Logic in the Finite

1 Validity in the Finite

Is it simpler to reason about finite structures or about arbitrary structures?
Some of the major results of logic in the twentieth century provide a clear
and surprising answer to one precise version of this question. Suppose first
that we restrict our reasonings to propositions which are expressible in first
order logic. We may then understand the question as asking for a comparison

between the complexity of

1. determining whether a first order sentence is valid, that is, true under

every interpretation whatsoever, and

2. determining whether a first order sentence is valid in the finite, that

is, true under every interpretation with a finite universe of discourse.

This question can be formulated more concisely and concretely in terms of
Val, the set of valid sentences of L, the first order language with identity and
a single binary relation symbol F, and Fval, the set of sentences of L which
are valid in the finite, namely: is the decision problem for Fval simpler than

the decision problem for Val?



Let’s begin by analyzing the complexity of the decision problem for Fval.
It is easy to see that we can make an effective list A, Ao, ... of finite struc-
tures for L which contains every such structure up to isomorphism. We may
now subject a sentence ¢ € L to the following effective procedure: succes-
sively test whether A satisfies ¢, Ao satisfies ¢, . ..; at the first stage where
the outcome is negative, halt the procedure and return the answer “no.”
Clearly, this procedure yields the correct answer to the query “is ¢ valid in
the finite,” if the answer is negative, and yields no answer, otherwise. That
is, the complement of Fval is recursively enumerable, or in other words, Fval
is co-r.e.

If we attempt such a direct approach to analyzing the complexity of Val,
we are stymied at the outset. There is no possibility of effectively generating
a list of all structures up to isomorphism, since there are structures of every
infinite cardinality; moreover, there is, in general, no effective way to test
whether a given infinite structure A satisfies a sentence ¢ € L. Reflection on
the apparent complexity of the notion of validity provides the proper con-
text in which to appreciate the extraordinary depth of Gédel’s Completeness
Theorem for first order logic: there is a sound and complete effective proof
procedure for first order validity. In other words, Val is recursively enumer-

able — in order to discover that a first order sentence is valid, if it is, we need



only look through an effectively generated list of finite objects and check
that one is its proof.

So far so good: Val is r.e.; Fval is co-r.e. To complete the picture we need
to invoke two more fundamental results of twentieth century logic. Church’s
Theorem tells us that Val is undecidable, from which it follows that Val is
not co-r.e. On the other hand, Trakhtenbrot’s Theorem (see Trakhtenbrot
(1950)) tells us that Fval is undecidable, from which it follows that Fval is
not r.e., that is, there is no sound and complete proof procedure for the
first order sentences which are valid in the finite. This suggests one answer
to the question with which we began: reasoning about finite structures is
no simpler than reasoning about arbitrary structures — there is an effective
proof procedure for validity, but no effective proof procedure for validity
in the finite. Indeed, there is a good sense in which we can say that the
complexity of the decision problems for Val and Fval are identical, namely,
Val and Fval are Turing reducible to one another. That is, there is a Turing
machine which will decide membership in Val given an oracle for Fval and
there is a Turing machine which will decide membership in Fval given an
oracle for Val. Remarkably, Val and Fval turn out to have effectively the

same information content.



2 Model Theory in the Finite?

The last section suggests that, in a sense, there can be no proof theory for
first order logic in the finite, since there can be no effective proof procedure
for validity in the finite. How about model theory? At the outset, there
are disappointments. One of the central results in the model theory of first
order logic, the Compactness Theorem, does not extend to the finite case.
Recall the Compactness Theorem: if every finite subset of a set of first order
sentences I is satisfiable, then T itself is satisfiable. Call a set of sentences
I’ satisfiable in the finite, if and only if, there is a finite structure A which
satisfies every sentence in I'. It is easy to construct a set of first order sen-
tences I' such that every finite subset of I' is satisfiable in the finite, whereas
' itself is not satisfiable in the finite. For example, let ' = {\,, | n > 0},
where ), is a first order sentence in the pure language of identity which is
true in a structure A, if and only if, the size of A is at least n. Virtually
all the finite analogs of well-known consequences of the Compactness The-
orem fail as well, for example, the Beth Definability Theorem, the Craig
Interpolation Theorem, most all “preservation theorems,” etc. (See Gure-
vich (1984) for a compendium of such results; a notable exception is van
Benthem’s preservation theorem for the modal fragment of first order logic,

see Rosen (1997).)



Further contrasts between the finite model theory of first order logic and
classical model theory abound. A central phenomenon of first order model
theory is that no infinite structure can be characterized up to isomorphism
by a set of first order sentences. Recall that structures A and B are elemen-
tarily equivalent, if and only if, they satisfy the same first order sentences. It
is a corollary of the Compactness Theorem that for every infinite structure
A, there is a structure B (indeed, a proper class of pairwise nonisomorphic
structures B) such that A is elementarily equivalent to B, but A is not iso-
morphic to B. In contrast, it is easy to show that for all structures A and
B, if A is finite and B is elementarily equivalent to A, then B is isomorphic
to A. Indeed, for every finite structure A whose signature is finite, there is
a single first order sentence ¢ such that for every structure B, B satisfies ¢,

if and only if, B is isomorphic to A.



