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0 Prelude

0.1 Prerequisite Notation

Though the course has no specific mathematical prerequisites, a general familiarity with the set of integers
and some of its basic properties will be assumed. We collect here some useful facts and notations that will
appear from time to time throughout the course. We’ll add more as the need arises.

1. Notations for important sets of numbers

• Z = {. . .− 2,−1, 0, 1, 2, . . .} (the integers)

• N = {0, 1, 2, . . .} (the non-negative integers, a.k.a. the natural numbers)

• N+ = Z+ = {1, 2, 3, . . .} (the positive integers)

2. Important facts about numbers

• The Least Number Principle: If X is a nonempty subset of N, then X has a least element.

• Principle of Mathematical Induction: If X is a subset of N, and 0 ∈ X, and if for every i, i ∈ X
implies i+ 1 ∈ X, then X = N.

• The Pigeonhole Principle: If you distribute m pigeons into n pigeonholes and m > n, then some
hole contains more than one pigeon.

3. Unique Factorization into Primes: Recall that p ∈ N+ is prime if and only if p 6= 1 and p is divisible
only by 1 and p. Every n ∈ N+ with n 6= 1 can be written uniquely (up to reordering) as pa1

1 · · · pan
n

where each pi is prime and each ai ≥ 1.

0.2 A Combinatorial Warmup

Combinatorics is, roughly, the part of mathematics which deals with counting things. Its techniques are
general, and its results tangible. Throughout this book, we will use combinatorial problems as concrete
examples of problems which can be considered and solved by means of logical techniques. To get our feet
wet, let’s consider the following principle and question.

Principle 1. The Pigeonhole Principle: If you distribute m pigeons into n pigeonholes and m ≥ n+ 1,
then some hole contains at least two pigeons.

Example 1. Is there a numerically diverse group of Philadelphians?

(We call a group of people numerically diverse if no two people in the group have the same number of friends
in the group - we assume groups are of size at least two and that friendship is always mutual.)

We will demonstrate that the answer is no by an application of the Pigeonhole Principle.

Proof. Suppose we have a group G = {1, . . . , n} of n people (we use numerals to name the people for privacy
concerns). For brevity, let’s write pij to signify that i is a friend of j. We assume friendship is symmetric,
that is, if pij , then pji, for all i, j ∈ G, and irreflexive, that is, it is not the case that pii, for all i ∈ G. Let’s
write f(i) for the number of friends of i, that is, the number of j such that pji. Since friendship is irreflexive,
the possible values of f are the n numbers 0, 1, . . . , n− 1. We are thinking of these values as the pigeonholes
for application of the principle 1 and the members of G as being placed in these holes by f . We want to
argue that the value of f must agree on at least two members of G. But so far, since we have n members of
G and n pigeonholes into which they are sorted by f , we may not yet draw that conclusion via principle 1.
But now we consider the question, “can f really take all the values from 0 to n − 1?” In particular, can it
take on both the value 0 and the value n− 1? We argue that the answer is no. Suppose that there is some
i with f(i) = 0, that is, for every j, it is not the case that pji. Then, by symmetry, for every j, it is not the
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case that pij . So, if i has no friends, then the maximum number of friends of any j is n−2, that is, f cannot
take on the value n − 1. Thus, the possible values of f are the n − 1 numbers 0, . . . , n − 2. But now, by
principle 1, we can conclude that f takes on the same value for at least two members of G. This concludes
our argument that there cannot be a numerically diverse group of Philadelphians.

The above argument presupposes that there are finitely many Philedelphians. In fact, the theorem does not
hold if we allow Philadelphia to have infinitely many people. As an exercise, try to describe a numerically
diverse group of infinitely many Philadelphians.

The Pigeonhole Principle can take on a more general form, the Mean Pigeonhole Principle, which is as
follows:

Principle 2. The Mean Pigeonhole Principle: If you distribute m pigeons into n pigeonholes and
m ≥ k · n+ 1, then some hole contains at least k + 1 pigeons.

Note that Principle 1 is just the special case of Principle 2 for k = 1.

Example 2. Say a group of people has three-mutuality if it contains either a group of three mutual friends
or a group of three mutual strangers. How large a group of people can lack three-mutuality?

We show that the largest such group has five members. To do this, we will give an example of a pattern of
friendship among a group of five people that lacks three-mutuality, and show that every pattern of friendship
among six or more people has three-mutuality. To show that every friendship pattern on six or more people
lacks three-mutuality, we will use the Mean Pigeonhole Principle.

Proof. The diagram below shows a “friendship pentagon”. Nodes represent people, and an edge between
people represents friendship. It is easily checked that the diagram lacks 3-mutuality.

1

2 3

4 5

Next, we show that every group of n ≥ 6 people must have 3-mutuality. Again, write pij to denote that i is
a friend of j.

Let G = {1, . . . , 6} and sort the five people 2, . . . , 6 into two pigeonholes according to the truth value, true
(>) or false (⊥) of p12, . . . , p16. That is, sort people 2, . . . , 6 into two groups, one group which are all friends
of 1, and one group all of which are not friends with 1. By Principle 2, one of these holes, suppose it’s the
> one, contains at least three members of G.

Now, either two of these are friends, in which case they, together with 1 form a collection of three mutual
friends, or none of them of friends, in which case they themselves form a collection of three mutual strangers.
The argument is analogous in the case that three members of G were sorted into the ⊥ pigeonhole.

We might wonder whether every natural number n has a k such that every group of at least size k has
n-mutuality. This happens to be true (try proving it!). The Ramsey number Rm,n is the least k such that
every set of k people must have either a group of m mutual friends or n mutual strangers. In the previous
example, we showed that R3,3 = 6. Higher Ramsey numbers are much harder to compute. We know that
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R4,4 = 18. R5,5 is currently known to be between 43 and 48. R6,6 is somewhere between 102 and 165.

As an exercise, prove that Rm,n = Rn,m for all m,n.

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can
find the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey
number for red six and blue six, however, we would have no choice but to launch a preemptive attack.” -
Paul Erdos

Love differs from friendship in that there are narcissists (so we can’t assume the relation is irreflexive) and is
not always requited (so we can’t assume the relationship is symmetric). This difference between friendship
and love allows the existence of numerically diverse groups of lovers, that is, groups where each person in
the group loves a different number of people in the group. Consider, for example, a group of four people,
{1, 2, 3, 4}. Suppose that 1 doesn’t love anyone, 2 loves 1, 3 loves both 1 and 2, and 4 loves all of 1, 2, and 3,
and that this exhausts all the love among our group of four. We achieve numerical diversity at the sacrifice
of requital.

1234

How many different patterns of love might obtain among a group of four people {1, 2, 3, 4}? Let’s recycle
the sentence letters and use pij to signify the statement that i loves j; note that 16 sentence letters would
be required to record all the relevant statements. Since each pattern of love among 1, 2, 3, 4 is determined
by assigning one of the truth values > or ⊥ to each of these 16 sentence letters, we can conclude that the
number of such patterns is 216. Why? Because there are two assignments to p11 and for each of these,
there are two assignments to p12, and thus 2 · 2 = 22 assignments to them jointly (this observation is given
the exalted title, “The Product Rule”). Thus, by iterating application of the product rule another fourteen
times, we arrive at the conclusion that there are 216 possible truth assignments to the 16 sentence letters.

216 = 65536. It’s kind of amazing that there are as many as 65,536 different potential love-scenarios at a
table for four!

Friendship, as compared to love, is relatively tame in terms of the number of scenarios that might arise. Let’s
return to using pij to indicate that i and j are friends. In virtue of the fact that friendship is symmetric and
irreflexive, a friendship-scenario is determined by assigning one of the truth values > or ⊥ to each of the 6
sentence letters pij , for 1 ≤ i < j ≤ 4. Hence, there are only 26 = 64 possible patterns of friendship among
the group of four, less than 1/1000 of the number of potential love-scenarios.

In general, how many possible friendship scenarios are there among a group of n people? Well, every pair
can either be friends or not friends, so there are 2num pairs possibilities. How many pairs are their, in terms
of n?
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0.3 Review

Concept Review

• Pigeonhole Principle: If you have n+ 1 pigeons and you try to fit them all into n holes, then
there has to be at least one hole with k > 1 pigeons.

• The Mean Pigeonhole Principle: If you distribute m pigeons into n pigeonholes and m ≥
k · n+ 1, then some hole contains at least k + 1 pigeons.

• Product Rule: If there are n ways to do a first action and m ways to do a second action, there
are n ·m ways to do both action 1 and action 2.
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Problems

1. Let X be a set, |X| = n (we write |X| for the size of the set X). How many subsets does X have?

2. How many subsets of even size does a set X of size n > 0 have?

3. Prove that the Cartesian plane cannot be colored using only two colors (Red/Blue) such that all
points 1 unit away from each other are different colors.

4. Prove that for any set of n ≥ 2 numbers, there are 2 numbers whose difference is divisible by
n− 1.

5. Show that for any n ∈ N, there is a number k whose base ten numeral contains only “5”s and
“0”s such that k is divisible by n.
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Solutions

1. There are 2n many subsets of a set of size n. To see why this is the case, note that every element
of the set can be either in or not in any given subset. Hence there are two choices for each of the
n elements of the set, and by the product rule 2n choices in total.

2. 2n−1. We show that for every X of size at least one, the number of even-size subsets of X is equal
to the number of odd-size subsets of X; it then follows from the result of the preceding problem
that the answer is 2n−1.

First, suppose that the size of X is odd. Then complementation induces a one-to-one correspon-
dence between the odd-size and even-size subsets of X. That is, we associate to each odd-size
subset Y ⊆ X, the even-size subset X − Y . If, on the other hand, the size n > 1 of X is even,
we argue as follows. Let a be an element of X and consider the set W = X − {a}. Since the size
of W is odd, we already know that it has the same number of subsets of even-size as it does of
odd-size; that is, there are the same number of subsets of X of odd-size that exclude a as there
are subsets of X of even-size that exclude a. From this it follows at once that also X has the same
number of sets of even-size that include a as it does subsets of odd-size that include a. Thus, X
has the same number of subsets of odd-size as it does subsets of even-size.

3. Consider an equilateral triangle with unit-length sides. We have three points pairwise one-unit
apart and only two colors. The answer follows by application of the pigeonhole principle.

4. Note that there are n− 1 remainders when dividing by n− 1. Hence by the pigeonhole principle
two of our n numbers must have the same remainder when divided by n− 1. Their difference is
divisible by n− 1.

5. Consider the first n+ 1 elements of the set {5, 55, 555...}. We know from above that this set has
two numbers whose difference is divisible by n. Note that the difference of any two numbers in
this set is written using only 5s and 0s.
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1 Truth-Functional Logic

1.1 Introduction to Truth-Functional Logic

Throughout the course we will see a few different systems for formalizing statements. Each consists of a
formal language to represent statements, and a way to interpret the meaning of statements in that language.
Truth-functional logic is the simplest of these systems we will learn.

Components of Truth Functional Logic

1. Language (the Syntax )

(a) sentence letters

(b) connectives

2. Interpretation (the Semantics)

(a) A function that assigns > or ⊥ (true or false) to each sentence letter, called a truth-assignment

(b) Fixed truth-functional semantics for each connective

Sentence letters such as p, q, r, . . . schematize statements (in natural language) which are true or false, and
connectives such as ∧,∨,¬,⊃, . . . are used to combine sentence letters into compound schemata.

Statements are sentences whose truth or falsity is independent of context of utterance. For example, the
sentence “I am bald” is not a statement, since the truth or falsity of a given utterance of this sentence
depends not only on the speaker and the time of utterance, but also on whatever subtle contextual factors
might partially restrict the the range of application of the vague term “bald.” On the other hand, “eight
times seven is fifty-four” is as a statement, since it’s truth or falsity (in this case falsity) is independent of
context of utterance. Neither of the sentences “is eight times seven fifty-four?” nor “please, let eight times
seven be fifty-four,” is a statement. Truth-functional logic deals with the truth or falsity of statements only,
and we use sentence letters exclusively to schematize statements.



LGIC 010 Textbook Scott Weinstein, Owain West, Grace Zhang 10

1.2 Basic Syntax of Truth-Functional Logic

Consider using the sentence letter pij to schematize the statement “i loves j,” where 1 ≤ i, j,≤ 4. For
example, p11 schematizes the statement “1 loves 1”, or briefly, “1 is a narcissist.”

Suppose we wish to schematize the following statements using those sentence letters:

1. all of 1, 2, 3, and 4 are narcissists;

2. none of 1, 2, 3, and 4 are narcissists;

3. at least one of 1, 2, 3, and 4 is a narcissist;

4. an odd number of 1, 2, 3, and 4 are narcissists.

In order to do so, we introduce the following truth-functional connectives. For each connective, we display its
truth-functional interpretation via a table indicating the truth value of the compound schema as a function
of the truth values of its components.

• Conjunction (and):
p q (p ∧ q)
> > >
> ⊥ ⊥
⊥ > ⊥
⊥ ⊥ ⊥

• Negation (not):
p ¬p
> ⊥
⊥ >

• Inclusive Disjunction (or)
p q (p ∨ q)
> > >
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

• Exclusive Disjunction (exclusive or, xor)

p q (p⊕ q)
> > ⊥
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

• Material Conditional
p q (p ⊃ q)
> > >
> ⊥ ⊥
⊥ > >
⊥ ⊥ >

• Material Biconditional
p q (p ≡ q)
> > >
> ⊥ ⊥
⊥ > ⊥
⊥ ⊥ >
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The definitions of the truth-functional connectives suffice to determine the truth/falsity of a compound
schema completely in terms of (eg as a function of) the truth/falsity of its components. Hence, the term
“truth-functional logic.”

We can now schematize conditions 1 – 4 in the above example as follows.

S1: ((p11 ∧ p22) ∧ p33) ∧ p44

S2: ((¬p11 ∧ ¬p22) ∧ ¬p33) ∧ ¬p44

S3: ((p11 ∨ p22) ∨ p33) ∨ p44

S4: ((p11 ⊕ p22)⊕ p33)⊕ p44

The first three are quite straightforward to verify; the fourth we will prove later in Proposition 1.
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1.3 Basic Semantics of Truth-Functional Logic

Given a truth-functional schema like ((p ∧ q) ∨ r), we cannot determine whether the schema is true or false
unless we know whether p, q, and r are true or false. That is, any schema requires a truth-assignment to its
sentence letters before it can be evaluated.

Definition 1 (Truth-assignment). Let X be a set of sentence letters. A truth-assignment A for X is a
mapping which associates with each sentence letter q ∈ X one of the two truth values > or ⊥; we write A(q)
for the value that A associates to q.

Definition 2. Suppose S is a truth-functional schema such that every sentence letter with an occurrence in
S is a member of X. We say a truth assignment A for X satisfies such a schema S (and write A |= S) if
and only if S receives the value > relative to the truth assignment A.

Example 3. Take the schema S = ((p ∧ q) ∨ r), with truth assignment A such that A(p) = >, A(q) = ⊥,
and A(r) = ⊥, we have that S receives the value ⊥. In other words A does not satisfy S. (A 6|= S).

Interpreting the Material Conditional

Let’s return to our potential lovers and restrict attention to just two of them, 1 and 2. How could express
the statement that all love is requited among these two sweethearts? The natural mode of expression is: if
1 loves 2, then 2 loves 1, and if 2 loves 1, then 1 loves 2. This is a perfect candidate for using the material
conditional.

Using the sentence letters p11, p12, p21, p22 as earlier interpreted, we can express the happy state that all love
among 1 and 2 is requited by the schema

R : (p12 ⊃ p21) ∧ (p21 ⊃ p12)

or, equivalently,
p12 ≡ p21

In how many of the possible love scenarios among 1 and 2 is all love requited? Count the number of
satisfying truth-assignments to R!

While the motivations for the truth-functional definitions for the other connectives normally seem evident
to new logicians, the material conditional often gives people trouble. Let’s consider generalized conditionals
as a route to motivating the truth-functional interpretation of the conditional offered above. Of course, the
statement “if an integer is divisible by six, then it is divisible by three,” is true, and thence each of the
following statements, which are instances of this general statement, are true.

• “If twelve is divisible by six, then twelve is divisible by three.”

• “If three is divisible by six, then three is divisible by three.”

• “If two is divisible by six, then two is divisible by three.”

Therefore, if the conditional involved is to be understood truth-functionally, then its interpretation must
satisfy the conditions imposed by the first, third, and fourth rows of the material conditional’s truth-table.
On the other hand, the falsity of the conditional “if twelve is divisible by six, then twelve is divisible by
seven,” mandates the condition imposed by the second row of the truth-table.

An Inductive Proof

Let’s do a simple inductive proof about truth-functional satisfaction, as an illustration of the use of mathe-
matical induction, especially in application to reasoning about truth-functional schemata.
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Proposition 1. For every n ≥ 2 and every set X = {q1, . . . , qn} of n distinct sentence letters, a truth
assignment A for X satisfies the schema

Sn : (. . . (q1 ⊕ q2) . . .⊕ qn)

if and only if A assigns an odd number of the sentence letters in X the value >.

Proof. We prove the proposition by induction on n.

• Basis: Examination of the truth table for ⊕ suffices to establish the proposition for the case n = 2.

• Induction Step: Suppose the proposition holds for a number k ≥ 2, that is, for every truth assignment
A for {q1, . . . , qk}, A |= Sk if and only if A assigns an odd number of the sentence letters in {q1, . . . , qk}
the value >; this is our induction hypothesis. We proceed to show that the proposition also holds for
k + 1. Let A′ be an assignment to the sentence letters {q1, . . . , qk+1} and let A be its restriction to
{q1, . . . , qk}. We consider two cases. First, suppose that A′(qk+1) = >. In this case, A′ |= Sk+1 if and
only if A 6|= Sk if and only if (by our induction hypothesis) A assigns an even number of the sentence
letters {q1, . . . , qk} the value >. Hence, if A′(qk+1) = >, then A′ |= Sk+1 if and only if A′ assigns an
odd number of the sentence letters in {q1, . . . , qk+1} the value >. On the other hand, suppose that
A′(qk+1) = ⊥. In this case, A′ |= Sk+1 if and only if A |= Sk if and only if (by our induction hypothesis)
A assigns an odd number of the sentence letters {q1, . . . , qk} the value >. Hence, if A′(qk+1) = ⊥, then
A′ |= Sk+1 if and only if A′ assigns an odd number of the sentence letters in {q1, . . . , qk+1} the value
>. This concludes the proof, since either A′(qk+1) = > or A′(qk+1) = ⊥.

The Centrality of Satisfaction

The satisfaction relation is the fundamental semantic relation. It is where language and the world meet; in the
case to hand, language consists of truth-functional schemata and the possible worlds they describe are truth
assignments to sentence letters. As the course progresses, we will encounter more textured representations of
the world (relational structures) and richer languages to describe them (monadic and polyadic quantification
theory). We now define some of the central notions of truth-functional logic in terms of satisfaction. These
definitions will generalize directly to the more textured structures and richer languages we encounter later.

For the following definitions, we suppose that S and T are truth-functional schemata and that A ranges over
truth assignments to sets of sentence letters which include all those that occur in either S or T .

Definition 3. S implies T if and only if for every truth assignment A, if A |= S, then A |= T .

Definition 4. S is equivalent to T if and only if S implies T and T implies S

Definition 5. S is satisfiable if and only if for some A, A |= S.

Definition 6. S is valid if and only if every truth assignment satisfies S.

Examples of equivalence and the material biconditional

Try to see why the following are equivalent - either by appealing to your understanding of what the connective
“means” or by going back to the truth tables.

• p⊕ q is equivalent to q ⊕ p (commutativity of exclusive disjunction)

• (p⊕ q)⊕ r is equivalent to p⊕ (q ⊕ r) (associativity of exclusive disjunction).

• p ≡ q ius equivalent to (p ⊃ q) ∧ (q ⊃ p)

Note that both conjunction and inclusive disjunction are also commutative and associative, whereas the
material conditional is neither.
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Try to to think of examples of (binary) truth-functional connectives which are commutative but not asso-
ciative, and associative but not commutative.
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1.4 Review

Concept Review

Definitions

• A truth-assignment A for X is a function which maps every sentence letter q ∈ X to either > or
⊥. A(q) is the notation for the value A associates with q.

