31st USENIX Security Symposium

1

Incremental Offline/Online PIR

<u>Yiping Ma¹</u> Ke Zhong¹ Tal Rabin^{1,2} Sebastian Angel^{1,3}

¹University of Pennsylvania ²Algorand Foundation ³Microsoft Research

[CGKS95, KO97]

Client wants to get an item without revealing which

Applications:

- Anonymous communication
 [PIR-Tor, Sec11], [Pung, OSDI16],
 [Addra, OSDI21]
- Private reading [Popcorn, NSDI16]
- Private search
 [DORY, OSDI20], [Checklist, Sec21]
- 0 ...

[CGKS95, KO97]

Server has a database D with *n* items

Trivial PIR: download D

Prohibitively high cost

Client wants to get an item without revealing which

[CGKS95, KO97]

Client wants to get an item without revealing which

[CGKS95, KO97]

[BIM00, IKOS04, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, KC22, CHK22, ...]

[BIM00, IKOS04, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, KC22, CHK22, ...]

[BIM00, IKOS04, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, KC22, CHK22, ...]

[BIM00, IKOS04, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, KC22, CHK22, ...]

Sublinear communication and sublinear computation! Are we done?

Mutable preprocessing in offline/online model

Our approach to handle dynamic database preserves all the properties of the solutions for the static database

Mutable preprocessing in offline/online model

Our approach to handle dynamic database preserves all the properties of the solutions for the static database

Mutable preprocessing in offline/online model

Our approach to handle dynamic database preserves all the properties of the solutions for the static database

Rest of this talk

- Background on offline/online PIR [CK20] [SACM21]
- Our solution for supporting mutable preprocessing
- Experimental evaluation

Rest of this talk

- Background on offline/online PIR [CK20] [SACM21]
- Our solution for supporting mutable preprocessing
- Experimental evaluation

Background on offline/online PIR [CK20]

Background on offline/online PIR [CK20]

Background on offline/online PIR [CK20]

To ensure the scheme is correct and private,

- Each set should be random over all indices of the database
- The parity should match the set.

Mutable preprocessing

- How to update each key (set) to be random over the new range?
- How to update each **parity** to match the key?

Contribution 1: a randomized algorithm to update keys

Contribution 2: a procedure to update the parities

Evaluation

How does our construction save **server cost**? Results for adding 1% data:

Database* size	2 ¹⁶	2 ¹⁸	2 ²⁰	
Offline phase (sec)	3.64	14.52	58.67	FOX
Hint update phase (sec)	0.07	0.25	1.03	

*Each data item 32 bytes, results run on a machine with 2 GHz processor and 64 GB RAM, single thread

Takeaways

- Preprocessing model assumes static database:
 - Don't work well when database can change
- Techniques to make preprocessing mutable for offline/online PIR
 - Server cost proportional to #changes
 - Work for applications where changes are frequent but small
- More evaluation results for Tor application in the paper

Paper is available at https://eprint.iacr.org/2021/1438 Code is available at https://github.com/eniac/incpir