3 Definability and Complexity

In light of all these contrasts, one might legitimately wonder what finite
model theory could be. The following sections attempt to answer this ques-
tion by giving a feeling for some of the techniques, results, and open problems
of the subject. For the most part, we will pursue questions in definability
theory, that is, we will inquire into the expressive power of various logical
languages in the context of finite structures. We will see that this study has
close connections with the theory of computational complexity.

We collect together here some notions and notations that will ease our
progress. A structure A, for us, consists of a universe of discourse |A| and
interpretations for a finite set of relation symbols and constant symbols;
this set of symbols is called the signature of A. Whenever we mention two
structures in the same breath, they are of the same signature; whenever we
speak of a collection of structures, they are of the same signature. Let X be
a class of structures. A collection of structures @ C K is a query relative to

IC, if and only if, Q is isomorphism closed in I, that is,
VA, Be K(A€ QNA=DB) = BeQ).

We will drop the qualification “relative to K7 when the background class

is clear from the context. Queries are the proper object of study in our



investigation of definability and complexity, since logical languages do not
distinguish between isomorphic structures.

We think of a logical language L as consisting of a set of sentences St
and a satisfaction relation =7 . We will suppress the subscript to = as it
will generally be clear from the context. Given a class of structures X and
a sentence @ € S, we write p(KC) for the query defined by ¢ relative to KC,
that is,

p(K)={Ae k| A=}

We write L(K) for {p(K) | ¢ € SL}, the set of queries which are L-definable
relative to K.

In what follows, we will analyze and compare the logical and computa-
tional complexity of queries relative to classes of finite structures. It will be
convenient to introduce, for each signature o, a canonical countable set of
finite structures F, which contains, up to isomorphism, every finite struc-
ture of signature . We let F, be the set of structures of signature o with
universe of discourse [n)(= {1,...,n}) for some n > 1. Unless otherwise in-
dicated, all collections of finite structures we mention are understood to be
subsets of F; for some 0. We write D for F (g} where E is a binary relation
symbol; D is, for us, the class of finite directed graphs. For simplicity and

concreteness, our discussion will often focus on queries relative to D.



In the following sections, we will address questions concerning the logical
resources that are required to define a given query @ C D. For example, we
will consider whether Q is definable in second order, but not in first order,
logic; or whether Q is definable by an existential second order sentence, but
not by the negation of such a sentence, etc. We can think of this study as
yielding information about the complexity of Q — for example, if Q is not first
order definable, while Q' is, we might want to say that the definitional, or
descriptive, complexity of Q' is no greater than that of Q. In this way, we can
think of the classes of queries L(D), for various languages L, as descriptive
complexity classes, in analogy with the resource complexity classes studied
in the theory of computation (see Papadimitriou (1994) for background on
the theory of computational complexity). Let us pursue this analogy.

Consider a query Q C D. We have been thinking of @ under the guise of
definability. We can, on the other hand, think of Q as a decision problem:
given an A € D answer the question whether or not A is a member of
Q. Rather than asking what logical resources are required to specify Q,
we can ask instead, what computational resources are required to decide
membership in Q. To make this precise, we can easily encode each A € D
as a bit string, thereby making it a suitable input to a Turing machine. If A

is of size n, the adjacency matrix of A is the n X n matrix whose i, j-entry is



a1, if (i,j) € E4, and is a 0, otherwise. We encode A as the bit string ¢(A)
which consists of the concatenation of the rows of the adjacency matrix of A,
and for @ C D, we let ¢(Q) = {c(A) | A € Q}. If Y is a resource complexity
class, then we write Y (D) for the collection of queries @ C D such that
¢(Q) € Y. (In a similar fashion, we may define Y(F,) for any signature o.)
We are now in a position to make direct comparisons between resource and
descriptive complexity classes. In the following sections, we will see that
many important resource complexity classes, for example, P and NP, have

natural logical characterizations relative to various sets of finite structures.



4 First Order Definability

One of the main tools for establishing limits on the expressive power of first
order logic over arbitrary structures is the Compactness Theorem. As noted
in Section 2, we are deprived of the use of this tool in the context of finite
structures, so we will need to rely on other techniques. We begin with an
exemplary application of the Compactness Theorem, so we can appreciate
what we are missing; the example will reappear throughout the following
sections.

Let D* be the collection of arbitrary structures A of signature { E'}; each
A € D* is a, perhaps infinite, directed graph. We call such a graph A
simple, if and only if, E* is irreflexive and symmetric, and we let G* be the
collection of arbitrary simple graphs. A simple graph may be visualized as a
loop-free, undirected graph. Note that G* is first order definable relative to
D*. Now let D, (resp., G%;) be the collection of expansions of structures in
D* (resp., G*) to the signature with two additional constant symbols s and
t — this is the collection of directed (resp., simple) source-target graphs. A
graph A € D}, is reachable, if and only if, there is a path from s4 to t4 in
A, that is, a sequence ar,...,a, of nodes of A such that a; = s4,a, = t4,
and for every 1 < i < n, (a;,a;41) € E4. Let S* be the collection of A € G,

such that A is reachable. Is S* first order definable relative to G5,7? An
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application of the Compactness Theorem provides a negative answer. For
suppose that there is a first order sentence ¢ with ¢(Gy;) = S*. Let T" be

the set consisting of the following sentences:

z,bo s=t
z,bl - FEst

o —Jz(Esz N\ Ext)

Notice that a graph A satisfies the conjunction g A ... A 1y, if and only if,
there is no path in A of length < n from s to t4. Therefore, the simple chain
of length n 4+ 1 with end nodes labelled s and ¢ satisfies g A ... A 9y, from
which it follows that every finite subset of I' U {} is satisfiable. Therefore,
by the Compactness Theorem, I' U {p} is satisfiable. On the other hand,
it is clear that if a graph A satisfies I, then A is not reachable. But, this
contradicts the hypothesis that ¢ defines S*.