• A schema S implies a schema T iff for all truth-assignments A, if A |= S then A |= T .

• A schema S is equivalent to a schema T iff S and T are satisfied by exactly the same truth
assignments (for all A, A |= S iff A |= T ).

• S is satisfiable iff there is a truth assignment that satisfies it (there exists an A such that A |= S)

• S is valid iff all truth assignments satisfy it (for all A, A |= S)

Syntax, Semantics The syntax of TF-logic is given by the rules for forming truth-functional schemata
from sentence letters and connectives. The semantics of TF-logic are given by a truth-assignment, which
associates with each letter a truth-value.

Satisfying Sentences The truth-values of the individual sentence letters in a schema are propagated
to the whole schema by means of truth-tables which give fixed semantic interpretations to each of the
connectives. We say that a truth-assignment A satisfies a sentence S (written A |= S) iff the sentence
S evaluates to > under the truth-assignment A. Otherwise, we write A 6|= S and say that A does not
satisfy S.
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Problems

1. Is “the University of Pennsylvania has a Logic major” a statement? Why or why not?

2. Is “should I major in Logic?” a statement? Why or why not?

3. Using the sentence letters pij , q ≤ i, j ≤ 4 to stand for “person i loves person j”. Schematize the
following statements:

(a) Person 1 loves everyone else.

(b) There is a Shakespearean love triangle (i.e., no one has their love requited) between people
1, 2, 3, and person 4 is a Scrooge (he does not love anyone, even himself).

(c) Everyone loves, exclusively, people with numbers lower than themselves.

4. How many truth-assignments to the given letters satisfy the following schema?

(p1 ⊃ q1) ∧ ... ∧ (p5 ⊃ q5)

5. How many truth-assignments to the set of sentence letters Xn = {p1, q1, . . . , pn, qn} satisfy the
following schema Sn? Express your answer as a function of n and prove that it is correct by
mathematical induction.

(p1 ⊃ q1) ∧ ... ∧ (pn ⊃ qn)

6. How many truth-assignments over the given letters satisfy the following schema?

p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p5

7. Is the following sentence valid, satisfiable but not valid, or unsatisfiable?

(a ≡ b) ⊃ (a ∨ ¬b)

8. Valid, satisfiable, or unsatisfiable?

(b ∨ (b ⊃ a)) ∧ (¬b ∨ (a ⊃ b))

9. Valid, satisfiable, or unsatisfiable?

(a ≡ b) ∧ (b ≡ c) ∧ (a⊕ b)

10. How many truth-assignments for the given letters satisfy

(a ≡ b) ∧ (b ≡ c) ∧ (c ≡ d)

11. How many truth-assignments to the given letters satisfy

(a⊕ b) ∨ (b⊕ c) ∨ (c⊕ d)

12. I claim that if n people all shake hands with each other (once per pair), the total number of

handshakes is n(n−1)
2 . Prove this by induction.
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Solutions

1. Yes, it is.a

2. No, it is not. It is not a statement because it expresses a question, which is not determinitely true
or false.

With that being said, you should - of course - major in logicb.

3. (a) p11 ∧ p12 ∧ p13 ∧ p14
(b) ((p12 ∧ p23 ∧ p31) ∨ (p13 ∧ p21 ∧ p32)) ∧ ¬(p41 ∨ p42 ∨ p43 ∨ p44)

(c) p21 ∧ p31 ∧ p32 ∧ p41 ∧ p42 ∧ p43

4. 35. Note that each of the terms of the form pi ⊃ qi is satisfied in three cases (check the truth
table) and apply the product rule.

5. 3n for n ≥ 1.

BASE CASE: Verify, via the truth table for the material conditional, that three of the four truth
assignments to X1 = {p1, q1} satisfy the schema S1.

INDUCTION STEP: Suppose that 3n of the 4n truth-assignments to Xn satisfy Sn:

(p1 ⊃ q1) ∧ ... ∧ (pn ⊃ qn).

Let A be one such truth-assignment. Verify, using the truth-table for the material conditional,
that A may be extended to exactly three distinct truth-assignments to the sentence letters Xn+1

each of which satisfies Sn+1. It follows that there are 3 · 3n = 3n+1 truth-assignments to the
sentences letters Xn+1 that satisfy Sn+1:

(p1 ⊃ q1) ∧ ... ∧ (pn ⊃ qn) ∧ (pn+1 ⊃ qn+1).

6. 24 = 16. Remember that there are 2n−1 ways to pick an odd-sized subset from n elements and
that a sentence of the given form is satisfied iff an odd number of sentence letters are set to true.

7. This is valid. Suppose A is a truth-assignment to the sentence letters a and b. Note that if
A(a ≡ b) = ⊥, then A satisfies the given schema. So suppose A(a ≡ b) = >. Then A(a) = A(b),
hence either A(a) = > or A(b) = ⊥. Thus A(a ∨ ¬b) = >.

8. Valid. Suppose A is a truth-assignment to the sentence letters a and b. If A(b) = >, then A
clearly satisfies the left conjunct. If A(b) = ⊥, then A(b ⊃ a) = >, hence A satisfies the left
conjunct as well. Similarly, if A(b) = >, then A satisfies the right conjunct, and if A(b) = ⊥, then
A(¬b) = >, hence again A satisfies the right conjunct.

9. Unsatisfiable. Suppose A is a truth-assignment to the sentence letters a, b and c and A satisfies
both a ≡ b and b ≡ c. It follows that A satisfies a ≡ c (in other words, ≡ is transitive). But then
A does not satisfy a⊕ c, since this is truth-functionally equivalent to ¬(a ≡ c). So the schema is
unsatisfiable.

10. 2. Picking true/false for a fixes the truth-values of the remaining letters.

11. 14. To get this answer, we note that there are 16 (24) truth-assignments in total; count the
number which do not satisfy our sentence, and subtract that number from 16. The sentence is
only not satisfied when each of a, b, c, d have the same truth-value, so there are 2 non-satisfying
truth-assignments. This means there are 16− 2 = 14 satisfying truth assignments.
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12. BASE CASE: n = 2. Two people shaking hands results in one handshake, and the formula gives

us 2(2−1)
2 = 1 which is correct. Note that we pick n = 2 as the base case (not n = 0 or n = 1)

because it doesn’t really make sense to talk about those cases (since you need two people for a
handshake).

INDUCTIVE CASE: Assume that for n people, the number of handshakes (let’s denote it Hn)

is Hn = n(n−1)
2 . We want to show (henceforth “wts”) that for n + 1 people the number of

handshakes is Hn+1 = (n+1)n
2 . The number of handshakes between n + 1 people is clearly the

number of handshakes for n people (Hn) plus n, since our new person must shake hands with the

n others. So we have Hn+1 = Hn + n = n(n−1)
2 + n = n2−n+2n

2 = n2+n
2 = (n+1)n

2 , which is what
we wanted to show.

aAlthough, one might insist that there remains an element of context dependence owing to an ambiguity in the proper
name “University of Pennsylvania” - those in Indiana County, Pennsylvania might well use it to refer to a different
institution. This observation invites reflection upon the intriguing question whether (virtually) all sentences of ordinary
language are to some extent context dependent (at least without non-ordinary supplementation).

bProvided you like it and want to.
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1.5 Expressive Completeness of Truth Functional Logic

Definition 7. We use the symbol := to mean “is defined to be equal to”. := expresses a definition of equality,
whereas = expresses a statement about equality.

If you’re a coder, x := 10 is to logic/math as let x = 10 is to JavaScript, whereas x = 10 is to logic as
x === 10 is to JavaScript.

Propositions as a heuristic

It is sometimes useful to think of a schema S as expressing a proposition, to whit, the set of truth assignments
A that satisfy S; of course, this needs to be relativized to a collection of sentence letters X which includes
all those occurring in S. We will use the notation:

PX(S) = {A | A is a truth assignment for X and A |= S}.

When we use this notation without the subscript X, we assume A is a truth assignment for exactly the set
of sentence letters with occurrences in S.

Expressive Completeness

In the last section, we used the notion of the proposition expressed by a schema as an intuitive vehicle
for pursuing the investigation of the expressive power of truth-functional schemata. Since the semantical
correlate of a truth-functional schema is a set of truth assignments to some finite set of sentence letters,
we can frame the question of the expressive completeness of truth-functional logic in terms of propositions.
Let X be a non-empty finite set of sentence letters. We deploy the notation: A(X) for the set of truth
assignments to the sentence letters X, and S(X) for the set of truth-functional schemata compounded from
sentence letters all of which are members of X.

We provide the following inductive definition of S(X).

Definition 8. Let X be a nonempty finite set of sentence letters. S(X) is the smallest set U (in the sense
of the subset relation) satisfying the following conditions.

• X ⊆ U.

• If σ and τ are strings over the finite alphabet X ∪{), (,¬,⊃,≡,∨,∧,⊕}, and σ, τ ∈ U, then each of the
strings ¬σ, (σ ⊃ τ), (σ ≡ τ), (σ ∨ τ), (σ ∧ τ), (σ ⊕ τ) belong to U.1

This is simply a formal way of saying that all of our sentences have to use only the letters from X and
must be “well-built” in the sense that each connective has the correct number of arguments, with all the
bracketing done correctly. For example, with X := {p, q, r} then S1 := ((p ∨ q) ∧ r) is well-built, whereas
S2 := ∨p ∧ q is not.

If P ⊆ A(X), we call P a proposition over X.

Let X be a non-empty finite set of sentence letters and let P be a proposition over X. Is there a schema
S ∈ S(X) such that PX(S) = P, i.e., can every proposition be expressed by some schema? In other words,
is truth-functional logic expressively complete?

Theorem 1 (Expressive Completeness of Truth-functional Logic). Let X be a non-empty finite set of sen-
tence letters and let P be a proposition over X. There is a schema S ∈ S(X) such that PX(S) = P.

1Here “(σ ⊃ τ)” denotes the string with the initial symbol “(” concatenated with the string denoted by σ concatenated with
the symbol “⊃” concatenated with the string denoted by τ and with terminal symbol “)”, and likewise in all the other cases.
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This looks complicated, but it really isn’t. In natural language, what it’s saying is this: pick any subset
P (your proposition) of truth assignments for a set of sentence letters X. Then there is a truth-functional
schema S using only letters from X (S ∈ S(X)) which is true of exactly those truth-assignments which are
in P (PX(S) = P). In other words, every proposion can be “picked out” by some schema. This is why
it’s called expressive completeness: truth-functional logic is “expressively complete” in that it can express
every such proposition.

For the proof of Theorem 1, the following terminology and lemma will be useful.

Definition 9. Let X be a non-empty finite set of sentence letters and let S ∈ SX .

• S is a literal over X just in case S = p or S = ¬p, for some p ∈ X.

• S is a term over X just in case S is a conjunction of literals over X (we allow conjunctions of length
1).

• S is in disjunctive normal form over X if and only if S is a disjunction of terms over X (we allow
disjunctions of length 1).

If Λ is a set of literals over X we write
∧

Λ to abbreviate a term which is formed as a conjunction of the
literals in Λ. Similarly, if Γ is a set of terms over X we write

∨
Γ to abbreviate a schema in disjunctive

normal form which is formed as a disjunction of the terms in Γ.

Example 4. Let Λ = {a, b, c}. Then
∧

Λ = a ∧ b ∧ c, and
∨

Λ = a ∨ b ∨ c.

Lemma 1. Let X be a non-empty finite set of sentence letters. For every A ∈ A(X) there is a schema TA
which is a term over X such that for every A′ ∈ A(X)

A′ |= TA if and only if A′ = A.

Proof. Let X be a finite set of sentence letters and suppose A ∈ A(X). For each p ∈ X, let lp = p, if A |= p,
and let lp = ¬p, if A 6|= p. Let Λ = {lp | p ∈ X} and let TA =

∧
Λ. It is easy to verify that for every

A′ ∈ A(X), A′ |= TA if and only if A′ = A.

Once you become a bit more familiar with the terminology, things will become much easier. Indeed, this
lemma is really simple - in plain English, it says that for every truth assignment, there is a schema which
only uses logical ANDs and NOTs that is satisfied by exactly that truth assignment. When stated like that,
of course, it seems obvious - if your truth assignment assigns true to p you should have p in your schema,
and if your truth-assignment assigns false to p, your schema should include ¬p, with all the literals joined
up together by ANDs.

The proof expresses that intuition symbolically - make sure you can understand the proof now, going over
the relevant terminology and symbols if necessary. If you get stuck trying to interpret all that logical
symbolism, please come into Office Hours and we’ll be happy to help! Logic won’t be any fun if the
symbolism gets in the way of your understanding, so it’s best if you take the time to get comfortable with
all that at the start.

Proof of Theorem 1. Fix a finite non-empty set of sentence letters X and suppose P is a proposition over
X. If P = ∅, then pick p ∈ X and note that PX(p ∧ ¬p) = P. Otherwise, for each A ∈ P, choose a term
TA, as guaranteed to exist by Lemma 1, such that for every A′ ∈ A(X), A′ |= TA if and only if A′ = A.
Let Γ = {TA | A ∈ P} and let S =

∨
Γ. It is easy to verify that PX(S) = P.

Once again, the main difficulty here is the symbolism - the proof expresses a simple intuition in symbolic
form. Try rewriting this proof in your own words!

Corollary 1. Every truth-functional schema is equivalent to a schema in disjunctive normal form.
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Corolloraries are Theorems which follow very simply or quickly from another (often proved-right-above)
theorem. Whenever you see a corollary in a math textbook or notes, you should always make sure you
understand why it’s a consequence of the just-proven theorem!
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1.6 The Power of a Truth-Functional Schema

We will introduce the following useful terminology.

Definition 10. For the following, all schemata are drawn from S(X) for a fixed non-empty finite set of
sentence letters X.

• A list of truth-functional schemata is succinct if and only if no two schemata on the list are equivalent.

• A truth-functional schema implies a list of schemata if and only if it implies every schema on the list.

• The power of a truth-functional schema is the length of a longest succinct list of schemata it implies.

Example 5. Let’s consider X = {p, q, r}. What is the length of a longest succinct list of truth-functional
schemata over X? We will arrive at the answer by proving an upper bound and a lower bound on this
length.

• Upper bound: It is easy to verify that schemata S and S′ are equivalent if and only if P(S) = P(S′).
Hence, the length of a succinct list of schemata cannot exceed the number of propositions over X,
that is, the number of subsets of the set A(X). The size of X is 3, so the size of A(X) is 23, since
determining a truth assignment to X involves three binary choices (each letter can be assigned true or
false, and you make that choice for each of the three letters). By the same reasoning, the number of

propositions over X is 22
3

, since determining a proposition involves deciding, for each of the 23 truth
assignments, whether to include or omit it. Hence, the length of the longest succinct list is no more
than 22

3

= 28 = 256.

• Lower bound: By Theorem 1, for every proposition over X, there is a schema expressing it. Since
schemata expressing distinct propositions are not equivalent, it follows at once that there is a succinct
list of schemata of length 256.

So the longest such list is of length 256.

Example 6. Let’s compute the power, as defined above, of p∧(q∨r). Note that a schema S implies a schema
S′ if and only if P(S) ⊆ P(S′). Thus, the power of S is the number of sets Z satisfying the condition:

P(S) ⊆ Z ⊆ A(X). (1)

The size of P = P(p ∧ (q ∨ r)) is 3, so the size of A(X) − P = 5. It follows at once that 25 = 32 sets Z
satisfy condition (1); hence, the power of p ∧ (q ∨ r) is 32.

Why is it that a schema S implies a schema S′ if and only if P(S) ⊆ P(S′)? Go back to the definition of
both P(S) and schema implication if you need to.

Here’s a simple way to think about it, once you know the definitions: if S implies S′ then there is no
truth-assignment that satisfies S but does not satisfy S′ (otherwise S wouldn’t imply S′, by the definition
of schema implication). Hence every truth-assignment satisfying S, also satisfies S′, or symbolically, P(S) ⊆
P(S′). When written that way, it seems really simple!

Often throughout your study of logic you will see things which, at the surface, look confusing like the
statement we just considered. Make sure to always take the time to go back to definitions and understand
things in your own words - it’ll make logic much more satisfying.

Example 7. Let’s list the numbers which are powers of truth-functional schemata over X = {p, q, r}.

• First note that for every S, S′ ∈ S(X) the power of S = the power of S′ if and only if |PX(S)| =
|PX(S′)|, where we use |U | to denote the number of members of the finite set U .
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• In particular, if P = PX(S), then the power of S = 2(8−|P|).

• It follows at once that for each S ∈ S(X), the power of S = 2i, for some 0 ≤ i ≤ 8.

Generalizing our last example, suppose Y is a finite set of sentence letters with |Y | = n. In this case

• |A(Y )| = 2n, and

• for each S ∈ S(Y ), if P = PY (S), then the power of S = 2(2
n−|P|).

Example 8. What is the length of a longest succinct list of truth-functional schemata over X := p, q, r each
of which has power 32?

Make sure you have all the relevant definitions in order - what does it mean for the power of a schema to
be 32? What does it mean for a list of schemata to be succinct?

Well, from the definitions we know that a schema over X := {p, q, r} has power 32 if and only if exactly three
truth assignments satisfy it (why?). Hence the length of a longest such succinct list is exactly the number
of subsets of size three contained in a set of size eight (why a set of size 8, given that we have 3 sentence
letters?). In the next section, we’ll take a break from logic proper to learn a bit about how we would determine
how many such subsets there are.

A Combinatorial Interlude

Our leading question from the end of the last section brings us to an interlude on permutations and com-
binations: how many ways can we select k members of a set of size n? There is an ambiguity here: are we
counting modes of selection, which involve the order of choices, or collections of members selected, where
the order of selection is irrelevant? Once we recognize the ambiguity, we can proceed to count both. We will
need notation for each, so let (n)k for the number of ordered sequences of k distinct elements that can be
drawn from a set of size n and

(
n
k

)
for the number of subsets of size k that are included in set of size n.

Let’s first evaluate (n)k, the number of ordered sequences of size k you can pick from a set of size n. Suppose
we think of counting the ways n students could fill a row of length k in a lecture hall. Let’s suppose the
seats are labelled 1, 2, . . . , k. There are n choices for the student to fill seat 1; once that seat is filled, there
are n− 1 choices for the student to fill seat 2; and so on until there are (n− k) + 1 choices for the student to
fill seat k. Hence, by the product rule, there are n · (n − 1) · · · ((n − k) + 1) ways of filling all k seats, that
is, (n)k = n · (n− 1) · · · ((n− k) + 1).

Now that we have counted the number of ordered sequences, we can see how to count the number of subsets.
By the same reasoning, each subset of size k appears as the content of k · (k − 1) · · · 2 · 1 ordered sequences
of length k; this number is called k factorial and is often abbreviated as k!. Hence,(

n

k

)
=

(n)k
k!

.

Observe that

(n)k =
n!

(n− k)!

from which it follows that (
n

k

)
=

n!

k! (n− k)!
.

This last formulation makes transparent a symmetry in the values of
(
n
k

)
, namely, for every k between 0

and n,
(
n
k

)
=
(

n
n−k
)
. This accords nicely with the observation that complementation induces a one-one

correspondence between the subsets of size k and the subsets of size (n− k) that can be selected from a set
of size n. Note also that it determines in a non-arbitrary way that the value of 0! is 1.
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Consider picking a panel of three students from a class of 10. How many ways can you do this? Is it the
same as the number of ways you could pick 7 of the 10 students to not be on the panel, using the non-picked
students for the panel?

Let’s not forget how this all began. Since the The length of the longest succinct list of schemata with power
32 is number of subsets of size three contained in a set of size eight, it follows that the length of the longest
such list is

(
8
3

)
= 56.

Counting the Length of an “Implicational Anti-Chain”

Let’s use our newfound ability to count selections to answer a different question: Is there a sequence of
seventy schemata S1, . . . , S70 ∈ S(X) such that for every 1 ≤ i 6= j ≤ 70, Si does not imply Sj? Such a
sequence of schemata is called an implicational anti-chain (of length 70).

