate other, nested NFAs, corresponding to nested XPaths. Moreover, upon
matching a particular pattern we may need to test the match against a particular
value (a predicate push-down, indicated in the test for author = ‘‘Bob’’), and we
may add matches to a set, rather than adding one binding per match (as is needed
for the $rootElement//text() let clause, versus the other for clauses).

The output of the streaming operator for this collection of NFAs will be a se-
quence of binding tuples for the variables rootElement, rootChild, and (collection-
typed) textContent. Example 11.20 describes in more detail how the output from the
streaming XPath evaluator is propagated through the other operators in the query
plan.

11.4.2 XML output

The process of creating XML within a tuple is typically broken into two classes of
operations.

11.5. SCHEMA MAPPING FOR XML 331

Tagging takes an attribute (which is already tree-valued) and “wraps” it within an
XML element or attribute. In certain cases well-structured properties may need to
be tested (e.g., certain kinds of content are illegal within an attribute).

Grouping takes a set of tuples (with some common key attributes) and combines
their results, typically within a single collection-valued attribute. It is very analogous
to SQL GROUP BY, except that instead of computing a scalar aggregate value over an
attribute, it instead collects all of the different attribute values into a single XML
forest.

Of course, another key component of XQuery processing tends to be nesting within
the return clause. This is typically accomplished using the left outer join operator,
as in Example 11.20.

The focus of this chapter has been on implementing the SQL-like “core” of XQuery.
Support for recursive functions and some of XQuery’s more advanced features typ-
ically requires additional operators: for instance, some form of function invocation
plus an if/else construct that helps determine when to terminate, the ability to
query nodes for their XML Schema types, and support for calling library functions.

11.4.3 XML query optimization

In many ways, XQuery optimization is little different from conventional relational
optimization: there is a process of enumeration and cost and cardinality estimation.
The challenges tend to lie in the unique properties of XML. XQuery is much more
expressive than SQL, and is in fact Turing-complete. In general XQuery optimizers
are most effective on subsets of the overall language. Even for subsets, there are often
many more potential rewrites than in the normal SQL case.

Moreover, the cardinalities (and hence costs) of XPath matching tend to be more
difficult to determine: it becomes essential to estimate “fan-outs” of different portions
of an XML document. New metadata structures have been developed to try to help
estimate branching factors. Such techniques are beyond the scope of this textbook.

11.5 Schema Mapping for XML

Not surprisingly, XML introduces new complexities in terms of schema mappings.
The two main ones are as follows.

• XML is semi-structured, meaning that different XML elements (even of the
same type) may have variations in structure. Moreover, XML queries contain

332 CHAPTER 11. XML

multiple path expressions with optional wildcards and recursion. Hence the
conditions for query containment are somewhat different.

• XML contains nesting, and the specific nesting relationships may be different
between a source instance and a target instance. Hence it becomes necessary to
specify nesting relationships, and optionally merge operations on nodes, within
XML mappings.

As with schema mappings for the relational database model, we find that schema
mappings from XML are expressed in a restricted language. This language roughly
corresponds to a nested version of GLAV constraints, though it is typically formulated
in a logical constraint language called nested tuple-generating dependencies (nested
tgds). Traditional tuple-generating dependencies, expressed over relations, are essen-
tially equivalent to GLAV mappings and are used in data exchange (Section 17.3).
Nested tgds are an extension to the tgd formalism that (naturally enough) allow for
constraints among hierarchical data structures.

11.5.1 Nested tgds

We begin by introducing the tuple-generating dependency itself.

Definition 11.1: (Tuple-generating dependency). A tuple-generating dependency
(tgd) is an assertion about the relationship between a source data instance (in our
case, a source database) and a target data instance (in our case, a central database
or mediated schema). A tgd takes the form:

∀x̄, ȳ(φ(x̄, ȳ)→ ∃z̄ψ(x̄, z̄))

where φ and ψ are atomic formulae over the source and target instances, respectively.
If the condition φ holds over the left-hand-side (lhs) of the tgd, then condition ψ must
hold over the right-hand-side (rhs).

Note that this formulation can be restated in GLAV notation as the constraint:

QS(x̄, ȳ) ⊆ QT (ȳ, z̄)

where
QS(x̄, ȳ) :- φ(x̄, ȳ)

QT (ȳ, t̄) :- ψ(ȳ, z̄)

11.5. SCHEMA MAPPING FOR XML 333

As we have described it, the tgd is an assertion about relational instances. An
interesting application of such constraints is discussed in Section 17.3. For this chap-
ter, however, our interest is not in relational instances, but instances with hierarchical
nesting, i.e., XML.