Now, let S C S* be the set of finite reachable simple source-target graphs.
The question whether § is first order definable is no longer immediately ac-
cessible to an application of the Compactness Theorem of the sort sketched
above. The Compactness Theorem can be pressed into service to answer the
question by exploiting “pseudofinite” structures, that is, infinite structures

which satisfy every first order sentence which is valid in the finite (see Gaif-
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man & Vardi (1985) for details); but, we will follow a different approach,
due to Gurevich (1984), which proceeds via Ehrenfeucht games and yields
additional information. The approach involves a reduction from a query on
linear orders.

Let Ls C Fyc 1 be the set of finite linear orders with minimal ele-
ment s and maximal element ¢. The conjunction of the following first order

conditions defines Lg;.
Vz—(z < z) (irreflexive)
VaVyVz((z < y ANy < z) — z < z) (transitive)
VaVy(z <yVy<zVz=y) (total)
Vz(—(z < s) A=(t <z)) (endpoints)

Let M C L4 be the set of odd linear orders, that is, linear orders with
universe [2n + 1], for some n. Is M first order definable relative to L7
Here is one strategy for attempting to show that M is not first order
definable. For each first order sentence ¢, show that there are A, B € Ly
such that A and B agree about ¢ (either they both satisfy ¢ or they both fail
to doso), A € M, and B ¢ M. It is clear that if we succeed in doing this, we
have shown that M is not first order definable. (Indeed, the converse holds

as well — the strategy is nothing more than a restatement of what’s required.)
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What makes the strategy worth pursuing is that there is a powerful, and
entertaining, technique, the Ehrenfeucht game, for showing that pairs of
structures agree about first order sentences. This technique applies to both
finite and infinite structures and, to some extent, fills the void left by the
failure of compactness in finite model theory.

The Ehrenfeucht game is played between two players, conventionally
called the Spoiler and the Duplicator. The equipment for the game consists
of two boards, one representing the graph A and the other representing the
graph B, and an unlimited supply of pairs of pebbles (o, 1), (a2, 52), . ...
The game is played through a sequence of rounds as follows. At the i-th
round of the game, the Spoiler chooses one of the pebbles from the pair
(ai, B;) and places it on a node of the corresponding board A or B, the «
pebbles are played onto A and the G pebbles onto B. The Duplicator then
places the remaining pebble on the other board, completing the round of
play. Suppose the game has proceeded through n-rounds of play. Let a;
be the node in A covered by «; and let b; be the node in B covered by ;.
Let f be the mapping which sends a; to b; for all 1 < ¢ < n and sends
54 to sB and t* to tB. If f is a partial isomorphism from A to B (that is,
a one to one, edge preserving map) we say the Duplicator wins the game

through n-rounds of play. Thus, the Spoiler’s goal is to reveal structural
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distinctions between A and B, the Duplicator’s goal is to hide them. We
say that A is n-similar to B, if and only if, the Duplicator has a strategy
to win every play of the Ehrenfeucht game on A and B through n-rounds.
We say structures A and B are n-equivalent, if and only if, A and B satisfy
exactly the same first order sentences of quantifier rank < n (recall that the
quantifier rank of a formula is the maximum depth of nesting of quantifiers
in the formula). The Ehrenfeucht-Fraissé Theorem tells us that n-similarity
and n-equivalence coincide, that is, for all structures A and B and for every
n, A is n-similar to B, if and only if, A is n-equivalent to B (see Ehrenfeucht
(1961) and Fraissé(1954)).

Armed with the Ehrenfeucht-Fraissé Theorem, we can now implement
our strategy for showing that M is not first order definable. For each n, it
suffices to construct a pair of finite linear orders A and B such that A € M,
B ¢ M, and A is n-similar to B. We accomplish this by overkill — for
each n, if A and B are finite linear orders of length > 2", then A is n-
similar to B. To see this, consider the following strategy for the Duplicator
in the n-round game played on two such linear orders. At round m, the
Duplicator plays as follows. Suppose, without loss of generality, that the
Spoiler has played into A. This play falls into one of m intervals into which

A has been divided by the play of pebbles at earlier rounds of the game and it
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determines distances dy and ds between the newly pebbled point and the left
and right endpoints of that interval, respectively. The Duplicator plays into
the corresponding interval in B so as to achieve the following approximation
between these distances and the corresponding distances d} and d5 between
the point she pebbles and the endpoints of her interval. Namely, for ¢ = 1,2
if d; < 2("=™) then d; = d;, and if d; > 2™, then d; > 2"~ ™. The initial
condition on the lengths of A and B insures that the Duplicator can maintain
these approximations through n-rounds of play. Thus, M is not first order
definable. Indeed, any first order definable collection of finite linear orders
is a finite or cofinite subset of L.