As observed earlier, a schema S ∈ S(X) implies a schema T ∈ S(X) if and only if PX(S) ⊆ PX(T ). It follows
that the answer to our question about an implicational anti-chain of length seventy will be the same as the
answer to the following question about an anti-chain of length seventy with respect to the subset relation:
Is there a list of seventy subsets of A(X), P1, . . . , Pn, such that for every 1 ≤ i 6= j ≤ 70, Pi is not a subset
of Pj? Note that if two finite sets, P and Q, have the same number of members, and P is not equal to Q,
then P is not a subset of Q and Q is not a subset of P . Therefore, if there are seventy distinct subsets of
A(X) all of the same size, then the answer to our question is yes. Since A(X) has eight members, a positive
answer to our question follows immediately by evaluating(

8

4

)
=

8 · 7 · 6 · 5
4 · 3 · 2 · 1

= 70.

Prove that if two finite sets, P and Q, have the same number of members, and P is not equal to Q, then
P is not a subset of Q and Q is not a subset of P .

Note that our argument merely shows that there is an implicational anti-chain of length 70; it does not
establish that there is no longer implicational anti-chain consisting of schemata in S(X). This is, indeed,
true, but a more sophisticated argument is required to establish this result, which follows from the famous
Sperner’s Theorem.2

2See Van Lint and Wilson, A course in combinatorics, Chapter 6: Dilworth’s theorem and extremal set theory.
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1.7 Is There An Efficient Decision Procedure For Truth-Functional Logic?

It is easy to see that the finitary character of the semantics for truth-functional logic immediately yields an
algorithm to decide the satisfiability of schemata of truth-functional logic. In particular, suppose S ∈ S(X)
for some finite set of sentence letters X. Note first that for each truth-assignment A ∈ A(X) there is a simple
and efficient algorithm, call it M , to determine whether A |= S. Thus, in order to test the satisfiability of
S, we need only list A(X) in some canonical order A1, . . . , A2|X| and use M to test whether the successive
Ai satisfy S.

Come up with an algorithm for checking whether A |= S for A ∈ A(X) and analyze its runtime complexity
as a function of the length (in terms of the number of connectives) of S.

Of course, this algorithm is not efficient, in the sense that it’s running time is potentially exponential in
the length of its input. The question whether there is an efficient algorithm to decide the satisfiability of
truth-functional schemata, called the P = NP problem, is generally regarded as one of the most significant
open mathematical problems of our time, and carries with it a $1,000,000 prize for its solution as well as
eternal mathematical glory. For further information visit:

http://www.claymath.org/millennium-problems/p-vs-np-problem.
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1.8 Review

Concept Review

Definitions

• A(X) is the set of all truth assignments over X.

• PX(S) = {A|A ∈ A(X) and A |= S} is the proposition expressed by S. It’s the set of truth
assignments that satisfy S (where truth assignments are restricted to those for sentence letters in
the set X).

• A schema S implies a schema T iff for all truth-assignments A, if A |= S then A |= T . In other
words, S implies T iff the proposition expressed by S is a subset of the proposition expressed by
T .

• A schema S is equivalent to a schema T iff S and T are satisfied by exactly the same truth
assignments (for all A, A |= S iff A |= T ). In other words, S and T are equivalent if they express
the same proposition.

• A list of TF-schemata is called succinct iff no two schemata on the list are equivalent.

• The power of a schema S relative to a set of sentence letters X that includes all those with
occurrences in S is the length of the longest succinct list of schemata drawn from S(X) which S
implies. (When X is unspecified, we suppose it to be exactly the set of sentences letters which
occur in S.)

Fun With Counting There are n! ways to order a list of n items. To see why, note that there are n
choices for the first element, n−1 for the second, n−2 for the third, resulting in n(n−1)(n−2)...(1) = n!
orderings.

There are (n)k := n!
(n−k)! ways to pick an ordered list of k elements from n elements, k ≤ n. As before,

there are n choices for the first thing, n− 1 for the second, all the way down to n− k + 1 for the kth.
This gives us the answer

∏n
i=n−k+1 i =

∏n
i=1 i/

∏n−k
i=1 i = n!

(n−k)!

There are
(
n
k

)
:= n!

(n−k)!k! ways to pick a subset of k elements from n elements, k ≤ n. There are (n)k
ordered lists of size k from n. Since each subset of size k corresponds to k! of those ordered lists, we
divide out by k! to get n!

(n−k)!k! , for which we use the notation
(
n
k

)
, read as “n choose k”.

Expressive Completeness

For any (arbitrary) proposition, there is a truth-functional schema which expresses that proposition.
We noted that a schema can pick out individual truth-assignments by conjoining literals for each of the
sentence letters (for example, the truth assignment A1 which maps p = >, q = >, r = > is picked out by
the sentence (p∧ q∧ r)). Sentences of this form are called terms. We further noted that a disjunction of
such terms (one for each truth-assignment in our proposition) was sufficient to express any proposition.

Power

Suppose we have a sentence S over n sentence letters which is satisfied by k truth assignments. Then
the power of S is 22

n−k. To see why this is the case, note that there are 2n truth assignments for n
sentence letters. If S is satisfied by k truth assignments, then those truth assignments must also satisfy
T , if S implies T . So we can’t “choose” whether or not to include any of those k truth-assignments in
the proposition expressed by T , because PX(T ) must include them. So we are left with 2n − k truth-
assignments, and since each of these 2n−k truth assignments can be either in or out of the proposition
expressed by T , the power of S is then 22

n−k.
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Problems

Let X = {p1, p2, p3, p4}.

1. What is the power of p1 ≡ p2 relative to X?

2. What is the length of the longest succinct list of schemata drawn from S(X) no two of which have
the same power?

3. What is the length of the longest succinct list of schemata drawn from S(X) each having power
256?

4. What is the largest n such that the conjunction of any two schema of power n drawn from S(X)
is satisfiable?

5. How many ways can you choose 3 marbles from a bag of 15 marbles, assuming the marbles are
all distinct? How many ways to take out all 15 marbles from the bag, one by one?

6. How many ways are there to arrange 10 people around a circular table, if we don’t count rotations
of the same order as being different?

7. Is there a schema of power 22? If so, give one. If not, explain why it’s not possible.

8. What is the length of the longest succinct list of schemata drawn from S(X) each having power
greater than 256?
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Solutions

1. 28 = 256. For four sentence letters, p1 ≡ p2 has 23 = 8 satisfying truth assignments. To see why
this is the case, note that given a choice for p1, p2 is fixed. So we have two choices for p1, one
choice for p2, and two choices each for p3 and p4.

Plugging in to our formula, we find that the power is 22
4−8 = 216−8 = 28.

2. 17. The power of a schema S on n sentence letters with k satisfying truth assignments is 22
n−k.

k can take any value from 0 through 16 inclusive when n = 4 (since we have 24 = 16 truth-
assignments), meaning that the power can be any one of 216, 215, ..., 20.

3.
(
16
8

)
. A schema on four sentence letters has power 256 = 28 when it is satisfied by 8 truth

assignments (because 22
4−8 = 28). Since we have 24 = 16 total truth assignments, the number of

pairwise inequivalent schemata each satisfied by 8 truth-assignments is the number of subsets of
size 8 drawn from a set of size 16, which is

(
16
8

)
.

4. n = 27 = 128. With four sentence letters, we have 24 = 16 truth assignments. A schema that has
power 27 is satisfied by 16− 7 = 9 truth assignments. By the pigeonhole principle, two schemata
of power 27 (hence both satisfied by 9 things) must have some satisfying truth-assignment in
common (because 9 + 9 = 18 > 16). Hence the conjunction of any two schemata of power 27 is
satisfiable, because there must be a truth assignment that satisfies them both.

Note that 27 is the highest power that works, because being satisfied by less than 9 truth-
assignments (therefore having a greater power) would mean that the two sentences need not
have a satisfying truth-assignment in common. For example, if both sentences were satisfied by
8 truth assignments each, those sets of satisfying truth-assignments could be disjoint, hence the
conjunction of the two sentences would not be satisfiable.

5.
(
15
3

)
, 15!

6. 9!. There are 10! ways to order 10 people around the table, but that considers different rotations
of the same order as different seating arrangements. Since there are 10 rotations of any such
ordering, we divide 10! by 10, giving us the answer 9!.

7. No. The power of a schema is always some power of 2. 22 is not a power of 2.

8.
∑7

i=0

(
16
i

)
. We have 24 = 16 total truth-assignments. The power of a schema S on four sentence

letters is greater than 256 = 28 when S is satisfied by less than 8 truth-assignments (because our
formula for power is 22

n−k with n = 4 in this case, hence power is greater than 28 when k is less
than 8). Hence our answer equal to the number of schemata that express a proposition of size 0,
plus the number that express a proposition of size 1.... plus the number that express a proposition
of size 7. Remember that

(
n
k

)
represents the number of size-k subsets from n things, and since

propositions are simply subsets of truth-assignments, we arrive at our answer
∑7

i=0

(
16
i

)
.
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2 Monadic Quantification Theory

2.1 Introduction to Monadic Quantification Theory

It’s now time to graduate from our humble beginnings in Truth-Functional Logic. We will now begin
to consider a more expressive logic, which we’ll call Monadic Quantification Theory3. This is desirable
because statements have significant logical form beyond the structure that can be exhibited in terms of
truth-functional compounding. For example, the conjunction of the first two statements below implies, but
does not truth-functionally imply, the third.

• All collies are mortal.

• Lassie is a collie.

• Lassie is mortal.

In order to analyze this example, consider the following statements:

• Lassie is a collie.

• Scout is a collie.

• Rin-Tin-Tin is a collie.

These statements share the monadic predicate4 “© is a collie.” Monadic predicates, unlike statements, are
not true or false; rather, they are true of some objects and false of other objects. For example, “© is a
prime number” is true of 2,3,5 and 7, and false of all even numbers greater than 2.

Definition 11 (Extension of a Monadic Predicate). The extension of a monadic predicate is the collection
of objects of which the monadic predicate is true. For example, the extension of the monadic predicate “©
is an even natural number” is the set {0, 2, 4, 6...}.
You can think of the monadic predicate as “picking out” some subset of what you’re talking about (your
“universe of discourse”). The subset which the monadic predicate “picks out” is its extension.

What is the extension of the monadic predicate “© is a prime number less than 10”? What is the extension
of the monadic predicate “© is an even prime number”?

Note that distinct monadic predicates might have the same extension - for example, the extensions of “©
is a warm–blooded reptile” and “© is an even prime number greater than two” are the same, namely, they
are both the emptyset. We say that monadic predicates with the same extension are coextensive.

We will focus on statements whose truth depends only on the extensions of the monadic predicates which
occur in them. We call such sentential contexts in which interchange of coextensive predicates preserves
truth-value extensional. We will focus solely on extensional contexts. Our focus on extensional contexts is
the natural continuation of our earlier focus on truth-functional contexts.

3An alternative name for this logic might be Monadic First-Order Logic
4Also known as a unary predicate.
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2.2 Syntax

Open Sentences

Consider again the argument that “Lassie is a collie, and all collies are mortal. Therefore Lassie is mortal”.
Intuitively, the validity of this argument does not depend on the particular name “Lassie” being used; it
would be equally valid with any name in place of “Lassie.”

We can achieve this kind of generality by the use of variables in place of particular names. We will form new
expressions called open sentences by putting variables x, y, z, . . . for the placeholders in monadic predicates.
For example, “x is a collie” is an open sentence.

Open sentences are not statements. They are true or false with respect to assignments of values to the
variables they contain. For example, the open sentence “x is an even number” is true with respect to the
assignment x := 16 and false with respect to the assignment of x := 17. This gives a good justification of
why we use the word “open” - ie, the truth of the sentence is an “open question” in absence of information
about x.

We may, of course, form compounds of open sentences using truth-functional connectives. For example, the
following open sentences are truth-functionally complex.

• x
6 = 0 ⊃ x

3 = 0.

• x is a collie and x weighs less than 300 kg.

We may use our prior understanding of the truth-functional connectives to determine the truth-values of
such open sentences with respect to particular assignments of values to their variables.

The Existential Quantifier

Consider the statement that “there is a prime number”. How would we express this? Supposing we had a
sentence P (x) which says that x is prime, we would want to say something along the lines of “there is an x
such that P (x)”5. In order to do this, we introduce the existential quantifier ∃. Our sentence, “there exists
an x such that P (x)” can then be written as

(∃x)(P (x))

We say that the quantifier here binds x. In general, a quantifier Qx binds every instance of x in the outermost
parentheses following it.

Note that (∃x)(P (x)) has a truth-value, without any assignment to x. This is because every variable in the
sentence is bound by a quantifier, and so no assignments need to be made. We call a sentence in which every
variable is bound a closed sentence. Note that a variable may have both free and bound occurrences within
a single sentence:

• (∃x)(x is an even number) ∧ (x is a prime number);

and may have occurrences bound by distinct quantifiers:

• (∃x)(x is an even number) ∧ (∃x)(x is a prime number).

The Universal Quantifier

Let’s now consider the universal quantifier, which allows us to say that a property holds of “everything”.
For example, we can render the statement

5Note that P (x) is an open sentence.
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• all numbers are even or odd

as

• (∀x) [(x is an even number) or (x is an odd number)].

The last statement is true iff for any integer assignment to x, the open statement within the square brackets
is satisfied. In other words, the statement is true for any integer substution for x. Given this interpretation,
we are justified in reading the above sentence as “for all x, x is even or x is odd”.

Note that context determines our universe of discourse - when we say “all numbers” in this context, we
intend that the variable of quantification range over all integers and not, for example, all complex numbers.

Monadic Schemata

As we did in the case of truth-functional logic, we will introduce a schematic language for monadic quan-
tificational logic. In this case, we use capital letters such as F , G and H to schematize monadic predicates
(we call these monadic predicate letters, and lowercase letters such as x, y and z as variables. We specify the
following categories of monadic schemata.

• An atomic schema is an expression of the form Fx where F is a monadic predicate letter and x is a
variable.

• A one variable open schema is a truth functional compound of atomic schemata all with the same
variable x.

• A simple monadic schema is the existential or universal quantification of a one variable open schema
with variable of quantification x.

• A pure monadic schema is a truth functional compound of simple monadic schemata.
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2.3 Semantics

We now introduce structures as interpretations of monadic schemata. These play the role that truth-
assignments played in the context of truth-functional logic, in that they bridge the gap between the syntactic
objects of our (newly strengthened) language and their truth-values.

In order to specify a structure A for a schema S we need to

• specify a nonempty set UA, the universe of A;

• specify sets FA, GA, . . . each of which is a subset of UA as the extensions of the monadic predicate
letters which occur in S;

• specify an element a ∈ UA to assign to the variable x, if x occurs free in S.

Item (1) specifies a universe of discourse, that is, a collection of objects over which our variables of quan-
tification range. Item (2) specifies the extension of each monadic predicate letter occurring in any schema
under consideration. Item (3) makes sure that we assign definite values to free variables, if there are any,
so that we can evaluate our sentence’s truth.

When the variable x has no free occurrences in the schema S, we write A |= S as shorthand for “the schema
S is true in the structure A,” alternatively “the structure A satisfies the schema S.” Otherwise, we write
A |= S[a] as shorthand for “the structure A satisfies the schema S relative to the assignment of a to the
variable x.”

Validity, satisfiability, implication, and equivalence

We extend the notions of validity, satisfiability, implication, and equivalence to (closed) monadic quantifica-
tional schemata.

• A monadic schema S is valid if and only if for every structure A,A |= S.

• A monadic schema S is satisiable if and only if for some structure A,A |= S.

• A monadic schema S implies a monadic schema T if and only if for every structure A, if A |= S, then
A |= T.

• Monadic schemata S and T are equivalent if and only if S implies T , and T implies S.

A schema being valid means it is true in all possible interpretations, or as some would say, “all possible
worlds”. A schema is satisfiable if it’s true in at least one possible world.
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2.4 Counting Satisfying Structures

Let’s consider the problem of how to count the number of structures with a fixed universe of discourse that
satisfy a given schema. For example, how many structures with universe of discourse U = {1, 2, 3, 4, 5, 6}
interpreting the monadic predicate letters F and G satisfy the schema

S : (∀x)(Fx ⊃ Gx).

From now on, we will use the notation [n] := {1, 2, ...n}

Observe that a structure A satisfies S if and only if FA ⊆ GA. So we need to determine the number of pairs
of sets Y,Z such that Y ⊆ Z ⊆ [6]. Let’s call this number N . We proceed to compute N as follows.

First, recall that for every 0 ≤ i ≤ 6, the number of sets Z ⊆ [6] of size i is
(
6
i

)
. Second, recall that that the

number of subsets of a set of size i is 2i. It follows that the number of pairs Y,Z with Y ⊆ Z ⊆ [6], for sets
Z of size i is

(
6
i

)
2i. Therefore,

N =

i=6∑
i=0

(
6

i

)
2i

=

i=6∑
i=0

(
6

i

)
2i · 16−i

= (2 + 1)6

= 36

The next to last equality is justified by the celebrated Binomial Theorem. For those of us with no taste
for binomial coefficients, we move on to develop some theory which will give us a much simpler and direct
combinatorial argument for the conclusion that n = 36.

Element Types

Consider the following four one variable open schemata; we will call them (element) types.

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

Note that a structure A satisfies the schema S if and only if it contains no element satisfying the type T2.
Since a structure is determined by the type of each of its elements, there are as many structures with universe
U satisfying S as there are ways of sorting the members of U into the three remaining types. For each of the
six members of U , there are three types into which it could be sorted, so by the product rule, the number of
structures satisfying S is 36.

Counting Counterexamples to an Alleged Implication

If R and R∗ are monadic schemata we say that a structure A is a counterexample to the claim that R implies
R∗ if and only if A |= R and A 6|= R∗.
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Note that R implies R∗ iff the number of counterexamples as defined above is zero.

Let’s continue with the preceding example and count the number of counterexamples to the claim that the
schema S implies the schema

T : (∀x)(Gx ⊃ Fx).

Again, let’s suppose that our structures have universe of discourse U and interpret exactly the monadic
predicate letters F and G. If a structure A satisfies both S and T , then FA = GA. Hence, of the 36

structures satisfying S, the number that also satisfy T is 26. So the number of counterexamples to the claim
that S implies T (ie, structures which satisfy S but not T ) is 36 − 26.
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2.5 Decidability

Our next order of business is to establish the decidability of pure monadic schemata, just as we did for
truth-functional schemata.6 Our approach introduces notions that we will elaborate further, when we turn
to study polyadic quantificational logic.

Three views of structures

Note that we now have three (equivalent) ways of viewing structures, each of which may contribute a useful
perspective, depending on the problem to hand. These are

• the Canonical View, which consists of specifying the universe of discourse and extensions for each of
the (finitely many) predicate letters in play,

• the Types View, which consists of specifying a universe of discourse and sorting it into types, that is,
maximally specific descriptions that can be framed in terms of the predicate letters in play, and

• the Venn View, which pictures the extensions of all the predicate letters in play as intersecting regions
contained in a rectangle that represents the universe of discourse.

Show that these three views are equivalent by giving a correspondence between them. For example, x
being of type F ∧ ¬G in the Types View corresponds to the statement that x ∈ the extension of F ∧ x 6∈
the extension of G in the Canonical view.

The small model theorem

We will prove the following Small Model Theorem for monadic logic; the decidability of the satisfiability of
pure monadic schemata is a corollary to this result.

Theorem 2. Let S be a pure monadic schema containing occurrences of at most n distinct monadic predicate
letters. If S is satisfiable then there is a structure A of size at most 2n such that A |= S.

Why is decidability a corollary to Theorem 2? As a hint, think about why truth-functional logic is decidable.

Monadic similarity

The proof of Theorem 2 rests on two lemmas; in order to state these lemmas, we first need to introduce
some new concepts. In what follows, we will, without loss of generality, restrict our attention to monadic
schemata in which only the predicate letters F and G occur.7

Definition 12. We say that two structures A and B are monadically similar and write A ≈M B if and only
if they satisfy exactly the same pure monadic schemata.

Show that monadic similarity is an equivalance relation, i. e., it is reflexive (A ≈M A), symmetric (if
A ≈M B, then B ≈M A), and transitive (if A ≈M B and B ≈M C, then A ≈M C).

We now turn towards developing the machinery required to establish our lemmas.

