LGIC 010 & PHIL 005 Problem Set 1 Spring Term, 2014

- 1. (30 points) Test the following schemata for validity.
 - (a) $(p \equiv q) \lor ((q \equiv r) \lor (p \equiv r))$
 - (b) $((p\supset r)\land (q\supset r))\supset ((p\lor q)\supset r)$
 - (c) $(p \supset q) \lor (q \supset p)$
- 2. (50 points) In each case, determine whether the first schema implies the second. (Recall that "\(\operatorname{"} \) represents exclusive disjunction.)
 - (a) $p \oplus p$
 - (b) $(\neg p \supset \neg q)$ $(p \supset q)$
 - (c) $(\neg p \supset \neg q)$ $(q \supset p)$

 - (d) $(p \lor q) \land r$ $p \lor (q \land r)$ (e) $p \lor (q \land r)$ $(p \lor q) \land r$
- 3. (20 points) Let S be the following schema.

$$(((((((p_1 \oplus p_2) \oplus p_3) \oplus p_4) \oplus p_5) \oplus p_6) \oplus p_7)$$

- (a) How many truth assignments to the seven sentence letters p_1, \ldots, p_7 satisfy the schema S?
- (b) Call a truth assignment good just in case it assigns exactly 4, 5, or 6 distinct sentence letters the value T. How many good truth assignments to the seven sentence letters p_1, \ldots, p_7 satisfy the schema S?