Now, we reduce the problem of defining odd length linear orders (M) to
the problem of defining reachability (S). Let p(z,y) be a first order formula
which is true of a pair of elements of a linear order, if and only if, the
second is the successor of the successor of the first, and let x(z,y) be the
formula p(z,y) V p(y, z). Suppose A € Ls. We may use the formula y to
define a simple source-target graph B from A. We let |B| = |A|, s® = s4,
tB =14, and EB = {{u,v) | A = x[u,v]}. Now, observe that the graph
B thus defined is reachable, if and only if, A € M. Suppose that there is
a first order sentence 6 which defines S. Let €' be the result of replacing

each subformula of the form Ezy in 6 with x(z,y). Then, 6’ defines M. We
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have exhibited a “first order reduction” of M to §; it follows at once that
S is not first order definable, since M is not. Such first order reductions
are an important descriptive analog of the resource bounded reductions of
computational complexity theory.

The foregoing examples show that some simple properties of finite graphs
are not first order definable. These examples can be easily multiplied —
acyclicity, regularity, 2-colorability, etc. all fail to be first order definable.
Lest the reader be left with the impression that no interesting classes of
finite graphs are first order definable, note that the collection FR of fi-
nite nonempty ranks of the cumulative hierarchy of sets equipped with the
membership relation as their edge relation is first order definable (see Dawar,
Doets, Lindell, & Weinstein (1998)). In Section 6, we will see that questions
concerning the expressive power of first order logic relative to FR are di-

rectly related to open problems in the theory of computational complexity.
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5 Second Order Definability

What logical resources are required to define reachability over finite graphs?
As we’ve just seen, first order logic doesn’t suffice. There are several routes
to the definability of reachability. Let’s begin with Frege’s (see Frege (1884)).
The transitive closure (sometimes called the ancestral) of a binary relation
R is the smallest relation (in the sense of inclusion) which is transitive and
includes R. For example, the relation “ancestor of” is the transitive closure
of the relation “parent of.” If R is a binary relation, we write tc(R) for the
transitive closure of R.

Frege observed that the relational operator tc is uniformly definable by
a formula 7(z,y) of second order logic; that is, for every structure A €
D* te(EY) = {{u,v) | A |= 7[u,v]}. The formula 7(z,y) may be chosen to
be:

VP((Vz(Exz — Pz) AVoVw((Pv A Evw) — Pw)) — Py).

This formula has a couple of noteworthy features. First, it is a universal

second order formula, that is, it is of the form
VP,...VP,0

with 6 first order. Second, it is monadic universal, that is, each of the

universal quantifiers binds a monadic second order variable. We call the
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fragment of second order logic consisting of all such formulas mon-II}. Now,
let R* C D7, be the collection of reachable directed source-target graphs. It
is clear that 7(s,t) defines R* relative to D¥,; directed reachability is mon-TT}
definable.

Is R* also definable by a monadic existential second order sentence?
Since the full existential fragment of second order logic is compact, the
argument we gave at the beginning of Section 3 to show that S* is not first
order definable, also shows that S* (and hence R* as well) is not definable
by an existential second order sentence, monadic or otherwise. In the finite
case, the situation is subtler. Paris Kanellakis observed (see Immerman
(1999)) that S is definable by a monadic existential second order sentence

3P6, where 0 is the conjunction of the following first order conditions.
Ps A3z(Pz A Esz) (s has degree 1 in P)
Pt Az(Pxz A Etz) (t has degree 1 in P)

Ve((PxAx # shx #t) = FyIz(PyAPz Ay # 2z AVw(Pw — (Exw +

(w=yVw=2z))))) (all other nodes have degree 2 in P)

If a finite simple graph A satisfies # with respect to an assignment of a set
of nodes X to P, then the nodes in X form a simple chain with end nodes

s4 and t. (The reader should construct an infinite simple graph which is
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not reachable, but satisfies 3P6.)

Let R C R* be the collection of finite reachable source-target graphs; this
class differs from S in omitting the requirement of simplicity. Ajtai & Fagin
(1990) established that R is not definable by a monadic existential second
order sentence. Their argument blends an extension of the Ehrenfeucht
game to monadic existential second order logic with probabilistic techniques
(see Section 8 for a discussion of such techniques). This result establishes a
difference in the descriptive complexity of S and R, the former is definable
in both mon-TI} and mon-¥{ (the monadic existential fragment of second
order logic), the latter only in mon-II}. From an intuitive point of view, the
problem of determining whether a finite directed graph is reachable is more
complex than the same problem restricted to simple graphs. It appears that
descriptive complexity provides a more convincing acount of this intuitive
distinction than analysis of the computational complexity of these problems
has yet been able to offer (see Ajtai & Fagin (1990) for further discussion).