6See Warren Goldfard, Deductive Logic, Chs. 25-26 for an alternative treatment of the decidability of pure monadic schemata.
7The restriction to two monadic predicate letters is simply for pedagogical purposes. The generalization to n predicate

letters is straightforward, as we observe below.
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Homomorphisms

A function h is a mapping from one set, called the domain of h to another set (it may be the same set),
called the range of h. For every element a of the domain of h we write “h(a)” to denote the element of the
range of h to which it is mapped. We sometimes call h(a) the h image of a or the image of a under h. We
sometimes use the notation

h : X −→ Y

to indicate that h is a function with domain X and range Y. If h : X −→ Y we say that h is onto if and only
if for every b ∈ Y there is an a ∈ X such that h(a) = b. In this case, we will also say that h is surjective.

Let A and B be structures. We call h a homomorphism from A onto B just in case h is an onto function
with domain UA and range UB satisfying the following condition: for every monadic predicate letter P and
every m ∈ UA,

m ∈ PA if and only if h(m) ∈ PB .

If there is a homomorphism from A onto B, we say that B is a surjective homomorphic image of A.

Intuitively, a homomorphism is a function that loosely, “preserves the arrangement” of elements in its
domain, i.e., elements which are of type P get mapped to an element in the range also of type P , etc.

Example

As an example, consider the following structures.

A : UA = {n | n is a positive integer.}
FA = {n | n is an even positive integer.}
GA = {n | n is a prime positive integer.}

B : UB = {n | n is a positive integer.}
FB = {n | n is an odd positive integer.}
GB = {n | n is a prime positive integer.}

Note that A and B both have the same regions occupied in their respective Venn diagrams, ie FA and FB

are both nonempty, as are both GA and GB . However, there is no homomorphism from A onto B, nor any
homomorphism from B onto A.

Prove the last assertion.

Although A and B are not homomorphic, we will shortly see that A and B have a common surjective
homomorphic image, i.e., that there is a structure C such that there is a homomorphism from A onto C and
a homomorphism from B onto C.

Homomorphisms and monadic similarity: the central lemma

The next lemma provides a useful sufficient condition for monadic similarity.

Lemma 2. Let A and B be structures. If there is a homomorphism from A onto B, then A is monadically
similar to B.

Proof : Let A and B be structures and suppose that h is a homomorphism of A onto B. It suffices to show
that for every simple monadic schema S,

A |= S if and only if B |= S,

since every pure monadic schema is a truth-functional compound of simple monadic schemata.
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We begin by observing that for every c ∈ UA and every one variable open schema S, A makes S true with
respect to the assignment of c to “x,” if and only if B makes S true with respect to the assignment of h(c)
to “x.” This follows immediately from the fact that h is a homomorphism.

Consider the simple schema S and suppose that S is the existential quantification of the the one variable
open schema T . Suppose A |= S. Then, for some c ∈ UA, A makes T true with respect to the assignment of
c to “x.” It follows that B makes T true with respect to the assignment of h(c) to “x.” Hence, B |= S.

Conversely, suppose B |= S. Then, for some c ∈ UB , B makes T true with respect to the assignment of c
to “x.” Since h is surjective, there is a d ∈ UA with h(d) = c. It follows at once that A makes T true with
respect to the assignment of d to “x.” Hence, A |= S.

The case of universal quantification is handled similarly

Write out the universal case formally. The argument should be very similar to the existential case, so make
sure you understand that!

Types and monadic similarity

We recall our discussion of element types:

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

We say that a structure realizes a given type Ti just in case it makes the pure schema (∃x)Ti true (i.e., there
is at least one element of type Ti). Moreover, we say that a ∈ UA realizes Ti in A if and only if A |= Ti[x|a].

Example 9. The following structure realizes all four of the types listed above.

A : UA = {1, 2, 3, 4}, FA = {1, 3}, GA = {1, 2}

Moreover, the 14 proper substructures of A realize exactly the fourteen proper nonempty subsets of the types
listed above. For future reference, we list all fifteen of these structures as A1, . . . , A15. Note that for every
i, if Ai realizes a given type T , then there is exactly one element of Ai that realizes T . For this reason, we
call these structures small models - they are of minimal size among those structures that satisfy a given set
of types.

Lemma 3 provides a useful necessary and sufficient condition for monadic similarity.

Lemma 3. A and B realize the same types if and only if they are monadically similar.

Proof : First, the forward direction. Suppose A,B realize the same types. Then there is a single structure
C which is a surjective homomorphic image of both A and B – indeed, we may choose C to be that Ai as
defined above, which realizes exactly the same types as A and B. Since Ai has exactly one element that
realizes each of these types, we map every element that realizes a given type in A (or in B) onto the unique
element that realizes that type in Ai. These maps are clearly surjective homomorphisms.

Therefore, by our earlier result, A is monadically similar to C and B is monadically similar to C. It follows at
once that A is monadically similar to B (as monadic similarity is an equivalent relation, and hence symmetric
and transitive).

The reverse direction follows immediately from the fact that realization of a type is expressed by a pure
monadic schema.
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The small model theorem and the decidability of satisfiability

Theorem 2 is an immediate corollary to Lemma 3.

Proof (of Theorem 2): It follows at once from Lemma 3 and Example 9, that for every pure monadic schema
S involving only the monadic predicate letters F and G, if S is satisfiable, then there is an 1 ≤ i ≤ 15 such
that Ai |= S. To conclude the proof, recall that for every i, UAi ⊆ [4]. In general, suppose that S is a
schema involving only the monadic predicate letters “F1,”. . . “Fn,.” Let t = 2n and k = 2t − 1. (In this
case, t is the number of types, and k is the number of structures up to monadic similarity.) In like fashion,
we can construct a list of k “small models,” A1, . . . , Ak, each with universe of discourse a nonempty subset
of [t], such that if S is satisfiable, then for some i, Ai |= S.

Corollary 2. There is a decision procedure to determine whether a pure monadic schema is satisfiable.

Corollary 3. For all pure monadic schemata S and T involving only the monadic predicate letters F and
G,

S implies T if and only if

{i | Ai |= S and 1 ≤ i ≤ 15} ⊆ {i | Ai |= T and 1 ≤ i ≤ 15}, and

S and T are equivalent if and only if

{i | Ai |= S and 1 ≤ i ≤ 15} = {i | Ai |= T and 1 ≤ i ≤ 15}.

Show that these are all quick corollaries to the proof of the Small Model Theorem.
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2.6 Expressive Power

The expressive power of monadic quantification theory

With these results in hand, we proceed to analyze the expressive power of monadic schemata. For simplicity’s
sake, we’ll continue to focus on the vocabulary consisting of the monadic predicate letters F and G. First,
some definitions.

• A list of pure monadic schemata is succinct if and only if no two schemata on the list are equivalent.

• A pure monadic schema implies a list of schemata if and only if it implies every schema on the list.

• The power of a pure monadic schema is the length of a longest succinct list of pure monadic schemata
it implies.

Now, the main question: how expressive is MQT?

Question 1. What is the length of a longest succinct list of pure monadic schemata (in the vocabulary
consisting of just the monadic predicate letters F and G)?

Answer : It follows immediately from Corollary 3 that the length of a longest such list is 215, since a schema
is determined, up to equivalence, by which of the structures A1, . . . , A15 satisfy it.

Question 2. For which numbers n is there a schema S whose power is n?

Answer : It follows from Corollary 3 that the power of a schema S is determined by the size j of {i | Ai |=
S and 1 ≤ i ≤ 15}, in particular, the power of S is 215−j ; for pure schemata S, j may be any number
between 0 and 15. This answers Question 2.

Definition 13. If X is a finite set, we write |X| for the number of members of X.

If S is a schema, we write mod(S, n) for the set of structures A such that A |= S and UA = [n].

Question 3. What is the length of a longest succinct list of pure schemata S such that |mod(S, 4)| = 4?

Answer : Let V = {A | UA = {1, 2, 3, 4}}. Recall that A ≈M B if and only if for all pure monadic schemata
S, A |= S if and only B |= S. For A ∈ V, let Â = {B ∈ V | B ≈M A}.

Â is the monadic similarity equivalence class of A, i.e., all structures which are monadically similar to A.
Generally, an equivalence class of an object N is the set of all objects which are equivalent to N under
some equivalence relation.

In order to answer the question, it suffices to determine the size of Â for each A ∈ V. First, note that the
size of Â is determined by the number of types realized by A. We compute these sizes:

• If A realizes exactly 1 type, then the size of Â is 1, since monadically similar structures realize the
same types, and there is only 1 way to place 4 elements into one given type. There are

(
4
1

)
structures

in V, up to monadic equivalence, satisfying exactly 1 type (since there are 4 choices of which type is
realized).

• If A realizes exactly 2 types, then the size of Â is 24 − 2 (since there are 24 − 2 ways of distrubuting
4 elements into two given types such that each type is nonempty). There are

(
4
2

)
structures in V, up

to monadic equivalence, satisfying exactly 2 types (since there are
(
4
2

)
choices for which two types are

realized).

• If A realizes exactly 3 types, then the size of Â is
(
4
2

)
· 3! (since there are

(
4
2

)
· 3! ways of distrubuting 4

elements into three given types such that each type is nonempty). There are
(
4
3

)
structures in V, up to

monadic equivalence, satisfying exactly 3 types (since there are
(
4
3

)
choices for which three types are

realized).
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• If A realizes exactly 4 types, then the size of Â is 4! (since there are 4! ways of ordering the 4 elements,
with the ith element in our order being places in Ti). There are

(
4
4

)
= 1 structures in V, up to monadic

equivalence, satisfying exactly 4 types.

If the size of Â is confusing for any of the above, try to count these yourself! If you’re still stuck, come into
Office Hours and we’ll be happy to help.

By Theorem 3, if A |= S then for all Ai ∈ Â, Ai |= S. It follows that the answer to Question 3 is 1; in
particular, one such list consists of the single schema

(∀x)(Fx ∧Gx) ∨ (∀x)(Fx ∧ ¬Gx) ∨ (∀x)(¬Fx ∧Gx) ∨ (∀x)(¬Fx ∧ ¬Gx).
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2.7 Review

Concept Review

Definitions

• A one variable open schema is a truth-functional compound of atomic schemata with the same
variable x (for example, (Fx ∧Gx)).

• A simple monadic schema is a schema in which some quantifier binds a one-variable open schema
(for example, (∀x)(Fx ∧Gx)).

• A pure monadic schema is a truth-functional compound of simple monadic schemata (for example,
(∀x)(Fx ∧Gx) ∨ (∃x)(Gx)).

• A schema S is satisfiable iff there is at least one structure A such that A |= S. Note that this is
analogous to the corresponding definition for TF-logic, the only difference being that A is now a
structure, not a truth-assignment.

• A schema S is valid iff for all structures A, A |= S

• A schema S implies a schema T iff for all A, if A |= S, then A |= T

• Schemata S and T are equivalent iff they are satisfied by exactly the same structures.

• A structure A is said to “be a counterexample to the claim that a schema S implies a schema T”
iff A |= S and A 6|= T .

• A structure A is said to “witness the inequivalence of schemata S and T” iff (A |= S and A 6|= T ),
or (A |= T and A 6|= S).

• Structures A,B are said to be monadically similar (A ≈M B) iff they satisfy the same pure
monadic schemata.

• A function h is surjective (or onto) if everything in the codomain is mapped to by h (equivalently,
the image of the function - which is the set of all things that get mapped to - is equal to the
codomain). In the language of first order logic, the criterion for surjectivity is

(∀b ∈ B)(∃a ∈ A)(h(a) = b)

• A homomorphism h from A onto B satisfies the following three properties:

– h is a function from A to B.

– h is surjective (onto).

– h is “structure preserving”. This just means that the extensions of predicate letters are
preserved under the homomorphism. You can think of this as preservation of the types of
elements in the “Type View,” or preservation of sections in the Venn diagram in the “Venn
View.” In the language of first order logic, the criterion for this is

for all predicate letters P, (∀a ∈ A)(a ∈ PA ≡ h(a) ∈ PB)

Quantifiers ∀x is read “for all x”, “for every x”, or “for each x”. A sentence of the form

(∀x)(some statement about x)
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is true just in case “some statement about x” is true no matter what x is.

∃x is read “there exists an x”. A sentence of the form

(∃x)(some statement about x)

is true just in case “some statement about x” is true of at least one thing x.

(Unary) Predicates Predicates are true of some things and not true of others. They correspond to
the “some statement about ©” segment of the aforementioned sentences. For example, “© is an even
number” is a predicate that is true just of the elements of the set of even integers, and false of all other
things. The set of things of which a predicate is true is called its extension. For example, the extension
of “© is an even number” is the set {0, 2,−2, 4,−4...}.
We schematize predicates by predicate letters. For example, we might say that Fx represents the
statement that “x is an even number”.

Structures In truth-functional logic, the truth value of a schema was relative to truth-assignments to its
sentence letters. Structures play the same role for monadic quantification theory as truth-assignments
do for truth-functional logic.

A structure A consists of:

• A set called the universe of A, written UA. This set is the range for our variables of quantification.

– For example, if I asserted that (∀x)(x is even ∨ x is odd), you’d probably assume that I
was talking about all integers, not all things in general. In this case, the universe would
(implicitly) be the set of integers. In ordinary speech, this implicit universe is contextu-
ally determined. When specifying a structure to interpret some monadic quantificational
schemata, we explicitly identify the universe of discourse.

• The extensions of some monadic predicate letters (FA, GA, emphetc.), all of which are (arbitrary)
subsets of the universe.

– Let FA be the set of even numbers, and GA be the set of odd numbers. Then, within
the universe of integers, the statement (∀x)(Fx ∨ Gx) is a true statement, asserting that
(∀x)(x is even ∨ x is odd).

If a sentence is true relative to some structure, we write A |= S and say that “A satisfies S” (as we did
for TF-logic), “A is a model of S”, or “S is true in A”.

Bound vs. Free Variables A variable x is said to be bound if it is within the scope of some quantifier.
x is said to be free if it is not bound. The truth of sentences including free variables cannot be evaluated
without an assignment of a value to those free variables. For example, the truth value of the sentence
“x is an even number” cannot be determined without some assignment of a value (say, 2 or 3) to x.
However, the sentence (∀x)(x is an integer ⊃ x is even) can be evaluated (and is, of course, false).

3 Views of Structures We have three equivalent ways of looking at structures, which are

1. The Canonical View, which involves specifying the universe of discourse and extensions of
predicates as sets.

2. The Types View, which involves drawing a table with sections for each “type”.

3. The Venn View, which involves drawing a venn diagram, wherein the circles represent extensions
of predicates.
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Realizing Types We say that a structure realizes a type Ti iff there is some element of the structure
in the quadrant Ti in the types view of our structure.

For example, with predicate letters F,G, the types would then be

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

and then we would say that a structure realizes type Ti iff it makes the sentence (∃x)(Ti(x)) true.

The Small Model Theorem The Small Model Theorem states:

Theorem 3. Let S be a pure monadic schema over n predicate letters. If S is satisfiable, then there is
a structure A with |UA| ≤ 2n with A |= S.

Corollaries to the Small Model Theorem include the algorithmic decidability of the satisfiability problem
for schemata of MQT, and the fact that there are only finitely many schemata up to equivalence whose
predicate letters are drawn from a fixed finite set.
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Problems

For the later problems, it will be immensely useful to you to draw tables that look like this. Try to
interpret the schema as statements about which quadrants of the table can/must have elements in them
for the schema to be satisfied or falsified (this is the “types view”).

Fx ¬Fx
Gx
¬Gx

1. Are the following sentences equivalent? If not, does one imply the other?

S : (∀x)(Px)

T : ¬(∃x)(¬Px)

2. Are the following sentences equivalent? If not, does one imply the other?

S : (∃x)(Px)

T : ¬(∀x)(¬Px)

3. Are the following sentences equivalent? If not, does one imply the other?

S : (∀x)(Px) ∧ (∀x)(Qx)

T : (∀x)(Px ∧Qx)

4. Are the following sentences equivalent? If not, does one imply the other?

S : (∃x)(Px) ∧ (∃x)(Qx)

T : (∃x)(Px ∧Qx)

5. Are the following sentences equivalent? If not, does one imply the other?

S : (∀x)(Px) ∨ (∀x)(Qx)

T : (∀x)(Px ∨Qx)

6. Let
S : (∃x)(Fx ∧Gx) ∧ (∃x)(¬Fx ∧Gx) ∧ (∃x)(Fx ∧ ¬Gx) ∧ (∃x)(¬Fx ∧ ¬Gx)

T : (∀x)(Fx ≡ Gx)

(a) How many structures with universe U = {1, 2, 3} are counterexamples to the claim that S
implies T?

(b) How many structures with universe U = {1, 2, 3, 4, 5} are counterexamples to the claim that
S implies T?
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7. Let
S : (∀x)(Fx⊕Gx)

T : (∀x)(Fx ≡ Gx)

How many structures are there with universe U = {1, 2, 3, 4, 5} which witness the inequivalence
of S and T?

8. Let
S : (∃x)(Fx ∧Gx)

T : (∀x)(Fx ∨Gx)

How many structures are there with universe U = {1, 2, 3, 4, 5} which witness the inequivalence
of S and T?

9. Let
S : (∀x)(Fx⊕Gx)

T : (∀x)(Fx)⊕ (∀x)(Gx)

Given universe U = {1, 2, 3, 4, 5}, how many counterexamples are there to the claim that S implies
T?

10. Let
S : (∀x)(Fx ⊃ Gx)

T : (∀x)(Fx) ⊃ (∀x)(Gx)

Given universe U = {1, 2, 3, 4, 5}, how many counterexamples are there to the claim that S implies
T?
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Solutions

1. These are equivalent. The former asserts that everything has property P . The latter asserts that
nothing lacks property P . These are equivalent statements.

2. These are equivalent. The former asserts that there is something with property P . The latter
asserts that it is not the case that everything lacks P . These are equivalent statements.

3. These are equivalent. The former asserts that everything is P , as well as that everything is Q.
The latter asserts that everything is both P and Q.

4. These are not equivalent, but T implies S. S asserts that there is something that is P , and there
is something that is Q. T asserts that there is something that is both P and Q. Clearly if T is
true, S must be as well. Hence T implies S. The inequivalence of S and T is witnessed by the
structure A with UA = {1, 2}, PA = {1}, QA = {2}. Then A |= S but A 6|= T .

5. These are not equivalent, but S implies T . S asserts that everything is P or everything is Q. T
asserts that everything is at least one of P or Q. Clearly if S is true then so is T , hence S implies
T . The inequivalence of S and T is witnessed by the structure A with UA = {1, 2}, PA = {1},
QA = {2}. Then A |= T but A 6|= S.

6. (a) 0. To satisfy S, there must be at least one element which is each of (Fx∧Gx), (Fx∧¬Gx),
(¬Fx∧Gx), and (¬Fx∧¬Gx). We only have three elements though, so at least one of those
categories won’t have an element in it. Hence S can’t be satisfied in this universe. Hence
there are no structures A such that A |= S and A 6|= T .

(b)
(
5
2

)
· 4! = 240. To satisfy S, there must be at least one element which is each of (Fx ∧Gx),

(Fx ∧ ¬Gx), (¬Fx ∧ Gx), and (¬Fx ∧ ¬Gx). Think of these categories as “boxes” into
which we are placing elements of our universe (draw a table to help yourself think through
problems like this!). There are

(
5
2

)
· 4! ways to satisfy S. The

(
5
2

)
term results from choosing

two items from U which will go into the same “box”. Henceforth we think of these two
elements as now being a “package deal”. The 4! term is the number of ways we can order our
four things (the three single elements, plus our “package deal”) into the four “boxes”. Note
that any structure that satisfies S cannot satisfy T . Hence all of the structures satisfying S
are counterexamples to the claim that S implies T , and we have our answer.

7. 26. Note that if a structure satisfies S, it cannot satisfy T , and similarly if one satisfies T , it
cannot satisfy S. Hence it suffices to count the number of ways S, T can each be satisfied and
add those results together.

To satisfy S, every element of U must be either (Fx∧¬Gx) or (¬Fx∧Gx). This corresponds to
two choices for each of our 5 elements, meaning there are 25 ways to satisfy S. Note that none of
these structures satisfy T .

Similar reasoning suffices to show that there are 25 ways to satisfy T . None of these structures
satisfy S.

Our answer is then 25 + 25 = 26.

8. 45 − 2 · 35 + 26 = 602.