Definition 11.2: (Nested tuple-generating dependency). A nested tuple-generating
dependency (nested tgd) is an assertion about the relationship between a source data
instance and a target data instance, of the form:

∀x̄, ȳ, S̄(φ(x̄, ȳ) ∧ Φ̄(S̄)→ ∃z̄, T̄ (ψ(x̄, z̄) ∧ Ψ̄(T̄)))

where x̄, ȳ, z̄ are variables representing attributes, φ and ψ are atomic formulae over
source and target instances, respectively; S̄ and T̄ are set-valued variables representing
nested relations; and Φ̄ and Ψ̄ are sets of atomic formulae, one for each of the respec-
tive variables of S̄ and T̄ . Each set-valued variable in T̄ must also have a grouping
key, to which a variable-specific Skolem function is applied to uniquely specify the
desired output set — such that multiple matches to the rhs of the tgd must use the
same set.

We illustrate a nested tgd as a schema mapping with an example.

Example 11.23: Suppose we want to map between two sites., where the target
contains books with nested authors, whereas the source contains authors with nested
publications. We illustrate partial schemas for these sources below, using a format
in which indentation illustrates nesting and a * suffix indicates “0 or more occurrences
of...”, as in a BNF grammar.

Target:

pubs
book*
title
author*

name
publisher*

name

Source:

authors
author*
full-name
publication*
title
pub-type

where we know that the input pub-type must be book, and the publisher has a name
that is not present in the input document. We can capture this schema mapping using
the following nested tgd as follows, where we omit universally quantifiers (implicit for
all variables that appear on the lhs), where boldface indicates a set-typed (relation)
variable, and where a subscripted with an atom name specifies the grouping key:

334 CHAPTER 11. XML

authors(author) ∧ author(f,publication) ∧ publication(t, book)→
∃p(pubs(book) ∧ bookt(t, author’,publisher) ∧ author’t,f (f) ∧ publishert(p))

Observe that in this formulation, we treat an XML structure as a series of nested
relations, reflecting the hierarchical structure. However, note that multiple combina-
tions of variables on the input may satisfy the lhs of the assertion, for which we must
find corresponding bindings on the output to satisfy the rhs. The use of the grouping
keys specifies when the same node in the target must be used to satisfy the rhs. In
the output, we create a single pubs root element, then nest within it a book element
for each unique title; within the book we add an author (created for each title-author
combination), and a single “unknown” publisher entry (created separately for each
title).

The example above hints at two constraints on the parameters for the grouping
keys. First, if a parent element (e.g., book) has a particular variable as a grouping
key, then all descendant elements must also inherit this variable as a grouping key:
this ensures a tree structure, as different parent elements will not share the same
descendant. Second, as in publisher, existential variables are not included in the
grouping keys.

A common use of nested tgds — like traditional tgds — is as constraints that are
used to infer tuples in a target instance. In essence, we populate the target instance
with any tuples that are needed to satisfy the constraint, using a procedure called
the chase. This is called data exchange and is described in Section 17.3. However,
we can also use nested tgds in query reformulation, as we describe next.

11.5.2 Query reformulation

In query reformulation, we are given a query over the target schema, and want to
compose this query with the mappings in order to create a single query (in this case,
XQuery) that directly returns answers to the user.

We sketch here a standard approach to reformulation, introduced in the Piazza
system. For simplicity, let us assume that the query over the target schema (1) only
contains a single level of nesting, and (2) only contains child axes in its XPaths.
Intuitively, the rewriting algorithm performs the following tasks. Given a query Q, it
begins by comparing the tree patterns of the mapping definition with the tree pattern
of Q: the goal is to find a corresponding node in the mapping definition’s tree pattern
for every node in the Q’s tree pattern. Then the algorithm must restructure Q’s
tree pattern along the same lines as the mapping restructures its input tree patterns
(since Q must be rewritten to match against the target of the mapping rather than its
source). Finally, the algorithm must ensure that the predicates of Q can be satisfied

11.6. BIBLIOGRAPHIC NOTES 335

using the values output by the mapping. The two main steps performed by the
algorithm are as follows.