The foregoing considerations leave open the question whether R is defin-
able by an existential second order sentence not subject to the monadic re-
striction. Rather than exhibiting such a sentence directly, which is straight-
forward, we will see that a positive answer to this question is a corollary of a

celebrated result of Fagin (1974), namely: for all o, NP(F,) = L}(F,) (X1
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is the set of existential second order sentences). Fagin’s Theorem has been
dubbed the first theorem of descriptive complexity theory. It equates the im-
portant computational complextiy class of queries whose decision problems
are solvable by nondeterministic Turing machines in polynomial time with
the descriptive complexity class of queries which are definable by existential
second order sentences. Fagin’s Theorem provides a machine independent
characterization of NP — in order to verify that a query is in NP, one needn’t
tinker with machines and time bounds, just produce a ! sentence which
defines it. In a sense, Fagin’s Theorem shows that existential second order
logic is an alternative, what might be called, “higher-level,” programming
language for specifying exactly the NP queries: the proof of the theorem
yields an effective procedure F' for “compiling” an arbitrary existential sec-
ond order sentence ¢ into a polynomially clocked nondeterministic Turing
machine F'(¢) which accepts the query defined by ¢ and establishes that ev-
ery query in NP is accepted by one of the machines F'(¢). Thus, existential
second order logic yields an effective enumeration of the NP queries, with
the relation of satisfaction as the enumerating relation.

To return to our story of reachability, R is in NP — indeed it is in NL, the
class of problems solvable by nondeterministic Turing machines using only

logarithmic work space, and this class is included in P the class of problems
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solvable by deterministic Turing machines in polynomial time. It is gener-
ally believed that both the inclusions NL C P and P C NP are strict, but
three decades of intense investigation have failed to produce a proof for the
strictness of either. Fagin’s Theorem opened up the possibility of attacking
such outstanding problems in the theory of computational complexity by
means of logical techniques. For example, in order to show that P # NP,
it would suffice to show that there is a query Q such that Q ¢ Xi(D)
and Q € TI}(D), for, by Fagin’s Theorem, this would establish that NP is
not closed under complementation. The results mentioned earlier on the
monadic fragments of II} and ¥} are of some interest in this connection. We
saw that R € mon—II}(D) whereas R ¢ mon—X}(D). This does not resolve
any outstanding problem concerning computational complexity since mon-
»1 does not correspond to any natural level of computational complexity.
On the one hand, as we’ve just noted, R is in NL but not in mon-X}. On
the other hand, mon-¥! contains NP-complete problems, that is, problems
which are of maximal complexity among problems in NP with respect to
polynomial time reduction. For example, the NP-complete query graph 3-
colorability is easily seen to be in mon-X1. Thus, though the result of Ajtai
& Fagin (1990) does not lead to a separation of computational complexity

classes, it does indicate how logic can contribute to a richer understanding
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of complexity by focussing attention on complexity classes which are orthog-
onal to the standard computational complexity measures, yet natural from

a descriptive point of view.
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6 Inductive Definability

In this section, we will pursue a more constructive approach to the defin-
ability of the set of reachable graphs. We will see that there are interesting
connections between constructivity and complexity in this context.

One of the outstanding open problems of descriptive complexity theory
concerns the existence of logics which characterize computational complexity
classes below NP. An important result, due independently to Immerman
(1986) and Vardi (1982), is that P is characterized by FO+LFP relative
to ordered finite structures. FO+LFP is the extension of first order logic
by a least fixed point operator for defining relations by induction. Least
fixed point operators have played a major role in studies of definability
on fixed infinite structures (see Moshovakis (1974)). Let @(R,z1,...,Tk)
be a first-order formula with a distinguished k-ary relation symbol R. On
a structure, A, we can use ¢ to define the relational operator, ®4(X) =
{{a1,...ar)|A = ¢[X,a1,...,ax]} (here, X is a k-ary relation on A and the
notation stands for the assignment of X to R). If ¢ is an R—positive formula,
® 4 is monotone in the sense that for all X C Y C |A|k,<I>A(X) C Du(Y).
We may view @ as determining an induction on A the stages of which are
defined as follows: @Y = 0; I = ®4(¢}). Since 4 is monotone and A

is finite, it follows immediately that for some m, ¢} = go’}f“. The least such
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m is called the closure ordinal of ¢ on A and is denoted ||p||4. It is easy to
see that ||¢||4 < I¥, for a finite structure A of size [ (in the case of an infinite
structure A, the closure ordinal of an induction may be a transfinite ordinal
a whose cardinality is equal to the cardinality of |A|). Moreover, one can
readily verify that for m = ||p||4, @'} is the least fized point of the relational
operator ® 4, that is, ® (o) = ¢’ and for all X C |A[F, if ®4(X) = X,
then ¢} C X. We use ¢, to denote the least fixed point of the operator

® 4. For example, if x(R,z,y) is the formula
ExyV 3z(Exz N\ Rzy)

then for every structure A € D, x%° is the transitive closure of E4. We write
FO+LFP for the extension of first order logic with the lfp operation which
uniformly determines the least fixed point of an R—positive formula. That is,
for any R-positive formula ¢, lfp(R, z1,...,zx)p is a formula of FO+LFP
and A =1Up(R,z1,...,zr)plal, if and only if, @ € .

Let us attend once again to reachability. For x(R,z,y) as above, the
sentence Ifp(R,x,y)x(s,t) defines R relative to D. This approach to the
definability of R has been regarded as more constructive than the Fregean
approach described in the preceding section: many find the general notion of
iteration to be more transparent than universal second order quantification.

