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10 Lecture 02.22

On 02.22, we continued our discussion of the expressive power of polyadic quan-
tification theory. We started by introducing a new logical dyadic predicate,
identity, which allows us to “put the quant into quantification.” The identity
relation “=” has a uniform interpretation over all structures A namely =A is
equal to {〈a, a〉 | a ∈ UA}. Since the interpretation of the identity relation is
uniform, we omit mention of it when we specify structures. By making use of
the identity relation, we can introduce, for each integer k ≥ 1, the quantifiers
“there are at least k x’s such that S(x)”, “there are at most k x’s such that
S(x)”, and “there are exactly k x’s such that S(x)” as follows.

(∃k≤x)S(x) : (∃x1) . . . (∃xk)(
∧

1≤i<j≤k xi 6= xj ∧
∧

1≤i≤k S(xi))
(∃≤kx)S(x) : ¬(∃k+1≤x)S(x)
(∃=kx)S(x) : (∃≤kx)S(x) ∧ (∃k≤x)S(x)

Let’s use |X| to denote the number of members of a set X. In order to clarify
the import of these quantifiers we introduced the notion of the set defined by a
one variable open schema S(x) in a structure A (written S[A]):

S[A] = {a ∈ UA | A |= S[x|a]}.

That is, S[A] is the set of members of UA that satisfy S(x) in A. Observe that
A |= (∃k≤x)S(x) if and only if k ≤ |S[A]|, and similarly for the other two newly
introduced quantifiers. We proceeded to explore the use of these quantifiers to
define regular simple graphs.

Recall that a graph is structure that interprets a single dyadic predicate letter
“L” (these are sometimes also called directed graphs to emphasize that the edges
have directionality), and we declared that, unless otherwise clearly stated, we
will restrict our attention for (at least) this lecture and the next to structures
that are graphs. A graph A is simple if and only if LA is both irreflexive
and symmetric. We introduced the abbreviation SG for the conjunction of the
schemata expressing irreflexivity and symmetry, which we abbreviated as Irr and
Sym, respectively.

Suppose A is a simple graph and a ∈ UA. The neighborhood of a in A is
{b ∈ UA | 〈a, b〉 ∈ LA} and the degree of a is |{b ∈ UA | 〈a, b〉 ∈ LA}|. That is,
the degree of a node a in a simple graph A is the number of neighbors of a in
A, equivalently, the number of edges incident with a in A. A simple graph is
k-regular if and only if all nodes of the graph have degree k. We can schematize
this condition, using the dyadic predicate L for the edge relation, as

(∀y)(∃=kx)Lyx.

We discussed the collections of 1-regular and 2-regular simple graphs. We
noted that every 1-regular graph consists of a set of independent edges, and that
a finite 2-regular graph consists of a collection of independent simple cycles, that
is, graphs that may be drawn in the plane as a disjoint finite collection of disjoint
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polygons. We observed that the bi-infinite simple chain is also 2-regular and
that polygons and bi-infinite chains exhaust the possible connected components
of 2-regular graphs.

We proceeded to count graphs with a fixed universe of discourse. We defined

mod(S, n) = {A | A |= S and UA = {1, . . . , n}}.

Note that for every structure A, A |= (∀x)x = x, thus mod(x = x, n) is the set
of all graphs with universe of discourse {1, . . . , n}. (This appeared to generate
considerable discussion, if not confusion – I hope that’s dissipated by now.) We
counted the number of graphs A with UA = {1, 2, 3, 4} (= |mod(x = x, 4)|) as
follows. We noted that any such graph is determined by choosing which of the
sixteen possible edges from i to j to draw, where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4; that
is, a graph with this universe of discourse is determined by 16 binary choices,
so, by the product rule, there are 216 such graphs. We noted that analogous
reasoning leads to the conclusion that there are 2n2

graphs with universe of dis-
course {1, . . . , n}. And similarly, since a simple graph with universe of discourse
{1, . . . , n} is determined by making a choice from a collection of

(
n
2

)
possible

undirected edges, there are 2(n
2) simple graphs A with UA = {1, . . . , n}.

We left it as a stimulating recreational activity to calculate the number of
1-regular simple graphs with universe of discourse {1, . . . , n}.