Step 1: pattern matching. This step considers the tree patterns in the query, and
finds corresponding patterns in the target schema. Intuitively, given a tree pattern, t
in Q, its goal is to find a tree pattern t′ on the target schema such that the mapping
guarantees that an instance of that pattern could only be created by following t in the
source. The algorithm first matches the tree patterns in the query to the expressions
in the mapping and records the corresponding nodes. The algorithm then creates the
tree pattern over the target schema as follows: starting with the recorded nodes in
the mapping, it recursively marks all of their ancestor nodes in the output template.
It then builds the new tree pattern over the target schema by traversing the mapping
for all marked nodes.

Note that t′ may enforce additional conditions to t, and that there may be several
patterns in the target that match a pattern in the query, ultimately yielding several
possible queries over the target that provide answers to Q. If no match is found, then
the resulting rewriting will be empty (i.e., the target data does not enable answering
the query on the source).

Step 2: Handling returned variables and predicates. In this step the algo-
rithm ensures that all the variables required in the query can be returned, and that
all the predicates in the query have been applied.

Query predicates can be handled in one of three ways. First, a query predicate
(or one that subsumes it) might already be applied by the relevant portion of the
mapping (or might be a known property of the data being mapped). In this case,
the algorithm can consider the predicate to be satisfied. A second case is when the
mapping does not impose the predicate, but returns all nodes necessary for testing the
predicate. Here, the algorithm simply inserts the predicate into the rewritten query.
The third possibility is that the predicate is not applied by the portion of the mapping
used in the query rewriting, nor can the predicate be evaluated over the mapping’s
output — but a different portion of the mapping may impose the predicate. If this
occurs, the algorithm can add a new path into the rewritten tree pattern, traversing
into the sub-block. Now the rewritten query will only return a value if the sub-block
(and hence the predicate) is satisfied.

11.6 Bibliographic Notes

XML, XPath, and XQuery are discussed in great detail in the official W3C recommen-
dations, at www.w3.org. For a more readable (though slightly dated) introduction

336 CHAPTER 11. XML

to XQuery, consult [70]. XML’s relationship to semi-structured data is discussed in
significant detail in some of the early works on adapting semi-structured langauges
and databases to XML, such as those from the Lore project [203] and the XML-QL
language derived from StruQL [140]. Such works tended to abstract away many of
the details of XML’s data model (e.g., ordering) but laid the foundation for studying
XML as a data model rather than a file format.

The properties of XPath, and query containment for XPath have been extensively
studied in the literature. A good survey appears in [403], with several notable papers
on the topic being [336, 355], and with [404] showing how to validate that streaming
XML conforms to a schema. Streaming XPath evaluation has also been the subject
of a great deal of study, with early work being that of XFilter [21] (which supported
Boolean XPath queries) and x-scan [254] (which supported evaluation of the for

clause in an XQuery). Other notable algorithms include [215], which espoused the
use of lazy DFAs, and a variety of papers making use of multiple concurrent streams
in the form of “twig joins” [71, 102] or explore other types of automata beyond
DFAs [373].

Of course, streaming XPath/XQuery evaluation is not appropriate for all settings.
Commercial IBM DB2, which contains both relational and native XQuery engines,
uses a very similar construct to x-scan called TurboXPath [262], to process hierar-
chical “native XML” data pages written to disk. Earlier efforts to incorporate XML
into commercial database systems tended to use the “shredding” approach (normal-
izing the XML tree into multiple relations) espoused by [418]. A number of fully
native XQuery engines have been studied in the research community, including Mon-
etDB/XQuery [453] (based on the MonetDB column-store architecture), Natix [266],
and TIMBER [20]. In a distributed setting, work has also been done on including
XML with embedded function calls: this work is called Active XML [7, 8].

Schema mappings for XML have been proposed in a variety of settings. The
one presented here, nested tgds, is based on the formalism used by IBM’s Clio
project [187], but is essentially the same as that used internally by the Piazza PDMS [226].
Both projects have a “friendlier” language syntax over the nested tgds; Clio uses an
XQuery-like syntax with for/where syntax, and Piazza uses XML templates anno-
tated with modified XQuery and XPath clauses. Clio does not do query reformu-
lation, but rather data exchange (see Section 17.3); Piazza does XML-based query
reformulation, and the discussion in this chapter is based on the Piazza work. Other
reformulation work for XML includes the chase-based reasoning used in the MARS
(Mixed and Redundant Storage) project [141].