Since, as we will see in the next section, FO+LFP (D) is properly included in
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P(D), the “more constructive” approach actually yields a stronger bound on
the descriptive complexity of R. It is interesting to observe, as a corollary
of Fagin’s Theorem and the Immerman-Vardi Theorem, that in the case of
finite ordered structures, the relative power of first order positive induction
versus universal second order quantification amounts exactly to the question
whether P = NP.

Let us look a bit more carefully at the case of ordered structures. For
simplicity, let’s focus on the set O C F (g .} of ordered graphs — a structure
A is a member of O, if and only if, the reduct of A to {E} is in D and the
reduct of A to {<} is in L, the set of finite linear orders. The Immerman-
Vardi Theorem tells us that FO+LFP(O) = P(0O). It follows from the results
of Section 4 that the set of ordered graphs of odd size, a query in P(0O), is
not first order definable relative to O. We may conclude that that FO(O)
is properly included in FO4+LFP(Q). In fact, there is no known example
of an infinite query @ C O such that FO(Q) = FO+LFP(Q). Kolaitis &
Vardi (1992a) conjectured that for every infinite query @ C O, FO(Q) is
properly included in FO+LFP(Q). This Ordered Conjecture is an important
open problem in finite model theory which turns out to have connections
to a number of open problems in the theory of computational complexity.

Even the special case of this conjecture concerning the power of first order

25



versus fixed point definability relative to the set FR of finite ranks of the
cumulative hierarchy of sets is open, and its resolution would have significant
complexity theoretic consequences. (see Dawar, Lindell, & Weinstein (1995)
and Gurevich, Immerman, & Shelah (1994)). (This counts as a special case,
since a linear order is uniformly first order definable on the structures in
FR, see Dawar, Doets, Lindell, & Weinstein (1998).)

The Ordered Conjecture asks whether there is an infinite set of finite or-
dered structures relative to which first order logic characterizes polynomial
time computability. If we turn our attention away from ordered structures,
we can formulate what has been regarded as the central open problem of
descriptive complexity theory, namely: Is there a logical characterization
of polynomial time computability over structures without a built-in order?
Gurevich (1988) has given a rigorous formulation of this question. In con-
nection with Fagin’s Theorem, we noted that existential second order logic
characterizes NP in a strong sense — not only is NP(F,) = Z}(F,), for all o;
there is an effective procedure for transforming sentences of existential sec-
ond order logic into polynomially clocked nondeterministic Turing machines
that witness the membership of the queries they define in NP. Likewise, in
the case of P, we can ask if there is a logic L = (S, =1,) such that both S,

and |=p, are recursive and
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2. there is an effective procedure F' such that for every ¢ € Si, F(y)

is a polynomially clocked deterministic Turing machine which accepts

c(0(Fs))-

We call a logic meeting these requirements a logic for P. A logic for P
amounts to an effective list of polynomially clocked deterministic Turing
machines, each of which decides a query, and which lists at least one machine
deciding each query in P. The difficulty in constructing such an effective
list lies in the requirement that the machines must decide queries, that is,
isomorphism invariant sets of structures. The set of machines meeting this
requirement is not recursively enumerable. This is not fatal to the enterprise
of constructing a logic for P, since we do not need to enumerate all the
polynomially clocked, isomorphism invariant machines, just a rich enough
subset of them. An obvious way to proceed would be as follows. A function

C : D — D is called a graph canon, if and only if,

1. VG € D(G = C(@Q)), and

2. YG,H € D(G = H — C(G) = C(H)).

A graph canon extracts a unique representative from each equivalence class

of D under the equivalence relation of isomorphism. If there is a graph canon
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C that is computable in polynomial time, then there is a logic for P. This
is easily seen by composing C' with an effective list of polynomially clocked
deterministic Turing machines which, for each set of strings X € P, includes
a machine which decides X — such an effective list can be constructed absent
the requirement that the machines decide queries. It is well-known that if
P = NP, then there is a polynomial time computable graph canon, which
yields the conclusion that if there is no logic for P, then P £ NP. There is
no evidence that the converse holds, and the quest for a logic for P remains

an active area of research in descriptive complexity theory.

28



7 Infinitary Logics

In this section, we investigate a measure of logical complexity that has played
a prominent role in recent research in finite model theory. The measure is the
total number of variables, both free and bound, which occur in a formula of
first order logic, or its infinitary extension, Ly,. First order sentences which
involve the reuse of bound variables within the scopes of quantifiers already
binding those same variables are generally frowned on from a pedagogical
and stylistic point of view. Thus, the study of finite variable fragments of
first order logic and infinitary logic, whose point is to exploit the possibility
of such reuse, typically seems a bit unusual, if not perverse, to most logicians.

Consider the following sequence of first order sentences, each of which

contains occurrences of only the two variables x; and x5 :

o FEst

p1 3z (Eszy A Exqt)

w9 Az1zo(Fszy A Exix2 N\ Exat)

w3 dr1dzo(Fszy A Exyxo A Jz1(Exexy N Ex4t))

wq Ar1Aro(Eszy A Exize A z1(Exexy A Jzo(Ex129 A EXot)))

Clearly, the sentences ; are pairwise inequivalent (consider the structures

Ay, for n > 1 which interpret E as the successor relation on [n] and assign 1
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to s and and n to t; A, | ¢;, if and only if, i +2 = n). Note that although
the sentences involve only two variables, their quantifier rank is unbounded.
Needless to say, these sentences cannot be brought to prenex normal form
without increasing the number of variables.