Let’s start by counting the number of structures which are counterexamples to the claim that T
implies S, since that direction is easier. For T to be true, every element must satisfy one of the
types (Fx ∧Gx), (Fx ∧ ¬Gx), or (¬Fx ∧Gx). For S to be false, no element can satisfy the type
(Fx ∧ Gx). Hence, for T to be satisfied and S to be falsified, every element must satisfy either
(Fx ∧ ¬Gx) or (¬Fx ∧ Gx). Since we have two choices per element, there are 25 total ways to
satisfy T and falsify S.
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How many ways are there to satisfy S and falsify T? Let’s begin by counting the ones that
satisfy S. These are the structures which have at least one element of type (Fx ∧ Gx). There
are 45 structures in total, 35 of which have no element of type (Fx ∧ Gx). Hence, there are
45 − 35 structures satisfying S. From this number, we need to subtract the number that also
satisfy T . 35 structures satisfy T (the structures in which every element is of one of the types
(Fx∧Gx), (Fx∧¬Gx), or (¬Fx∧Gx)), so we subtract that from the number which satisfy S to
get 45 − 2 · 35. Notice, however, that we took away all structures whose elements were exclusively
of type (Fx ∧ ¬Gx) or (¬Fx ∧Gx) twice - once when we were counting the number that satisfied
S, and another time when counting the number that satisfed T . Hence we “double subtracted”
25 possibilities, and we must add this back. This gives the result that there are 45 − 2 · 35 + 25

structures satisfying S which do not satisfy T .

Adding these two results together, we get 25 + (45 − 2 · 35 + 25) = 45 − 2 · 35 + 26 = 602.

9. 25−2. Note that S is satisfied by 25 structures (each element can be in either the box (Fx∧¬Gx)
or the box (Gx ∧ ¬Fx)). Of these, only two satisfy T (the one in which all elements are in
(Gx ∧ ¬Fx), and the one in which all elements are in (Fx ∧ ¬Gx)). Hence, there are 25 − 2
structures which satisfy S and falsify T .

10. 0. There are 35 structures satisfying S. Of these, none falsify T .
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3 Polyadic Quantification Theory

3.1 Introduction to PQT

It’s now time to turn to the final logic we will study, Polyadic Quantification Theory(PQT).8 Unlike MQT,
PQT allows predicates of arbitrary arity, not just monadic predicates. We will see that this change dramat-
ically affects the complexity of the decision problems for satisfiability and validity, as well as the expressive
power of schemata. aIndeed, polyadic quantification theory allows for the faithful schematization of vast
tracts of scientific discourse.

For an example, we begin not with science, but with literature. Consider the sentences

• Romeo loves Juliet.

• Someone loves Juliet.

• Romeo loves someone.

The first sentence implies the second and the third sentence. We can schematize the second, by making use
of the monadic predicate “© loves Juliet” thus

(∃x)(x loves Juliet).

And we can schematize the third, by making use of the monadic predicate “Romeo loves ©” thus

(∃x)(Romeo loves x).

But if we wish to schematize the sentence “someone loves someone,” which is also implied by the first
sentence above, we need to expand our resources to include dyadic predicates, i.e., predicates which are true
of ordered pairs of objects, not just individual objects, as in the case of monadic predicates. The extension
of a dyadic predicate is the set of ordered pairs of which it is true.

• 1 loves 2

• 〈Romeo, Juliet〉 is in the extension of “ 1 loves 2 .”

• (∃x)(∃y)(x loves y)

The extension of a dyadic predicate is a set of ordered pairs.

• 〈45, 47〉 is in the extension of “ 1 ≤ 2 .”

• 〈45, 47〉 is not in the extension of “ 2 ≤ 1 .”

• 〈47, 45〉 is in the extension of “ 2 ≤ 1 .”

Similarly, the extension of a triadic predicate, such as

“ 1 is further from 2 than it is from 3 ,”

is a set of ordered triples. In general, the extension of a predicate of arity n is a collection of n-tuples.

8Also called First Order Logic.
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Quantifier alternation

Consider the following statements involving alternation of quantifiers.

• Everyone loves someone (or other).

S1 : (∀x)(∃y)(x loves y).

• There is someone whom everyone loves.

S2 : (∃y)(∀x)(x loves y).

• Everyone is loved by someone (or other).

S3 : (∀y)(∃x)(x loves y).

• There is someone who loves everyone.

S4 : (∃x)(∀y)(x loves y).

The second statement implies the first, and the fourth implies the third.

Give an intuitive argument to show that S2 implies S1, and that S4 implies S3.

In order to show that no other implications hold, we introduce schemata to represent the statements
S1, . . . , S4, and the notion of a structure suitable for their interpretation.

Schemata and Structures

Just as we did in the case of truth-functional logic and monadic quantification theory, we introduce a formal
language for schematizing statements involving polyadic predicates. The only change to the vocabulary of
monadic quantification theory is the addition of polyadic predicate letters. For example, we introduce dyadic
predicate letters such as L 1 2 to schematize dyadic predicates such as 1 loves 2 or 1 ≤ 2 . We may
then use this dyadic predicate letter to schematize the four statements above as follows.

• S1 : (∀x)(∃y)(Lxy)

• S2 : (∃y)(∀x)(Lxy)

• S3 : (∀y)(∃x)(Lxy)

• S4 : (∃x)(∀y)(Lxy)

We now extend the notion of a structure to the case of polyadic quantification theory. Again, a structure
A is determined by the specification of a nonempty set UA, the universe of discourse of A, over which the
variables of quantification range, and specifications of extensions of the polyadic predicates which appear
in schemata that the structure will be used to interpret. Thus, in the case to hand, the specification of A
will require assigning to the dyadic predicate letter L, a set LA of ordered pairs of elements from UA as its
extension. That is, LA ⊆ UA × UA, where UA × UA is the Cartesian product of UA with itself – the set
{〈a, b〉 | a, b ∈ UA}.
The interpretation of the logical vocabulary, that is, truth-functional connectives and quantifiers, is the same
in both monadic and polyadic quantification theory. Thus, we may introduce without further ado the notion
of a schema S of polyadic quantification being true in (or satisfied by) a structure A that assigns extensions
to all the polyadic predicate letters appearing in S (written A |= S). If S contains free variables, we must
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of course supplement the structure S with assignments of elements from UA to those free variables. For
example, we write

A |= S[(x|a)(y|b)]

for “the structure A satisfies the schema S with respect to the assignments of a to x and b to y.” This notation
is used with the understanding that no variables other than x and y occur free in S and that a, b ∈ UA.
With this definition of satisfaction, our definitions of satisfiability, validity, implication, and equivalence for
closed monadic quantificational schemata generalize immediately to PQT. For ease of reference, we restate
them as follows.

• A polyadic schema S is valid if and only if for every structure A,A |= S.

• A polyadic schema S is satisiable if and only if for some structure A,A |= S.

• A polyadic schema S implies a polyadic schema T if and only if for every structure A, if A |= S, then
A |= T.

• polyadic schemata S and T are equivalent if and only if S implies T , and T implies S.

Thus, in order to show that a schema S fails to imply a schema T , it suffices to exhibit a counterexample to
the implication, that is, a structure A such that A |= S and A 6|= T . We proceed to illustrate this technique
by show that among the four schemata S1, . . . , S4 discussed above, if i 6= j, then Si does not imply Sj except
in case i = 2 and j = 1, or i = 3 and j = 4.

We begin by specifying three structures A,B,C which act as a counterexamples to various of these im-
plications. First we let UA = UB = UC = {1, 2}. We specify the extension of L in each structure as
follows.

• LA = {〈1, 1〉, 〈2, 2〉}.

• LB = {〈2, 2〉, 〈1, 2〉}.

• LC = {〈2, 2〉, 〈2, 1〉}.

Note that A |= S1 and A |= S3, while A 6|= S2 and A 6|= S4, from which it follows, by definition, that S1 does
not imply S2, nor does S3 imply S4. Moreover B |= S2, but B 6|= S3, and C |= S4, but C 6|= S1; thus S2 does
not imply S3, and S4 does not imply S1.

Failure of the remaining implications now follows. For example, S1 does not imply S4. To see this, suppose,
ad reductio, that S1 implies S4. Then since S2 implies S1 and S4 implies S3, it follows, by the transitivity
of implication, that S2 implies S3. But we have already seen that S2 does not imply S3 (B was the
counterexample), a contradiction.

Verify that each of the statements above is true. For example, if we claimed that A |= Si for some i, explain
in your own words why, in fact, A actually models Si.

Show that the remaining non-trivial implications also fail. To do this, use proof-by-contradiction as we did
to show that S1 does not imply S4.

We summarize the results of this discussion in the following matrix 〈aij | 1 ≤ i, j ≤ 4〉, where aij = 1 if and
only if the schema in the i-th row implies the schema in the j-th column.

Si implies Sj S1 S2 S3 S4

S1 1 0 0 0
S2 1 1 0 0
S3 0 0 1 0
S4 0 0 1 1
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Quantificational ambiguity

We briefly explore ambiguities that can arise in natural language via the interaction of quantifiers. Consider
the statement,

“everybody loves a lover.” (2)

Statement (2) involves such an ambiguity. We can bring this out by offering two schematizations, each of
which corresponds to a natural reading of this statement. We may schematize “x is a lover,” again using the
dyadic predicate letter L, as (∃y)Lxy.Now, consider the following two schemata.

(∀z)(∃x)((∃y)Lxy ∧ Lzx)

(∀x)((∃y)Lxy ⊃ (∀z)Lzx)

The first schema corresponds to the reading “everybody loves someone who is a lover,” while the second
corresponds to the reading “if someone is a lover, then everybody loves her.”

We claim that a structure A satisfies the second schema if and only if either LA is empty or LA = UA×UA,
the cartesian product of the universe of A with itself.

Give an intuitive argument to verify this claim.

On the other hand, if a structure B satisfies the first schema, then LB is non-empty; moreover, if B consists
of a pair of requiting lovers at least one of whom is not a narcissist, B satisfies the first, but not the second,
schema. Thus, neither disambiguation of the original sentence implies the other.
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3.2 Binary Relations, Functions, and Graphs

We now discuss several important properties of binary relations. Again, we deploy the dyadic predicate
letter L to schematize these properties.

Definition 14. LA is reflexive if and only if

A |= (∀x)Lxx.

Definition 15. LA is irreflexive if and only if

A |= (∀x)¬Lxx.

Definition 16. LA is symmetric if and only if

A |= (∀x)(∀y)(Lxy ⊃ Lyx).

Definition 17. LA is asymmetric if and only if

A |= (∀x)(∀y)(Lxy ⊃ ¬Lyx).

Definition 18. LA is transitive if and only if

A |= (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz)).

Definition 19. A is a simple graph if and only if LA is irreflexive and symmetric.

Identity

A new logical dyadic predicate, identity, will allows us to “put the quant into quantification.” The identity
predicate “=” has a uniform interpretation over all structures A namely =A is equal to {〈a, a〉 | a ∈ UA}.
Since the interpretation of the identity relation is uniform, we omit mention of it when we specify structures.9

Numerical quantifiers

By making use of the identity relation, we can introduce, for each integer k ≥ 1, the quantifiers “there are
at least k x’s such that S(x)”, “there are at most k x’s such that S(x)”, and “there are exactly k x’s such
that S(x)” as follows.

(∃k≤x)S(x) : (∃x1) . . . (∃xk)(
∧

1≤i<j≤k xi 6= xj ∧
∧

1≤i≤k S(xi))

(∃≤kx)S(x) : ¬(∃k+1≤x)S(x)
(∃=kx)S(x) : (∃≤kx)S(x) ∧ (∃k≤x)S(x)

The crux of our proof of the Small Model Theorem for MQT was that realizing the same types corresponded
to satisfying the same monadic sentences. Of course, realizing the same types does not mean that two
structures satisfy the same sentences of PQT: the identity relation allows us to distinguish structures by
counting how many elements realize a given type. A priori, this does not mean that decidability (which
was a corollary of our SMT) fails for PQT - only that our particular proof of the SMT for MQT would fail
for PQT. We will see more about the decidability of PQT in the future.

Let’s use |X| to denote the number of members of a set X (often called the cardinality of X). In order to
clarify the import of these numerical quantifiers, we introduce the notion of the set defined by a one variable
open schema S(x) in a structure A (written S[A]):

S[A] = {a ∈ UA | A |= S[x|a]}.

That is, S[A] is the set of members of UA that satisfy S(x) in A. Observe that A |= (∃k≤x)S(x) if and only
if k ≤ |S[A]|, and similarly for the other two newly introduced quantifiers. Our next goal is to use these
quantifiers to define regular simple graphs.

9We call identity a logical predicate (as opposed to your garden-variety, run-of-the-mill predicates) because of this uniform
interpretation across all structures. It means the same thing regardless of which structure you’re in, so it is of logical character.
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Graphs

Recall that a graph is structure that interprets a single dyadic predicate letter “L” (these are sometimes
also called directed graphs to emphasize that the edges have directionality). Unless otherwise stated, we
will restrict our attention for the rest of the course to structures that are graphs; this restriction doesn’t
lose us much (all results we will derive are easily generalizable to structures with arbitrary relations) and
it adds much tangibility. A graph A is simple if and only if LA is both irreflexive and symmetric (i.e., the
edges are undirected, and tehre are no “self loops” at any node). We introduced the abbreviation SG for the
conjunction of the schemata expressing irreflexivity and symmetry, which we abbreviated as Irr and Sym,
respectively. For a structure A, A |= SG iff A is a simple graph.

Definition 20. The neighborhood of a in A is nbh(a,A) := {b ∈ UA | 〈a, b〉 ∈ LA} (the set of all neighbours
of a).

Definition 21. The degree of a in A is deg(a,A) := |{b ∈ UA | 〈a, b〉 ∈ LA}| (the number of neighbours of
a, or equivalently the number of edges incident to a).

Definition 22. A simple graph is k-regular if and only if all nodes of the graph have degree k. We can
schematize this condition, using the dyadic predicate L for the edge relation, as

(∀y)(∃=kx)Lyx.

What do the collections of 1-regular and 2-regular simple graphs look like? Every 1-regular graph consists
of a set of independent edges, and every finite 2-regular graph consists of a collection of independent simple
cycles, that is, graphs that may be drawn in the plane as a finite collection of disjoint polygons.10

Counting graphs

Just as we did for truth-functional logic and MQT, we can also count the structures that satisfy schemata
of PQT. In particular, we will count graphs with a fixed universe of discourse. To that end, we have the
following definition.

Definition 23. We denote the set of simple graphs with universe of discourse [n] that satisfy a schema S
by mod(S, n), that is,

mod(S, n) = {A | A |= S and UA = {1, . . . , n}}.

Note that for every structure A, A |= (∀x)x = x, thus mod((∀x)x = x, n) is the set of all graphs with universe
of discourse {1, . . . , n}.
Let’s count the number of graphs A with UA = {1, 2, 3, 4} (by the previous comment, this is of course
equal to |mod((∀x)x = x, 4)|). Any such graph is determined by choosing which of the sixteen possible edges
from i to j to draw, where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4; that is, a graph with this universe of discourse is
determined by 16 binary choices, so, by the product rule, there are 216 such graphs. Analogous reasoning
leads to the conclusion that there are 2n

2

graphs with universe of discourse {1, . . . , n} (because there are n2

pairs of nodes, and hence 2n
2

possible edge-sets). Similarly, since a simple graph with universe of discourse

{1, . . . , n} is determined by making a choice from a collection of
(
n
2

)
possible undirected edges, there are 2(n

2)

simple graphs A with UA = {1, . . . , n}.

How many 1-regular simple graphs are there with universe of discourse {1, . . . , n}?

10Infinite two regular graphs may also include copies of the doubly-infinite simple chain (think of the integers, where there is
an edge 〈a, b〉 iff a = b± 1). Polygons and bi-infinite chains exhaust the possible connected components of 2-regular graphs.
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Functions, Tournaments, and Orderings

You may already have encountered functions, such as the mapping f that sends a real number x to its square
x2. You were probably given the following definition of a function:

Definition 24. A function is any mapping f from a domain A to a codomain B (written f : A→ B) such
that no a ∈ A maps to more than one element in b.11 If b = f(a), we say that b is the image of a under f ,
alternatively, b is the f image of a. If X ⊆ A, we define f [X] =: {fa | a ∈ X}; generalizing the previous
terminology, we say that f [X] is the f image of X.

Herein (unless otherwise noted) we will always consider functions whose domain and codomain are the same;
this will allow us to consider functions as special types of binary relations on some universe of discourse.

You have probably seen the function f(x) = x2 represented in cartesian coordinates via a graph, that is, the
set of all ordered pairs of real numbers 〈x, x2〉 for x ∈ R. This suggests that a function can be thought of
as a specific type of binary relation. In the example f(x) = x2, this means that we consider the Cartesian
graph as a structure, namely the directed graph A with UA = R and LA = {〈x, x2〉 | x ∈ R}. This structure
satisfies the following schemata.

• Tot: (∀x)(∃y)Lxy

• SV: (∀x)(∀y)(∀z)((Lxy ∧ Lxz) ⊃ y = z)

The first of these says that the L is total, that is, everything is related (here think “mapped to”) at least
one thing, and the second says that L is single-valued, that is, everything is mapped to at most one thing.

Of course, SV serves as an alternative definition of a function. The conjunction of SV and Tot which we
abbreviate to Fun, says that L is a total function, that is, if A |= Fun, then LA is the graph of a total function
with domain UA and range (contained in) UA.

There are special types of functions which will be interesting to us: namely, injections, surjections, and
bijections.

Definition 25. An injection (also called a 1-1 function) is a function which maps distinct elements of the
domain to distinct elements of the codomain. In other words, no two different elements of the domain map
to the same element in the codomain. We schematize this as

Inj : (∀x)(∀y)(∀z)((Lxz ∧ Lyz) ⊃ x = y)

You may be familiar with the idea in terms of the “horizontal line rule”, which says that if a horizontal line
crosses the (Cartesian) graph of a function in more than one point, that function is not injective.

Use the horizontal line rule to show that f(x) := x2 is not injective. Give a general relation between distinct
elements a, b which witness that f is not injective.

Definition 26. A surjection (also called an onto function) is a function with the property that every element
of the codomain is the image of some element of the domain. Schematically:

Sur : (∀x)(∃y)Lyx

Show that f(x) := x2 is not surjective when our universe of discourse is R, the set of real numbers. Fixing
the domain as R, give a codomain which would make the function surjective.

Definition 27. A bijection is a function which is both injective and surjective. Schematically

Bij : Inj ∧ Sur

11Here, we only consider unary functions, that is, functions of one argument. The definition could be amended for general
n-ary functions by letting a ∈ An denote an n-tuple of elements in the domain.
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Show that f(x) := x3 is a bijection.

We have now seen examples of functions which are either bijective (the cubing function) and functions which
are neither injective nor surjective (the squaring function). Is it possible to have a function which is injective
but not surjective, or surjective but not injective?

For any structure A with finite universe of discourse, A |= Fun ∧ Inj iff A |= Fun ∧ Sur, that is, any injective
function on a finite structure is surjective, and vice versa.

Prove this.

The same does not hold for structures with infinite universes - in fact, the prominent nineteenth-century
mathematician Richard Dedekind used this distinction as his definition of infinitude. For example, consider
the structure A where UA = N and LA = {〈n, n+ 1〉 | n ∈ N} and observe that A |= Fun ∧ Inj ∧ ¬Sur. It is
similarly easy to construct functions which are surjections but not injections, for example, the function on
N that maps a number n to dn/2e. A set X is said to be Dedekind infinite if and only if there is a function
with domain X and codomain X which is injective but not surjective.

We now touch briefly on the topic of multivariate functions; we restrict our attention to binary functions
whose graphs we represent as the interpretation of a triadic predicate symbol R. The following schema Bfun
expresses both totality and single-valuedness, that is, a structure A satisfies Bfun if and only if RA is the
graph of a total binary function on UA..

• Bfun: (∀x)(∀y)(∃z)(∀w)(Rxyw ≡ w = z)

The next schema Binj schematizes the notion of injection for binary functions, that is, a structure A satisfies
the conjunction of Bfun and Binj if and only if RA is the graph of an injective binary function.

