LGIC 010 & PHIL 005

Problem Set 6 Second Corrected Version Spring Term, 2017 DUE IN CLASS MONDAY, MARCH 20

We write \mathbb{Z}^+ for the set of positive integers $\{1, 2, 3, \ldots\}$. The *spectrum* of a schema S (written Spec(S)) is defined as follows.

$$\mathsf{Spec}(S) = \{ n \in \mathbb{Z}^+ \mid \mathsf{mod}(S, n) \neq \emptyset \}.$$

- 1. (25 points) Write down a schema S involving only the dyadic predicate letter "L," and the identity predicate such that
 - S implies $(\forall x) \neg Lxx \land (\forall x)(\forall y)(Lxy \supset \neg Lyx)$ and
 - $\operatorname{Spec}(S) = \{ n \in \mathbb{Z}^+ \mid \text{ for some } i \in \mathbb{Z}^+, n = 4i \}.$

- 2. (25 points) Recall that SLO is the conjunction of the following schemata.
 - $(\forall x)(\forall y)(Lxy \supset \neg Lyx)$
 - $(\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz))$
 - $(\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx))$

Write down a schema S involving only the dyadic predicate letter "L," the monadic predicate letter "F," and the identity predicate such that

- $\bullet~S$ implies SLO and
- $\operatorname{Spec}(S) = \{ n \in \mathbb{Z}^+ \mid \text{ for some } i \in \mathbb{Z}^+, n = 3i \}.$

- 3. (25 points) Let S_1 be the conjunction of the following schemata.
 - $(\forall x)(\forall y)(Lxy \supset (Fx \land \neg Fy))$
 - $(\forall x)(Fx \supset (\exists y)(\forall w)(Lxw \equiv w = y))$
 - $(\forall x)(\neg Fx \supset (\exists y)(\exists z)(y \neq z \land (\forall w)(Lwx \equiv (w = y \lor w = z))))$

Specify the spectrum of S_1 .

$$Spec(S_1) =$$

- 4. (25 points) Let S_2 be the conjunction of the following schemata.
 - \bullet $(\exists x)Fx$
 - $(\forall x)(\forall y)(\forall z)(Hxyz \supset (Fy \land Fz))$
 - $(\forall x)(\forall y)\neg Hxyy$
 - $(\forall x)(\forall y)(\forall z)(\forall w)((Hxyz \land Hxzw) \supset Hxyw)$
 - $(\forall x)(\forall y)(\forall z)((Fy \land Fz \land y \neq z) \supset (Hxyz \lor Hxzy))$
 - $\bullet \ (\forall x)(\forall y)((\forall z)(\forall w)(Hxzw \equiv Hyzw) \supset x = y)$
 - $(\forall x)(\forall y)(\forall z)(Hxyz \supset (\exists w)(Hwzy \land (\forall u)(\forall v)((u \neq y \land u \neq z \land v \neq y \land v \neq z) \supset (Hxuv \equiv Hwuv))))$

Specify the spectrum of S_2 .

$$\mathsf{Spec}(S_2) =$$