The logic Loy is the infinitary extension of first order logic which is
closed under the formation of arbitrary conjunctions and disjunctions of
sets of formulas. In Section 2, we observed that every finite structure is
characterized up to isomorphism by a single first order sentence, from which
it follows that for every signature o, every query Q@ C F, is Ly, definable.
Thus, Lo, is too strong to be of interest from the point of view of finite
model theory. Let us consider the weaker finite variable fragments of L., .
We define LE_ , to be the k-variable fragment of Ly, that is, L% consists of

all formulas of L, all of whose individual variables, either free or bound, are

among z1, ...,z We let LY = U, L% . For example, let 6, a sentence
of L?_,, be the infinite disjunction of the sentences g, 1, ..., exhibited

above. Observe that 6 defines R (directed reachability) relative to D (the
set of finite directed graphs). This is no accident: Kolaitis & Vardi (1992b)
established that for every o, FO 4+ LFP(F,) C L% (F,). Thus, the finite
variable fragment of infinitary logic provides a tool for analyzing inductive

definability over finite structures.
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One of the main techniques for studying L%, , definability is the k-pebble
game, a variant of the Ehrenfeucht game, essentially due to Barwise (1977).
In the k-pebble game, instead of an unlimited supply of pebble pairs, the
equipment contains only the pebble pairs (aq, 1), . .. (g, Bk). At each round
of play, the Spoiler may now either play a pebble from a pair that has not
yet been played and place it on the associated board, or move a pebble that
has already been played to a new position. As before, the Duplicator must
follow by moving the matched pebble on the other board. The winning
condition for the n-round game remains the same as before. There is also
an infinite version of the k-pebble game which we call the eternal k-pebble
game. In this version, play continues through a sequence of rounds of order
type w. The Spoiler wins a play of the eternal game, if and only if, he wins
at some finite round; otherwise, the Duplicator wins. We say that structures

A and B are indistinguishable by sentences of LY (A=F  B), if and only

~oow

k

if, for every sentence ¢ € LY,

AEp < BEo.

Barwise proved that the Duplicator has a winning strategy for the eternal k-

pebble game played on A and B, if and only if, A=F__B. Thus, we can show
that a query Q C D is not L%, definable by exhibiting structures A, B € D,

such that A € @, B ¢ Q, and the Duplicator has a winning strategy for the
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eternal k-pebble game played on A and B.

As an illustration of this technique, we show that P(D) € L% (D). We
say that A € D is an empty graph, if and only if, EA = (). It is easy to see,
by playing the k-pebble game, that for all empty graphs A and B, if A and
B both have at least k& nodes, then A=F__B. Tt follows at once that the set

of graphs which have an odd number of nodes, a query in P, is not definable

in LY . Tt also follows that the languages LF_, form a strict hierarchy in

w

terms of expressive power relative to D. We will meet L%

again in the

next section.
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8 Random graphs and 0-1 laws

In this section, we will take up some connections between finite model theory
and combinatorics. We focus attention on the study of random graphs, an

active area of research in contemporary combinatorics.

Random graphs Consider the following procedure for determining a di-
rected graph with node set [n]. For each of the n? ordered pairs of nodes
flip a fair coin to determine whether or not there is a directed edge from
the first to the second; we assume the outcomes of the tosses are mutually
independent. For each n, this procedure gives rise to the uniform probability
distribution over D,,, the collection of directed graphs with node set [n]. We
may use this probability distribution to answer questions about how many
graphs there are with certain properties. We write Pry,(6) for the probability
(with respect to this distribution) that a graph with node set [n] satisfies 6.

Note that,

card{G € D,, | G = 6}
cardD,, '

Pr,(0) =
We will be interested in the behavior of Pr,(f) as a function of n for
various choices of 6. We write Pr(#) = lim,_,o Pr,(0). In general, Pr(f)

may not be defined. For example, when 6 € ¥} expresses the condition that

there are an even number of nodes, Pr, (0) endlessly oscillates between the
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values 0 and 1 and thus has no well defined limit. On the other hand, many
interesting graph theoretic properties do possess a “limit probability” with
respect to the uniform distribution. We will see how logic provides some
explanation of this fact.

Let us begin with the example of connectivity: a directed graph A is
connected, if and only if, for each pair 7,7 of distinct nodes of A, there is a
path from ¢ to j. Let 6 be the sentence of FO+LFP that defines the set of
connected graphs relative to D. We wish to discover whether Pr(6) is well
defined, and if it is, whether we can determine its value. In order to do so,
we will attempt to approximate the value of Pr, (@) for large values of n.

Rather than dealing directly with 6, let us consider the following first

order condition which implies . Let ¢ be the following sentence:

(Vz)(Vy)(z #y — (F2)(x # 2z ANy # 2z A (Exz A Ezy).

The sentence ¢ expresses the “two degrees of separation” property — we can
proceed from any node to any other by a path of length two. Clearly, ¢

implies 8. Hence, for all n,

Pr,(p) < Pr,(0).