• Binj: (∀v)(∀w)(∀x)(∀y)(∀z)((Rvwz ∧Rxyz) ⊃ (v = x ∧ w = y))

If A is a finite structure and A |= Bfun ∧ Binj, then |UA| = 1.

Prove this.

On the other hand, we noted that the binary function which maps a pair of positive integers m and n to
2m · 3n is an injection (this follows from the fundamental theorem of arithmetic). This shows that there
are at least as many positive integers as there are positive rational numbers, since every positive rational
number can be represented by a pair of integers. This may seem odd, since, in their usual order, between
any two positive integers there are infinitely many rational numbers.

Tournaments and Orderings

Definition 28. We say that a directed graph is asymmetric if no pair of its nodes have “edges in both
directions”, that is,

Asy : (∀x)(∀y)(Lxy ⊃ ¬Lyx)

Definition 29. We say that a directed graph is comparable if every pair of distinct nodes has at least one
edge between them, that is,

Comp : (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

Definition 30. We say a directed graph is a tournament iff it is both asymmetric and comparable, that is,

Tour : Asy ∧ Comp
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The intuitive justification for the name “tournament” is that round-robin tournaments involve each team
playing every other team once, and that each game between teams induces an “edge” which points from the
victor to the loser (games never end in a tie).

Let’s pick out a particularly important class of tournaments, those without cycles. We call these transitive
tournaments.

Definition 31. We say that a tournament is transitive iff the edge relation is transitive, that is,

Trans : (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz))

Definition 32. A strict linear order is a transitive tournament, that is,

SLO : Trans ∧ Tour
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Counting Graphs

As before, we’ll count the number of finite structures with universe of discourse {1, . . . , n} that satisfy various

conditions. We already know that there are 2(n
2) graphs and 2(n

2) simple graphs with universe of discourse
{1, . . . , n}. It is simple to show that

• |mod(Fun, n)| = nn;

• |mod((Fun ∧ Inj), n)| = n!;

• |mod(Asy, n)| = 3(n
2);

• |mod(Tour, n)| = 2(n
2);

• |mod(SLO, n)| = n!;

• |mod(Bfun, n)| = n(n
2).

Prove each of the above assertions by counting them yourself.

Since you’re probably a pro at this sort of thing by now, let’s try counting something that’s a bit more
difficult - the number of two-regular simple graphs of a fixed size. Recall that a simple graph is 2-regular if
and only if it satisfies the schema:

2reg : (∀x)(∃=2y)Lxy

which is equivalent to
(∀x)(∃y)(∃z)(y 6= z ∧ (∀w)(Lxw ≡ (w = y ∨ w = z)))

Let S be the conjunction of 2reg and SG. Let’s calculate |mod(S, 6)|, that is, the number of 2-regular simple
graphs of size 6.

Example 10. Let S be the conjunction of 2reg and SG. What is |mod(S, 6)|, that is, how many 2-regular
simple graphs of size 6 are there?

As discussed earlier, if A is finite (as it is in the question above) and A |= S, then A is a disjoint union of
cycles. It follows that if A ∈ mod(S, 6) then A is either a disjoint union of two triangles, or a single hexagon
(since a triangle is the minimal 2-regular cycle, these are the only possibilities). So in order to complete our
calculation, we just need to determine how many distinct ways we can label a structure of one or the other
of these shapes. How can we do that?

Let’s consider the two triangles case first. Suppose the unlabeled structure T consists of two triangles, call
them the top triangle and the bottom triangle. We can label the top triangle with any set X ⊆ [6] of size
three, leaving [6] −X to label the bottom triangle. At first blush, this suggests that there are

(
6
3

)
distinct

labelings of T. But notice that we get the same labeled structure, if we use [6]−X to label the top triangle,
and X to label the bottom triangle. It follows that there are

(
6
3

)
/2 = 10 distinct labelings of T.

Next, suppose the unlabeled structure H consists of a single hexagon. We can use our prior calculation that
there are 6! strict linear orders of [n] to calculate the number of distinct labelings of H. The rotational
symmetry of the hexagon means that if we “wrap the ordering around” a hexagon from some fixed starting
point, each of the 6 possible rotations of the labelled hexagon (each corresponding to a different linear order)
are equivalent. Moreover it is clear that the reverse of any order gives the same labeling as the order itself.
Thus, the total number of labelings of H is 6!/(6 · 2) = 60. It follows that |mod(S, 6)| = 10 + 60 = 70.
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3.3 The Spectrum of a Schema

Let’s introduce a monadic predicate letter F to “color” the nodes of our graphs. A new condition, distin-
guished end, says that the “coloring” of the nodes in our graph alternates between adjacent elements.

DE : (∀x)(∀y)(Lxy ⊃ (Fx⊕ Fy))

Consider the schema T which is the conjunction of SG, 2reg, and DE. The connected graphs that satisfy T
are exactly the even length cycles. It follows at once that |mod(T, n)| > 0 if and only if n is an even number
greater than 2. The notion of the spectrum of a schema describes this property of having (at least one)
model of a given size. Writing Z+ for the set of positive integers, we have the definition:

Definition 33. Let S be a schema. Then

Spec(S) = {n ∈ Z+ | mod(S, n) 6= ∅}.

If a schema S has a model whose universe is of size n, we say that S admits n. Then Spec(S) is exactly the
set of positive integers n such that S admits n.

For example, Spec(T ) = {2i | i > 1}.

Example 11. Lest we forget how to count, let’s exploit what we learned from Example 10 and calculate
|mod(T, 6)|. The only shape allowed in this case is the hexagon, and each hexagon admits two possible
colorings that satisfy DE (one where the initial element in our ordering is coloured, and one where it is not).
Hence, it follows from our earlier calculation that |mod(T, 6)| = 2 · 6!/(6 · 2) = 120.

Finite Sets and Co-finite Sets are Spectra

Let F be a finite set of positive integers. Here is a basic question:

“Is there a schema S such that Spec(S) = F?”

In order to begin answering this, we’ll start with singletons, and show that for every positive integer n, there
is a schema, call it Sn, such that Spec(Sn) = {n}. We may take Sn to be the following schema, which says
that there are at least n but not at least n+ 1 elements in the universe of any satisfying structure.

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

xi 6= xj ∧ ¬(∃x1) . . . (∃xn+1)
∧

1≤i<j≤n+1

xi 6= xj

It follows at once that every finite set of positive integers is the spectrum of some schema, for if F =
{n1, . . . , nk}, then

Spec(Sn1
∨ . . . ∨ Snk

) = F.

Moreover,
Spec(¬(Sn1 ∨ . . . ∨ Snk

)) = Z+ − F.
Thus, every finite set of positive integers and the complement of every finite set of positive integers is a
spectrum (the latter sets are called co-finite).

Complementation and the Spectrum Problem

It is actually quite unusual that the spectrum of the negation of a schema S is equal to the complement of
the spectrum of S. Let’s consider the following example.

Recall the schema SG ∧ 1reg which defines the collection of 1-regular simple graphs. We’ve already noticed
that Spec(SG ∧ 1reg) is the set of even numbers, that is, Spec(SG ∧ 1reg) = {2i | i ∈ Z+}. On the other
hand, Spec(¬(SG ∧ 1reg)) = Z+.
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Why is Spec(¬(SG ∧ 1reg)) = Z+?

This behavior is actually typical. Later in the course we may be in a position to prove the following important
fact: if the spectrum of a schema S is neither finite nor cofinite, then the spectrum of the negation of S is
not equal to the complement of the spectrum of S.

You may also ask: “is there a schema S such that the complement of the spectrum of S is not the spectrum
of any schema whatsoever?” Nobody knows the answer to this question. It is, however, known that a set of
positive integers is a spectrum if and only if it is in the complexity class NE, the set of problems solvable in
non-deterministic (linear) exponential time on a Turing machine. For those of you who might like to learn
more about this open problem, the paper “Fifty Years of the Spectrum Problem” is a great place to start.12

Further Examples of Infinite, Co-infinite Spectra

One can easily modify the schema SG ∧ 1reg to give an example of a schema whose spectrum is the set of
odd numbers. The modified schema states the condition that there is an isolated node w, and every node
other than w has degree one, in addition to ensuring that any satisfying structure is a simple graph. This
suffices to make any satisfying structure a collection of disjoint pairs plus one isolated element, and hence of
odd size.

Write out the above described schema formally.

Time for a more substantial example: a schema S with Spec(S) = {k2 | k ∈ Z+}. The schema involves a
triadic predicate letter H and a monadic predicate F . S is the conjunction of the following schemata.

• (∀x)(∀y)((Fx ∧ Fy) ⊃ (∃z)(∀w)(Hxyw ≡ w = z))

• (∀x)(∀y)(∀z)(Hxyz ⊃ (Fx ∧ Fy))

• (∀x)(∃y)(∃z)Hyzx

• (∀x)(∀y)(∀z)(∀w)(∀v)((Hxyv ∧Hzwv) ⊃ (x = z ∧ y = w))

Suppose A |= S. The conjunction of the first two schemata guarantee that HA is the graph of a binary
function mapping FA × FA to UA. Further conjoining the third and fourth schemata guarantee that this

function is a bijection, thereby insuring that |UA| is a perfect square (in particular, |UA| = |FA|2).

12A. Durand, N. D. Jones, J. A. Makowsky, and M. More, Fifty Years of the Spectrum Problem: Survey and New Results,
The Bulletin of Symbolic Logic, Volume 18, Number 4, Dec. 2012, 505-553.
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3.4 Equivalence Relations

Time to look at another important class of graphs (namely, equivalence relations) and how they can be put
to use in generating schemata with a wide range of spectra. Recall that a graph A is an equivalence relation
if and only if LA is reflexive, symmetric, and transitive, that is, if and only if A |= Eq, where Eq is the
conjunction of the following schemata.

• Refl: (∀x)Lxx

• Sym: (∀x)(∀y)(Lxy ⊃ Lyx)

• Trans: (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz))

Now suppose we’d like to construct a schema S such that

• S implies Eq, and

• Spec(S) = {3i+ 2 | i ∈ Z+ ∪ {0}}.

The easiest way to have S imply Eq is to formulate S as a conjunction, one conjunct of which is Eq itself.
But what more should we say? Well, the universe UA of an equivalence relation A is partitioned into
mutually disjoint equivalence classes by the relation LA; for each a ∈ UA, the equivalence class â of a, is
{b ∈ UA | 〈a, b〉 ∈ LA}. It follows that if we can construct a schema T that says every equivalence class but
one is of size three, and that the exceptional equivalence class is of size two, then our universe must have
size 3i + 2 for some i (i is the number of size-three equivalence classes). We could then take S to be the
conjunction of Eq and T , and would be done. The following schema T does the job.

(∃x1)(∃x2)(x1 6= x2 ∧ (∀w)(Lwx1 ≡ (w = x1 ∨ w = x2))∧
(∀y1)((y1 6= x1 ∧ y1 6= x2) ⊃ (∃y2)(∃y3)(y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3∧
(∀v)(Lvy1 ≡ (v = y1 ∨ v = y2 ∨ v = y3)))))

Roughly, T says that there are two distinguished elements x1, x2 which are related only to each other, and
that all other elements y1 have exactly two other elements y2, y3 (both of which are neither of the x’s) which
are all connected in a triangle.

Go through the schema T and write out exactly what each part is saying. Make sure you understand why
it specifies that there are 3i + 2 elements in the universe (for some i).

Of course, this can be generalized to show that for every j and 0 ≤ k < j, there is a schema S such that S
implies Eq, and Spec(S) = {nj + k | n ∈ N}.

Using the counting quantifiers (and some new shorthand of your own devising to say that the equivalence
class of x has size j), give a schema which provides the above-mentioned generalization.
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3.5 Review

Concept Review

Binary Relations: Given a set S, a binary relation R between a domain A and a codomain B is a set
of pairs (a, b) where a ∈ A and b ∈ B. We will normally consider relations whose domain equals their
codomain. In this case, a relation R over a set S is a subset of S2 = S × S = {(s, s′)|s, s′ ∈ S} (this is
the “Cartesian product” of S with itself, the set of all ordered pairs of members of S). Notice that we
have identified the interpretation of a dyadic predicate letter in a structure with a relation in this sense;
this continues our practice of treating our schematic languages extensionally. For example, let L be a
dyadic predicate letter. The structure A with UA = {0, 1, . . .} and LA = {(i, j) | i, j ∈ N and i < j}
interprets L as the strict linear ordering relation on the set of natural numbers N.

Arbitrary Relations: Relations need not be just binary. For example, our normal interpretation of
the + symbol (along with equality) specifies a relation - we might think of the ternary relation +abc as
expressing that a+b = c. The extension of this relation is then a set of ordered triples {(a, b, c)|a+b = c}.
Graphs: A (directed) graph is a structure G = (V,E) suitable for interpreting a dyadic predicate
symbol L. V is a set of “vertices” or “nodes”, and E is a binary relation (the edge relation) on V (that
is, E ⊆ V × V ). We will often write UG for V and LG for E when we use G to interpret schemata
involving only the dyadic predicate symbol L.

Neighborhood: The neighborhood of a node n of a graph G = (V,E) is the set of all nodes which are
adjacent to n in G (that is, {n′ ∈ V |(n, n′) ∈ E}).
Degree: The degree of a node n is the size of n’s neighborhood.

Reflexive: A relation R is said to be reflexive iff (∀x)Rxx.

If we draw an arrow diagram of such a relation, each vertex would have a “self loop.” If we visualize
such a relation as a bit matrix, the main diagonal is all “1s.”

Irreflexive: A relation R is said to be irreflexive iff (∀x)¬Rxx.

If we draw an arrow diagram of such a relation, this specifies that there are no “self loops.”

Symmetric: A relation R is said to be symmetric iff (∀x)(∀y)Rxy ⊃ Ryx.

This means that there are no one-way relations between elements. Specifically, either (Rxy ∧ Ryx) ⊕
(¬Rxy∧¬Ryx). When drawing an arrow diagram of a symmetric relation, we often omit the arrowheads
on our edges to indicate that the relation “goes both ways.”

Antisymmetric: A relation R is said to be antisymmetric iff (∀x)(∀y)Rxy ⊃ ¬Ryx.

This means that there are no two-way relationships between elements.

Transitive: A relation R is said to be transitive iff (∀x)(∀y)(∀z)((Rxy ∧Ryz) ⊃ Rxz) or, equivalently
(why?) (∀x)(∀y)(∀z)(Rxy ⊃ (Ryz ⊃ Rxy)).

Comparable: A relation is R said to be comparable iff (∀x)(∀y)(x 6= y ⊃ (Rxy ∨Ryx)).

In words: if x and y are unequal, then they have to be related in some way (so every pair of nodes is
related somehow).

Simple Graph: A relation is said to be a Simple Graph iff the relation is both irreflexive and symmetric.
We abbreviate this SG.

Tournament: A relation is said to be a Tournament iff the relation is both antisymmetric and com-
parable. Think of the nodes in the graph as being teams, and the edge relation as being “won against”
in a round robin - each team plays each other (so they all have at least one edge between) and only one
team wins each game (so if a beats b, then b does not beat a). We abbreviate this Tour.
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Strict Linear Order: A relation is said to define a Strict Linear Order iff the relation is antisym-
metric, comparable, and transitive (thus, SLOs are a subclass of Tournaments). The extra criterion of
transitivity requires that if a “beats” b, then a also “beats” every team which b beats. In this way, the
“1st place team” beats everyone, 2nd place beats everyone except first, etc., and so there is a strict
ordering on the elements of our graph.

Equality: Equality is a special type of relation in that its interpretation is uniform across structures.
For every structure A, equality holds just of the pairs {(a, a)|a ∈ UA}.
Counting Quantifiers: In MQT, the Small Model Property meant we had no way to distinguish
between, for example, the two structures

A : UA = {1, 2}, PA = {1, 2}

and
B : UB = {1}, PB = {1}

because A,B realised the same types, even though a different number of elements of A are in P than
elements of B are. With PQT , we can of course distinguish between these two structures by using
equality to count.

We defined sentences ∆n := (∃x1)...(∃xn)
∧

1≤i<j≤n xi 6= xj which indicates that elements x1...xn are
all pairwise distinct. Using this, we defined

(∃k≤x)P (x)

which says there are at least k elements such that P

(∃≤kx)P (x)

which says that there are at most k elements such that P , and

(∃=k)P (x)

which says that there are exactly k elements such that P .

k-Regular: We say that a graph G = (V,E) is k-regular iff every node n ∈ V has degree k. Finite
2-regular simple graphs are composed of a collection of disjoint cycles, and 1-regular simple graphs are
composed of a collection of disjoint “isolated edges.”

Counting Graphs: We defined

mod(S, n) := {A|A |= S and UA = {1, ..., n}}

That is, mod(S, n) is the collection of all structures satisfying a sentence S which have universe {1, ..., n}.
Functions as Relations: Functions are a special subclass of relations. Specifically, they are relations
which satisfy the two properties

Tot : (∀x)(∃y)Rxy

and
SV : (∀xyz)((Rxy ∧Rxz) ⊃ y = z).

The first says that the relation is total - for everything in the domain, there is something to which it
maps. The second says that the relation is single valued - every element of the domain maps to at
most one element. The conjunction Tot∧ SV implies that every element of the domain maps to exactly
one element of the codomain. Strictly, Tot is not required for a relation to be a function (the class of
relations axiomatized by only SV are called the partial functions). In this class, however, we restrict
our attention to total functions, and will always mean “total function” whenever we say “function.”
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Injectivity: A function is injective (also sometimes called “one-to-one”) iff the following holds

Inj : (∀xyz)((Rxz ∧Ryz) ⊃ x = y)

which says that no two elements of the domain map to the same element of the codomain.

If there is an injection from S to S′ then |S| ≤ |S′| (prove this for finite sets).

Surjectivity: A function is surjective (also sometimes called “onto”) iff the following holds:

Sur : (∀x)(∃y)Ryx

which says that every element of the codomain is the image of some element of the domain.

If there is a surjection from S to S′, we know that |S| ≥ |S′| (prove this for finite sets).

Functions on a Single Set: We often consider functions with the same domain and codomain (say
S). In this case, we say that the function is on S. We proved that, for finite sets S, a function on S is
an injection iff it is a surjection. In contrast, we showed that there are injections on an infinite S which
are not surjections, and similarly that there are surjections on an infinite S which are not injections.
For example

f : N→ N

n 7→ n+ 1

is an injection but not a surjection (0 is not mapped to), and

h : N→ N

n 7→ bn/2c

is a surjection but not an injection (for all k, 2k and 2k + 1 both map to k).

A set S is called Dedekind infinite if and only if there is an injection on S that is not a surjection.

Binary Functions: Just as the graph of a unary function f is the binary relation {(a, b) | f(a) = b},
the graph of a binary function g is the ternary relation {(a, b, c) | g(a, b) = c}. The following schema is
satisfied by a structure A if and only if RA is the graph of a total binary function on UA.

Bfun := (∀x)(∀y)(∃z)(∀w)(Rxyw ≡ w = z).

Binary Injection: Similarly, the following schema expresses that a binary function is injective.

Binj := (∀vwxyz)((Rvwz ∧Rxyz) ⊃ (v = x ∧ w = y))

Find a schema that expresses surjectivity for binary functions.

Counting Relations: We have the following:

|mod(Fun, n)| = nn,

that is, there are nn functions on a set of size n. To see this, note that each for each of the n elements
we must choose one of n possible images. In other words, to determine a function on [n], we must make
n n-ary choices.

|mod(Fun ∧ Inj, n)| = n!
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To see this, note that a function on a set S which is injective maps each of the n elements to a unique
element. So there are n choices for the first element, n− 1 for the second, . . . , and 1 for the last.

|mod(Asy, n)| = 3(n
2)

To see this, note that for each pair of elements {a, b} there are three mutually exclusive possibilities -
no edge, edge from a to b, or edge from b to a.

|mod(Tour, n)| = 2(n
2)

To see this, note that for each pair of elements {a, b} there must be exactly one of the directed edges
from a to b or from b to a.

|mod(SLO, n)| = n!

To see this, note that there is a natural one-to-one correspondence between linear orderings of [n] and
injections on [n] – map each i ∈ [n] to the i-th member of the order; thus, there are the same number
of strict linear orders of [n] as there are injections on [n].

|mod(2reg, 3)| = 1

To see this, note that a 2-regular graph of size 3 must be a “triangle”, and there is only one way of
making a triangle with three elements.

|mod(2reg, 4)| = 3

To see this, note that a 2-regular graph of size 4 must be a “square”. Fix one element a of the square,
and pick the single node from the remaining three to which it is not adjacent (three choices). This
uniquely determines the square.

In general, there are n!
n·2 = (n−1)!

2 n-cycle graphs.

|mod(2reg, 6)| = 70

Any 2-regular graph of size six must be composed of two “triangles” or one “hexagon.” For the triangles,
there are

(
6
3

)
/2 = 10 ways to split the six up into two groups of three (we divide by two because, say,

picking elements {1, 2, 3} for one triangle is the same as picking {4, 5, 6} for the other). Each such
division corresponds to exactly one graph, so there are 10 graphs which have two disjoint triangles. For
the hexagon, there are (reasoning as above) 6!

6·2 = 60 ways to label the hexagon, giving 10 + 60 = 70
total possible graphs.

Spectrum: We defined the spectrum of a schema S to be the set of all integers n for which there is a
model of S of size n. We determined that for each positive integer n, there is a schema Sn such that
Spec(Sn) = {n}. The schema Sn specifies that there are exactly n elements in the universe.

By making use of the schemata Sn, we constructed, for each finite set F and for each cofinite set C,
schemata S and T with Spec(S) = F and Spec(T ) = C. (Recall that a set of positive integers X is
cofinite if and only if Z+ −X = X is finite)

We noted that, in general, Spec(¬S) 6= Spec(S). For example, let S := SG ∧ 1reg, so that Spec(S) =
{2i|i ∈ Z+}. Then ¬S is equivalent to ¬SG ∨ ¬1reg. Therefore, Spec(¬S) = Z+.

Equivalence Relations: An equivalence relation is a relation which satisfies the schema Eq, which is
the conjunction of the following schemata.

• Refl: (∀x)Lxx

• Sym: (∀x)(∀y)(Lxy ⊃ Lyx)
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• Trans: (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz))

If A |= Eq, the set â = {a′ ∈ UA|〈a, a′〉 ∈ LA} is the equivalence class of a; it is the set of all a′ ∈ UA

which are equivalent to a under the equivalence relation LA.

The equivalence classes of an equivalence relation partition the universe, that is, every element of the
universe is in some equivalence class (this follows by reflexivity) and distinct equivalence classes are
disjoint (this follows by symmetry and transitivity).

For all k ∈ Z+ and 0 ≤ l < k, we can define the spectrum {(ki+ l) ∈ Z+|i ∈ N} (the set of all positive
integers equivalent to l mod k) by specifying that there are exactly l elements in an equivalence class
of size l, and that all other elements are in size-k equivalence classes.
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Problems

1. We say that a graph G ∈ mod(S, n) is size maximal iff it has the most edges possible given that
it satisfies S and has n nodes. Give an example of a size-maximal acyclic member of mod(SG, 3).

2. How many size-maximal acyclic members of mod(SG, 3) are there?

3. How many size-maximal acyclic members of mod(SG, 4) are there?

4. Prove that if every node of a finite graph is of degree at least 2, then the graph contains a cycle.

5. Let S be the conjunction of
SLO

(∀x)(∀y)((Lxy ∧ ¬(∃z)(Lxz ∧ Lzy)) ⊃ Fx⊕ Fy)

(∀x)(¬(∃y)Lyx ⊃ Fx)

(∀x)(¬(∃y)Lxy ⊃ ¬Fx)

What is Spec(S)?

6. Give a schema S such that Spec(S) = {2i+ 1|i ∈ N}, that is, the set of odd positive integers.

7. What is Spec(SLO)?

8. Let S be the conjunction of
SLO

(∀x)(∃y)Lxy

(∀x)(∃y)Lyx

(∀x)(∀y)(Lxy ⊃ (∃z)(Lxz ∧ Lzy))

What is Spec(S)?
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Solutions

1. UA = {1, 2, 3}, RA = {(1, 2), (2, 1), (2, 3), (3, 2)} is one such example.

2.
(
3
2

)
= 3!/2 = 3. Note that all size-maximal acyclic members of mod(SG, 3) have two undirected

edges (if they had a third, there would have to be a cycle). So to specify such a graph, we simply
have to pick which two nodes are not connected. Equivalently, you might note that all such graphs
look like a single chain (or, a linear order in which direction doesn’t matter). There are 3! orders,
and we divide by 2 because reading from right-to-left or left-to-right doesn’t matter (we have a
simple graph, so the edges are undirected).

3. 4!/2 + 4 = 16. As above, there are 4!/2 ways to order the elements into a single chain. However,
unlike the case above, there are graphs which aren’t just a single chain. Picking one element to
be the “parent” and placing undirected edges from it to every other element (draw this!) gives a
graph which is also size maximal acyclic, but not a chain. There are 4 ways to pick such a parent.
So the total is 4!/2 + 4 = 16.

In general, acyclic size maximal members of mod(SG, n) are trees of size n (a “tree” is a size-
maximal acyclic graph, or equivalently a size-minimal connected graph).

4. Consider a maximal length path (an acyclic sequence of edges) in the graph. As the terminal
node of that path has degree at least 2, there must be an edge coming from it which is not on
our path. As our path was maximal in length, that edge must go back to some previously visited
node along our path.

5. {2i|i ∈ Z+}.
To answer this question, we interpret S piece by piece. The first conjunct is SLO, so we treat this
like a linear order from now on (in particular, we can interpret L as meaning “less than”).

The second conjunct says that “for all x and y, if there isn’t a z between them, then exactly one
of x and y are in F”. Interpreting Fx as meaning “x is colored red” and ¬Fx as meaning “x
is colored blue”, we interpreted this sentence as saying that the coloring of nodes in our order
switches from red to blue every element.

The third conjunct says that if there is no element less than x (so x is the minimal element), then
x is red.

The final conjunct says that if there is no element greater than x (so x is the maximal element),
then x is blue.

Putting this all together, we have a strict linear ordering whose first node is red, node color
switched every adjacent node, and the last node is blue. It follows that we have an even number
of nodes, giving us our answer.

6. Let S be the conjunction of
SLO

(∀x)(∀y)((Lxy ∧ ¬(∃z)(Lxz ∧ Lzy)) ⊃ Fx⊕ Fy)

(∀x)(¬(∃y)Lyx ⊃ Fx)

(∀x)(¬(∃y)Lxy ⊃ Fx)

The only difference from before is in the last conjunct; ¬Fx was replaced with Fx. S now says we
have a linear order, flipping colors, both ending and starting with red. So only odd-sized orders
work now.

7. Spec(SLO) = Z+, as there are linear orders of every finite size.
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8. Spec(S) = ∅. The second conjunct says that there is no maximum element, the third says there is
no minimum, and the final says that each pair of elements has a third element in between the two.
Any of these conjuncts, together with SLO, requires that all models be infinite. In particular,
there is no n ∈ Z+ with a model of size n, and so, by the definition of spectrum, Spec(S) = ∅.
Note, of course, that this does not mean that there are no models of S - if we interpret L as <,
then Q, the rational numbers together with its usual strict linear ordering. is a model of S. It
only means that there are no finite models.
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3.6 Isomorphisms, Automorphisms, and the Orbit-Stabilizer Theorem

Consider the structures

• A: UA = [3], LA = {〈1, 2〉, 〈1, 3〉}, and

• B: UB = [3], LB = {〈2, 1〉, 〈2, 3〉}.

A and B look very similar. We can bring out their similarity by considering the the function f : [3] 7→ [3]
with f(1) = 2, f(2) = 1, and f(3) = 3. The function f is a bijection and is edge-preserving, that is, for
every i, j ∈ [3], 〈i, j〉 ∈ LA if and only if 〈f(i), f(j)〉 ∈ LB . We say f is an isomorphism of A onto B, and
that A and B are isomorphic (written A ∼= B). These notions are so important that we pause to enshrine
them in a definition.

Definition 34. A function h is an isomorphism from A onto B if and only if h is a bijection from UA onto
UB such that for all a, b ∈ UA, 〈a, b〉 ∈ LA if and only if 〈h(a), h(b)〉 ∈ LB.

A is isomorphic to B (A ∼= B) if and only if there is an isomorphism h from A onto B.

Intuitively speaking, an isomorphism is a relabelling map. The idea is that two structures are isomorphic if
they “look the same” up to their nodes’ being “relabelled”. In the example above, we “relabelled” 1 as 2
and 2 as 1.

Consider again the structure A described above, but now consider the function g with g(1) = 1, g(2) = 3,
and g(3) = 2. The function g is an automorphism of A, that is, an isomorphism of A onto itself. Again, a
definition is in order.

Definition 35. A function h is an automorphism of A if and only if h is an isomorphism of A onto A.
Aut(A) = {h | h is an automorphism of A}.

An automorphism is an isomorphism, that is, a relabelling map, which leaves the edge-set unchanged (and
hence leaves the whole structure unchanged). h is an automorphism because the edges have exactly the
same labels after the mapping. f is not an automorphism, because the edges do not have the same labels
after the mapping.

Observe that if A ∼= B, then for every schema S, A |= S if and only if B |= S. Indeed, any language
which can reasonably be called “logical” cannot distinguish between isomorphic structures. This is such a
fundamental property of PQT that we pause to establish here.

Definition 36. Structures A and B are polyadically equivalent (written A ≡P B) if and only if for every
schema S, A |= S if and only if B |= S.

Theorem 4. Suppose A and B are structures and f is an isomorphism of A onto B. Then for every schema
S(x1, . . . , xk) and sequence of elements a1, . . . , ak ∈ UA,

A |= S[(x1|a1), . . . , (xk|ak)] iff B |= S[(x1|f(a1)), . . . , (xk|f(ak))]. (3)

In particular, if A ∼= B, then A ≡P B.

Proof sketch of Theorem 4: We give the argument for graphs; the generalization to structures interpret-
ing multiple polyadic predicates is straightforward. The argument proceeds by induction on the syntactic
structure of schemata. The base case verifies (3) for atomic schemata, that is, schemata of the form Lxixj
or xi = xj , for some i, j. In this case, the verification follows directly from the hypothesis that f is an
isomorphism from A onto B, in particular, that it is edge-preserving and injective.
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Suppose S is a truth-functional combination, for example the conjunction, of schemata S′ and S′′, where,
as hypothesis of induction, (3) holds for both S′ and S′′. Then,

A |= S[(x1|a1), . . . , (xk|ak)] iff
A |= S′[(x1|a1), . . . , (xk|ak)] and A |= S′′[(x1|a1), . . . , (xk|ak)] iff
B |= S′[(x1|f(a1)), . . . , (xk|f(ak))] and B |= S′′[(x1|f(a1)), . . . , (xk|f(ak))] iff
B |= S[(x1|f(a1)), . . . , (xk|f(ak))].

The first and third biconditionals follow from the truth-functional semantics of conjunction, while the second
follows from the induction hypothesis.

Finally, suppose that S is (∃y)S′(x1, . . . , xk, y) and (3) holds for S′ (the universal quantifier is handled
similarly). Then,

A |= S[(x1|a1), . . . , (xk|ak)] iff
for some a ∈ UA A |= S′[(x1|a1), . . . , (xk|ak), (y|a)] iff
for some a ∈ UA B |= S′[(x1|f(a1)), . . . , (xk|f(ak)), (y|f(a))] iff
for some b ∈ UB B |= S′[(x1|f(a1)), . . . , (xk|f(ak)), (y|b)] iff
B |= S[(x1|f(a1)), . . . , (xk|f(ak))].

The first and fourth biconditionals follow from the semantics for the existential quantifier, the second from
the induction hypothesis, and the third from the hypothesis that f is an isomorphism from A onto B, in
particular, that it is surjective.

In the proof above, the only truth-functional connective we considered was conjunction. The other cases are
handled similarly. Complete those cases yourself, either by writing out the whole argument, or by showing
that a conditional can be defined in terms of some conditionals whose cases you already worked out (for
example, each of the connectives can be defined in terms of ¬ and ∧, so those two cases suffice).

The image of a structure

Let’s continue to consider the structure A. We have the following list of all the bijections of [3] onto [3].

1 2 3
f1 1 2 3
f2 2 1 3
f3 3 2 1
f4 1 3 2
f5 2 3 1
f6 3 1 2

We’ll call this set of bijections S3 (more on this notation below). We define the image of a structure as
follows.

Definition 37. If A is a graph with edge relation LA and h a bijection from UA onto UA, then the image
of A under h (written h[A]) is defined by

Uh[A] := UA, Lh[A] := {〈h(i), h(j)〉 | 〈i, j〉 ∈ LA}.

It follows immediately that for any D with UD = [3] and h ∈ S3, h is an isomorphism from D onto h[D].

With respect to the examples A and B above, we see that f2[A] = f5[A] = B. Moreover, C = f3[A] = f6[A]
is a third isomorphic copy of A distinct from both A and B. That is, there are three labeled structures,
A, B, and C, with universe [3] that are isomorphic to A (see the following diagram). Their respective
automorphism classes are: Aut(A) = {f1, f4}, Aut(B) = {f1, f3}, and Aut(C) = {f1, f2}.
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1

2 3

2

1 3

3

1 2

This suggests the following marvelous identity, which we will shortly explore:

|S3| = |Aut(A)| · (the number of labeled copies of A). (4)

The Orbit-Stabilizer Theorem

Recall that for every positive integer k, we write [k] for {1, . . . , k}.

Definition 38. For every positive integer k, we write Sk for the set of bijections from [k] onto [k] (also
called the permutation group on or the symmetric group on [k]).

The names permutation group or symmetric group emphasize the agebraic nature of Sk. Indeed, we can
think of Sk as an algebra with a binary operation ◦, a unary operation −1, and a distinguished element e,
where, for permutations f, g ∈ Sk, f ◦ g is the permutation resulting from the composition of f and g, that
is, f ◦ g = h if and only if for every i ∈ [k], h(i) = f(g(i)); f−1 is the permutation which is the inverse of f ;
and e stands for the identity function on [k]. With these understandings, you can verify that Sk is a group13:

• ◦ is an associative operation, that is, (f ◦ g) ◦ h = f ◦ (g ◦ h), for all f, g ∈ Sk;

• e is an identity with respect to ◦, that is, e ◦ f = f ◦ e = f , for all f ∈ Sk; and

• f ◦ f−1 = f−1 ◦ f = e, for all f ∈ Sk.

• Permutations are closed under ◦, that is, f ◦ g is a permutation for all f, g ∈ Sk.

Prove that each of these conditions holds.

Definition 39. We write Gk (= mod(SG, k)) for the set of simple graphs A with UA = [k].

13These conditions (associativity, identity, inverse, closure) are the axioms for a group, which is a fundamental and widely
applicable concept in algebra. Group Theory, the part of mathematics which studies groups, is a hugely influential and
interesting field. MATH 370 is Penn’s introductory group theory course.
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Recall that for each f ∈ Sk and A ∈ Gk, f [A] is the image of the graph A under f . This is an example of a
group action - the group Sk acts on the set Gk via the assignment of f [A] to A.

Just as with groups, group actions are axiomatized by a few simple conditions. To verify that this is indeed
a group action, show that for all A ∈ Gk and f, g ∈ Sk the following properties hold:

• (f ◦ g)[A] = f [g[A]], and

• e[A] = A.

Recall that Aut(A) is the set of automorphisms of A. In the current context, for A ∈ Gk, Aut(A) is often
called the stabilizer of A, since f ∈ Aut(A) if and only if f [A] = A.

Definition 40. The orbit of A under the action of Sk (written orb(A,Sk)) is {h[A] | h ∈ Sk}.
In other words, the orbit of A under Sk is the set of B ∈ Gk such that A ∼= B.

The following result is a special case of the Orbit-Stabilizer Theorem.

Theorem 5. For all A ∈ Gk,
|Sk| = |orb(A,Sk)| · |Aut(A)|.

Proof : Let A ∈ Gk. We define an equivalence relation ∼ on Sk: for all f, g ∈ Sk, f ∼ g if and only if
(f−1 ◦ g) ∈ Aut(A).

Verify that ∼ is an equivalence relation, for example, it is reflexive (that is, f ∼ f), because f−1 ◦ f = e
and e ∈ Aut(A). Continue and show ∼ is symmetric and transitive.

We establish the following two claims about ∼ from which the Theorem follows immediately.

1. each equivalence class of ∼ has size |Aut(A)|, and

2. the number of equivalence classes of ∼ is |orb(A,Sk)|.

Ad claim 1: Fix f ∈ Sk. For each h ∈ Aut(A) there is a unique g ∈ Sk such that f−1 ◦ g = h. It follows at
once that there is a bijection between {g | f ∼ g} and Aut(A).

Use the group axioms to first prove that inverses in a group are unique (that is, for any f in a group, there
is a unique element f−1 such that f ◦ f−1 = e = f−1 ◦ f , where e is the identity element).

Using that fact, verify that for each fixed f, h ∈ Sk, there is a unique g ∈ Sk such that f−1 ◦ g = h.

Ad claim 2: We show that for every f, g ∈ Sk f [A] = g[A] if and only if f ∼ g. We prove each direction of
the bi-conditional.

First, suppose suppose f ∼ g. Then f−1 ◦ g ∈ Aut(A). It follows that (f−1 ◦ g)[A] = A and hence that
f [(f−1 ◦ g)[A]] = f [A]. So (f ◦ (f−1 ◦ g))[A] = f [A], and then by associativity ((f ◦ f−1) ◦ g)[A] = f [A]. As
f ◦ f−1 = e, we have (e ◦ g)[A] = f [A] from which it follows that g[A] = f [A].

In the other direction, suppose f [A] = g[A]. Then, f−1[f [A]] = f−1[g[A]]. Hence, (f−1◦f)[A] = (f−1◦g)[A].
Hence, (f−1 ◦ g)[A] = e[A] = A. Hence, f−1 ◦ g ∈ Aut(A), that is, f ∼ g. Thus, there is a bijection between
the equivalence classes of ∼ and orb(A,Sk).

We now have the explanation of identity (4), since

|orb(A,Sk)| = the number of labeled copies of A.

We illustrate the use of Theorem 5 via an application to counting structures that satisfy a given schema.
Let S be the conjunction of SG and 1reg, that is, a graph A satisfies S if and only if A is a 1-regular, simple
graph. As we discussed earlier, every such finite graph A has an even number, say 2n, of nodes; moreover,
if A,B |= S and |UA| = |UB |, then A is isomorphic to B. We will calculate the value of mod(S, 2n) in two
ways - one way using the Orbit-Stabilizer Theorem, and the other directly.
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Via the Orbit-Stabilizer Theorem

Let A ∈ mod(S, 2n). As we’ve just noted above, if B ∈ mod(S, 2n), then A ∼= B. It follows at once that

mod(S, 2n) = orb(A,S2n). (5)

Let’s calculate |Aut(A)|, since Theorem 5 will then allow us to calculate |mod(S, 2n)|. Observe that A consists
of n independent edges. Imagine them standing upright and lined up horizontally in some order.

1a

1b

2a

2b

3a

3b

etc

Now any permutation of the edges generates an automorphism of A. Moreover, in the process of permuting
the edges, we have for each edge a choice whether to “flip” the edge or not. Since there are n! permutations
of the n edges, and 2n choices of which set of edges to flip, there are a total of n! · 2n automorphisms of A.
Hence, by Theorem 5 and equation (5),

|mod(S, 2n)| = (2n)!/n! · 2n.

Directly

Here is a second direct method of calculating |mod(S, 2n)| which, thankfully, yields the same result.We
construct a member A of mod(S, 2n) as follows. We successively choose the n independent edges that
constitute A. So for the first edge, we have

(
2n
2

)
choices of a pair of nodes between which to place an edge,

and for the second edge, we have
(
2n−2

2

)
choices, .... So the number of ways we can choose a sequence of n

independent edges is (
2n

2

)
·
(

2n− 2

2

)
· · ·
(

4

2

)
·
(

2

2

)
=

(2n)!

2n
.

Now any set of n edges chosen via this process will appear as the result of n! such sequences of choices; thus,
the total number of members of mod(S, 2n) we can construct is

(2n)!

n! · 2n
.
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3.7 Definability

Up to this point we have neglected schemata containing free variables. We will now correct this oversight.