Therefore, if we can show that Pr,(¢) becomes large, as a function of n, the

same will be true of Pr, ().
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Let’s perform the calculation. Fix a pair of distinct nodes 7, j € [n]. We
say that a node k links 7 to 7, if and only if, there is an edge from i to
k and and edge from k to j. Clearly, for any fixed node k, distinct from ¢
and j, the probability that k& does not link ¢ to j is .75. So the probability
that no node distinct from 4 and j links i to j is (.75)" 2. Now, there are
n(n — 1) ordered pairs of distinct nodes in [n]. Therefore, the probability
that some pair of distinct nodes in [n] fail to be linked is bounded from

above by n(n — 1) - (.75)" 2. That is,
Prp(—p) < n(n—1)-(.75)" 2
It is easy to show that

lim n(n —1) - (.75)"2 = 0.

n=oo
It follows at once that

Pr(f) = Pr(p) = 1.
So we have succeeded in analyzing the limiting behavior of graph connectiv-
ity by reducing the problem to a simple calculation of the limiting behavior
of a first order condition; and the limit probability of that condition is 1.

To what extent can we generalize this example?

0-1 Laws In this section we will consider a sweeping generalization of the

preceding example of connectivity. We say that a logical language L satisfies
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the 0-1 law with respect to the uniform distribution over directed graphs, if

and only if, for every sentence ¢ of L,

Pr(¢) =0 or Pr(y)=1.

A bold generalization of the example of connectivity would be the fol-
lowing: FO+LFP satisfies the 0-1 law for the uniform distribution over
directed graphs. Indeed, this generalization is true, as was established by
Blass, Gurevich, and Kozen (1985). This result itself generalized the 0-1
law for first order logic due to Fagin (1976) and Glebskij (1969). A striking
generalization of these (and additional) results, which provides a beautiful
explanation for the limiting behavior of a variety of graph theoretic prop-
erties, is the following 0-1 law for L%, due to Kolaitis & Vardi (1992b):
L%, satisfies the 0-1 law for the uniform distribution over directed graphs.
Not only does this result generalize the example of connectivity given above;
it’s proof also follows the lines of the argument given for the example. In
particular, the theorem is a corollary of the following fascinating result, also
due to Kolaitis & Vardi (1992b): For every k > 2, there is a k-variable first

order sentence 7y such that
1. Pr(y;) =1, and

2. for every sentence § € LE_ . either v |= 6 or y;, = 6.
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In other words, for each k, there is a single first order sentence which has limit
probability 1 with respect to the uniform distribution on directed graphs and
axiomatizes a complete L theory.

The sentence 7, may be constructed as follows. A k-literal is a formula
of the form Ex;z; or its negation with 1 < ¢,57 < k. A basic k-type is a
maximal consistent conjunction of k-literals. A k-extension condition is a

sentence of the form:

V.. .ka,l((/\ zi T Np) = Hmk(/\ x; 7 oK NP)),
i i<k

where ¢ is a (k — 1)-type, v is a k-type, and 1) extends . A graph satisfies
such a k-extension condition, if and only if, each of its size k — 1 subgraphs
of type ¢ can be extended to a size k subgraph of type ¥. We let v, be the
conjunction of all the [-extension conditions for 2 < [ < k. The sentence
expresses a “bounded principle of plenitude:” every subgraph of size [ < k
can be extended in every possible way to a subgraph of size [ + 1 (compare
the two degrees of separation principle above). For k > 3, it is not at first
sight obvious that there are finite structures which satisfy ~;. However, an
easy computation, of just the sort sketched for the two degrees of separation
principle, reveals that Pr(y;) = 1 for all & > 2. That is, for every ¢ > 0, for
large enough n, all but an € fraction of the directed graphs of size n satisfy
Vk-
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In order to verify that -y, axiomatizes a complete L. theory, it suffices
to show that for all directed graphs A, B, if A |= v, and B |= g, then

A

B. But this follows directly from Barwise’s characterization of =¥ _

=%,
given in Section 7, since it is easy to see that the Duplicator has a winning
strategy for the eternal k-pebble game played on A and B, if both A and B
satisfy k. (Play the game! The description of 4% as a bounded principle of
plenitude is exactly what’s required for the Duplicator’s strategy.)

Let us call a sentence ¢ of first order logic stochastically valid, if and only
if, Pr(y¢) = 1, and let Sval be the set of stochastically valid sentences of first
order logic. It clear from the preceding discussion that I' = {v; | k£ > 2}
axiomatizes a complete first order theory, a result due to Gaifman (1964).

In particular, I' axiomatizes Sval. It follows at once that Sval is decidable.

This provides an interesting contrast to the results described in Section 1.
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9 Further Reading

Two excellent texts are available which cover the topics presented here in
depth. They are Ebbinghaus & Flum (1999) and Immerman (1999). An
invaluable introduction to the theory of computational complexity is Pa-
padimitriou (1994). For readers wishing further background on finite vari-
able logics there are valuable survey articles by Dawar (1999) and Grohe
(1998) and an excellent monograph by Otto (1997). An excellent introduc-

tion to the theory of random graphs is Alon & Spencer (1992).
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