Consider the structure A (which should look familiar) defined by

UA = [3], LA = {〈1, 2〉, 〈1, 3〉}

Let S(x) be the schema
S(x) : ¬(∃y)Lyx.

S(x) picks out 1 uniquely from the structure A, because 1 is the only element in UA which does not have
an incoming edge. Symbolically, we express this as

{a ∈ UA | A |= S[x|a]} = {1}.

S(x) expresses the property of having in-degree zero. Since we only consider properties extensionally, we can
also say that, in a given structure, S(x) defines the set of nodes of in-degree zero. The concept of definability
is central in logic (and many other disciplines). We enshrine it in a definition.

Definition 41. Let S(x) be a schema with one free variable x and let A be a structure. We define S[A] =
{a ∈ UA | A |= S[x|a]}. In other words, S[A] is the set of nodes a ∈ A that satisfy the schema S(x) in A
when we assign a to the variable x. We call S[A] the set defined by S(x) in A.

Definition 42. We say a set V ⊆ UA is a definable subset of A if and only if there is a schema S(x) such
that S[A] = V . We write Def(A) for the set of definable subsets of A.

Note that the set {2, 3} is defined by the schema

S′(x) : ¬(∃y)Lxy.

Are either of the sets {2} or {3} definable as subsets of A? Try as you might, you won’t find a schema
which picks out either 2 or 3 individually. Intuitively, this is because the nodes labelled 2 and 3 appear to
be “indistinguishable from a structural point of view”. Backing up this notion of indistinguishability, we see
that the function h mapping 1 to 1, 2 to 3, and 3 to 2, is an automorphism of A which happens to exchange
2 and 3. The relevance of this to the question of definability is the content of the following fundamental
theorem.

The Automorphism Theorem

The following result, known as the Automorphism Theorem, is an important aid in the study of definability.
It is a corollary to Theorem 4.

Corollary 4. Let A be a graph and h ∈ Aut(A). For every a ∈ UA and every schema S(x),

A |= S[x|a] if and only if A |= S[x|h(a)].

Show that Corollary 4 is a corollary to Theorem 4

Corollary 4 provides a useful necessary condition for a set to be definable in an arbitrary structure, and
enables us to give a characterization of the definable subsets of finite structures. If f is a function with
domain U and V ⊆ U , we define f [V ] = {f(a) | a ∈ V } (the f image of V ). With this notation in hand, we
can now state a corollary to Corollary 4 which bears on definability.

Corollary 5. Let A be a graph and h ∈ Aut(A). If V is a definable subset of A, then h[V ] = V .
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Show that Corollary 5 is a corollary to Corollary 4

Thus, in order to show that V is not a definable subset of A it suffices to exhibit an h ∈ Aut(A) and a ∈ V
such that h(a) 6∈ V .

Orbits and Definability over Finite Structures

In the case of finite structures, the converse of Corollary 5 is true.

Theorem 6. Let A be a finite graph and V ⊆ UA. V is a definable subset of A if and only if for every
h ∈ Aut(A), h[V ] = V .

In order to prove Theorem 6, and to apply it to questions of counting definable sets, the following definitions
will be useful.

Definition 43. The orbit of a node a ∈ UA under the action of Aut(A) is the set of all possible images of
a under actions f ∈ Aut(A). Symbolically,

orb(a,Aut(A)) = {h(a) | h ∈ Aut(A)}.

Definition 44. The orbits of A is the set of all orbits of individual elements a ∈ A. Symbolically:

Orbs(A,Aut(A)) = {orb(a,Aut(A)) | a ∈ UA}

Proof Sketch of Theorem 6: We aim to show that for every finite graph A, V ⊂ A is definable iff
every automorphism h ∈ Aut(A) leaves V unchanged. The generalization to structures interpreting multiple
polyadic predicates is straightforward.

First, suppose A is a finite graph, a ∈ UA, and V = orb(a,Aut(A)). We construct a schema S(x) such that
S[A] = V . We may suppose without loss of generality that UA = [k] for some k ∈ Z+ and that a = 1. For
each 1 ≤ i, j ≤ k, let the schema Si,j be Lxixj if 〈i, j〉 ∈ LA, and ¬Lxixj otherwise. Let S(x) be the schema

(∃x2) . . . (∃xk)(
∧

1≤i,j≤k

Si,j ∧
∧

1≤i<j≤k

xi 6= xj ∧ (∀y)
∨

1≤i≤k

y = xi).

Let a1, . . . , ak be a sequence of nodes from UA and observe that

A |= (
∧

1≤i,j≤k

Si,j ∧
∧

1≤i<j≤k

xi 6= xj ∧ (∀y)
∨

1≤i≤k

y = xi)[(x1|a1), . . . , (xk|ak)]

if and only if the function mapping i to ai is an automorphism of A.

As a corollary to Corollary 5 and Theorem 6 we have:

Corollary 6. Let A be a finite graph and V ⊆ UA. V is a definable subset of A if and only if either V = ∅
or there is a sequence of sets O1, . . . , Ok, where each Oi ∈ Orbs(A,Aut(A)), and V = O1 ∪ . . . ∪Ok.

Use Corollary 5 and Theorem 6 to prove this.

It follows at once from Corollary 6, that if A is a finite graph, then the number of definable subsets of A is

2|Orbs(A,Aut(A))|.

Definition 45. We say that a graph A is rigid if and only if Aut(A) = {e}, that is, A has no non-trivial
automorphisms.

It follows at once from Theorem 6 that if A is a finite rigid structure and V ⊆ UA, then V ∈ Def(A).
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Why? Think about what Aut(A) = {e} implies about the orbit of each element (and hence Orbs(A,Aut(A))).

Automorphisms and Degree

In applying our analysis of definability over finite structures in terms orbits to particular examples, it will
be useful to observe the following connections between automorphisms and degree. Let A be a graph and
a ∈ UA. Recall that the neighborhood of a in A is nbh(a,A) := {b ∈ UA | 〈a, b〉 ∈ LA}. The degree of a in
A is deg(a,A) := |{b ∈ UA | 〈a, b〉 ∈ LA}|. We have the following fact:

Proposition 2. For every graph A, a ∈ UA, and h ∈ Aut(A),

h[nbh(a,A)] = nbh(h(a), A).

Hence,
deg(a,A) = deg(h(a), A).

In other words, automorphisms preserve degree.

Show that this follows from the definition of an automorphism.

An example: definable subsets of simple graphs with four nodes

To make this all a little bit more concrete, let’s give a complete analysis of the definable subsets of simple
graphs with four nodes.

We begin by classifying all members of mod(SG, 4) up to isomorphism - that is, we exhibit an example of each
“isomorphism-type” of size-4 simple graph. What does this mean? Recall that for every A ∈ mod(SG, 4),
orb(A,S4) is the set of B such that B ∼= A. Thus, these orbits correspond to the isomorphism types
of structures in mod(SG, 4), and we will make a list that includes exactly one structure from each orbit.
Another way of putting this is that we make a succinct list of structures from mod(SG, 4), that is, a maximal
length list of such structures, no two of which are isomorphic.

In general, if a group G acts on a set X, we may define an equivalence relation ∼ on X by a ∼ b if and only
if there is an f ∈ G such that fa = b. The equivalence class â of an element a ∈ X with respect to this
equivalence relation is the orbit of a under this group action, and the equivalence relation is often referred
to as the orbit equivalence relation. Thus, in the case to hand, the orbit equivalence relation of the action
of Sk on mod(SG, k) we’ve defined is exactly the isomorphism relation.

We already know that |mod(SG, 4)| = 2(4
2) = 26 = 64, and though this is not a very large number, nonetheless,

it will useful to organize our effort systematically in order to compile a succinct list of simple graphs of size
four. If graphs A and B are isomorphic, then they have the same number of edges. Let’s write size(A) for
the number of undirected edges of a simple graph A. We call size(A) the edge-size of A, in contrast to |A|,
which is the number of vertices of A. For A ∈ mod(SG, 4), 0 ≤ size(A) ≤ 6. For each of these seven possible
edge-sizes, we will make a succinct list of the graphs of that edge-size, and then put them together to get a
succinct list of all the simple graphs of size 4.

A simple observation will nearly halve our effort in compiling these lists. For a simple graph A, we define
Ac, the graph complement of A as follows.

Ac : UAc

= UA; 〈i, j〉 ∈ EAc

iff i 6= j and 〈i, j〉 6∈ EA.

If we like, we can visualize a simple graph as having “solid edges” (the edges that are included in the graph)
and “transparent edges” (the edges that are omitted from the graph). Complementation turns the solid
edges transparent, and the transparent edges solid, while retaining the loop-free character of the graph.
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Lemma 4. For all simple graphs A and B and all functions f : UA 7→ UB, f is an isomorphism from A
onto B if and only if f is an isomorphism of Ac onto Bc. Hence,

A ∼= B iff Ac ∼= Bc,

and for all functions f : UA 7→ UA,

f ∈ Aut(A) iff f ∈ Aut(Ac).

Moreover, |orb(A,S4)| = |orb(Ac,S4)|, and |Aut(Ai)| = |Aut(Aj)|.

Prove Lemma 4.

It follows immediately from Lemma 4 that succinct lists of graphs in mod(SG, 4) with edge-size 0 ≤ i ≤ 6,
immediately generate succinct lists with edge-size 6 − i, via complementation. Finally, we are prepared to
compile our lists.

There is a single graph in mod(SG, 4) with no edges which we will call A1. This looks like

1 2

34

A1

By complementation, there is also a single graph with 6 edges.

1 2

34

A2

Up to isomorphism, there is one size-4 graph with a single edge (since we only care about equivalence up to
isomorphism, the labels of the ends of the single edge don’t matter). By complementation, there is a single
size-4 graph with 5 edges.

1 2

34

A3

1 2

34

A4

There are two non-isomorphic size-4 graphs with two edges, and, again by complementation, two such graphs
with 4 edges.
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1 2

34

A5

1 2

34

A6

1 2

34

A7

1 2

34

A8

Lastly, there are three non-isomorphic size-4 simple graphs with three edges. A9 and A10 are complements
of each other, whereas A11, is isomorphic to its own complement.

1 2

34

A9

1 2

34

A10

1 2

34

A11

Verify that these are all of the non-isomorphic graphs of size 4 by beginning with 4 empty nodes and
iteratively constructing all non-isomorphic graphs with increasing number of edges. We will later establish
this via application of Theorem 5.

Now that we have a maximal collection of pairwise non-isomorphic graphs in mod(SG, 4), we can calculate
|orb(Ai,S4)| and |Aut(Ai)| for each 1 ≤ i ≤ 11.

What is |orb(A1,S4)|, or in other words, how many distinct ways can we place 0 edges onto 4 labelled nodes?
There is only one way to do this, so |orb(A1,S4)| = 1. What is |Aut(A1)|, or in other words, how many ways
can we permute the edges of A1 once the edges are fixed in place? There are no edges, so any permutation
of the nodes (of which there are 4! = 24) is valid. It follows that |Aut(A1)| = 24. It follows from Lemma 4
that |orb(A2,S4)| = 1 and |Aut(A2)| = 24 as well.

As another example, let’s calculate |orb(A5,S4)| and |Aut(A5)| (and hence the values for A6 as well). There
are 4 · 3 = 12 ways of placing 2 edges onto 4 nodes such that the two edges are connected as in A5, as there
are 4 choices for the “central” node and

(
3
2

)
= 3 choices for which two other nodes (which we will call leaves)

get connected to the central node. It follows that |orb(A5,S4)| = |orb(A6,S4)| = 12. Once the edges have
been fixed, there are two possible automorphisms: the identity automorphism, and the automorphism which
exchanges the two leaf nodes. It follows that |Aut(A5)| = |Aut(A6)| = 2.

Without too much extra work, we arrive at the complete table:
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Ai |orb(Ai,S4)| |Aut(Ai)|
A1 1 24
A2 1 24
A3 6 4
A4 6 4
A5 12 2
A6 12 2
A7 3 8
A8 3 8
A9 4 6
A10 4 6
A11 12 2

Calculate each of the values not discussed in the examples.

Note the “verification” of the result predicted by the Orbit-Stabilizer Theorem: |orb(Ai,S4)| · |Aut(Ai)| =
|S4|(= 24). Note also that ∑

1≤i≤11

|orb(Ai,S4)| = 64,

thereby confirming that we have accounted for all structures up to isomorphism!

No member of mod(SG, 4) is rigid, as each has non-trivial automorphisms. This suggests an interesting
question: “what is the least n such that mod(SG, n) contains a rigid graph?”

By Corollary 6, calculating Orbs(Ai,Aut(Ai)) suffices to determine which sets are definable in each Ai.

Example 12. What is Orbs(A5,Aut(A5))?

To determine Orbs(A5,Aut(A5)), it suffices to determine the orbits of individual elements. The orbit of node
4 is {4}, as it is the only isolated node. The orbit of 2 is {2}, as it is the only node of degree two. The orbit
of 1 is {1, 3} as 1 is a leaf node, and we had an automorphism that exchanged leaf nodes. As the set of orbits
partition the nodes, the orbit of 3 is {1, 3} as well. It follows that Orbs(A5,Aut(A5)) = {{2}, {4}, {1, 3}}.

A partition of a set S is a collection P of subsets of S such that: (1) every s ∈ S is in some P ∈ P, and (2)
if P, P ′ ∈ P and P ∩ P ′ 6= 0, then P = P ′ (ie, no distinct elements of P overlap).

Orbs(A,Aut(A)) trivially satisfies condition (1), since every node in A is in its own orbit. Complete the
proof Orbs(A,Aut(A)) is a partition of the nodes of A by showing that condition (2) holds.

With a little more work, we arrive at the following table.

Ai Orbs(Ai,Aut(Ai))
A1, A2 {[4]}
A3, A4 {{1, 2}, {3, 4}}
A5, A6 {{2}, {4}, {1, 3}}
A7, A8 {[4]}
A9, A10 {{1, 2, 3}, {4}}
A11 {{1, 4}, {2, 3}}

Derive each of the above sets of orbits yourself, to make sure all the concepts fit into place.
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Definability in Infinite Structures

As we’ve just seen, Corollary 4 leads to a complete analysis of the definable subsets of finite structures -
they are exactly those sets invariant under the action of the automorphism group of the structure. In the
case of infinite structures, Corollary 4 still provides a useful necessary condition for definability, and in some
cases leads to a complete analysis of definability. But there are many infinite structures for which this is no
longer the case, and other methods are required to achieve a satisfactory understanding of definability. We
explore two very different examples in this section.

A Structure With Many Automorphisms: The Integers with Absolute Value

Let A be the infinite graph defined by

UA = Z, LA = {〈i, j〉 | j is the absolute value of i}

(Recall that the absolute value of an integer i is i, if i ≥ 0, and is −i, if i < 0.)

0

−1

1

−2

2

−3

3

etc

abs

abs

abs

abs

abs abs

abs

Every permutation g of Z+ can be extended to an automorphism h of A by setting h(i) = g(i), for i ∈ Z+;
h(0) = 0; and h(i) = −g(−i), for i < 0.

Why is this? The only relation we have in our graph is the absolute-value relation, so our graph looks like
a bunch of pairs n,−n (for n positive) where there is an edge from −n to n and an edge from n to n (ie a
self-loop at n), plus 0 all on its own with a self-loop. So long as we keep 0 fixed in place, permuting any
of our (n,−n)-pairs gives us an automorphism, provided that we match don’t “flip” any of the pairs, that
is, negative numbers (which have in-degree 0) map to negative numbers, and positive numbers (which have
in-degree 2) map to positive numbers. The definition given above ensures this.

Let’s write Z− for the set of negative integers. Thus, Orbs(A,Aut(A)) = {Z+, {0},Z−}. Each orbit of Aut(A)
acting on UA is definable:

• S1[A] = Z+, where S1(x) is (∃y)(y 6= x ∧ Lyx);

• S2[A] = Z−, where S2(x) is (∀y)¬Lyx;

• S3[A] = {0}, where S3(x) is ¬S1(x) ∧ ¬S2(x).

S1[A] = Z+ as the positive integers are the only ones which have in-neighbours distinct from themselves
(because there is an edge from a negative integer to its positive absolute value). Explain in your own words
why S2[A] = Z− and S3[A] = {0}.

By Corollary 6, it follows that there are exactly eight sets definable in A:

1. ∅,
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2. {0},

3. Z+,

4. Z−,

5. Z+ ∪ Z−,

6. Z+ ∪ {0},

7. Z− ∪ {0},

8. Z.

A Rigid Structure: The Natural Numbers with Successor

We now look at another infinite structure B where definability behaves very differently. B is described by:

UB = N, LB = {〈i, j〉 | j = i+ 1}

0 1 2 etc
Succ Succ Succ Succ

A first observation is that Aut(B) = {e}, that is, B is a rigid structure. Intuitively, any automorphism
must map 0 to itself, since it is the only element which doesn’t have anything less than it. Similarly, any
automorphism must map any positive n to itself, since n is the only number with exactly n− 1 predecessors.

We can establish this formally by mathematical induction. Suppose h is an automorphism of B. Since 0 is
the only node of B with in-degree 0, we must have h(0) = 0. Now suppose, as induction hypothesis, that
h(n) = n. Since n+ 1 is the only member of UB to which n is related, it follows from the hypothesis that h
is an automorphism that h(n+ 1) = n+ 1. It follows that for all k ∈ UB , h(k) = k. Hence, Aut(B) = {e}.
This argument suggests that for every k ∈ UB , {k} is definable over B. Let’s show this, again by induction.
First, the schema S0(x) : (∀y)¬Lyx defines {0} over B. Next, as induction hypothesis, suppose that Sn(x)
defines {n} over B. Let z be a variable which does not occur anywhere in Sn(x) and let Sn(z) be the result
of replacing x with z at all its occurrences in Sn(x). Then the schema (∃z)(Sn(z) ∧ Lzx) defines {n + 1}
over B. This completes the induction and establishes that for every k ∈ UB , {k} is definable over B. It
follows at once that every finite subset of UB and every co-finite subset of UB is definable over B.

Why is it important that z be a variable which occurs nowhere in Sn(x)?

What other subsets of UB are definable over B? Note that since B is rigid, there is no possibility of exhibiting
an automorphism h of B with h[X] 6= X, that is, the “automorphism method” is powerless to establish the
undefinability of any subset of UB in B. Could it be that every subset of UB is definable over B?
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3.8 Undefinability

Cantor’s Theorem and Cardinality Arguments

We will show that for every infinite structure C there is a subset X ⊆ UC which is not definable over C.
This result is a corollary to the celebrated Cantor Diagonal Theorem.

Theorem 7 (Cantor). Let U be an infinite set and let V1, V2, . . . be a sequence of subsets of U . There is
subset W of U such that for all i ≥ 1, W 6= Vi.

Proof : Suppose U is an infinite set. Let U∗ = {a1, a2, . . .} be a countably infinite subset of U and let
V1, V2, . . . be a sequence of subsets of U . Let W = {i | ai 6∈ Vi}. Note that for every i, ai ∈W if and only if
ai 6∈ Vi. It follows that for all i, W 6= Vi.

The idea in the above proof is to show that, regardless of which way we list the subsets Vi of U , there will
always be some other subset W of U which is not in the list. We construct W by making sure it differs
from each Vi by at least one element; to do this, it suffices to let ai ∈W iff ai 6∈ Vi.

In order to apply Theorem 7 to questions about definable sets we require the following result.

Theorem 8. For every structure C, there is a sequence V1, V2, . . . of subsets of UC such that for every set
X definable over C, there is an i such that X = Vi.

Proof : Every schema is a finite sequence of symbols drawn from a finite alphabet. Thus, we may arrange
all schemata S(x) in a list S1(x), S2(x), . . ., first ordered by length, and then within length, alphabetically.
We obtain a list V1, V2, . . . of all the sets definable over C by setting Vi = Si[C] for all i.

Theorem 8 entails that we can list all definable subsets of an infinite structure C, and Theorem 7 entails
that no list can exhaust all the definable subsets of an infinite set. So we have our result:

Corollary 7. For every infinite structure C there is a subset X ⊆ UC which is not definable over C.

The Compactness Theorem and Automorphisms of “Non-standard Models”

Of course, this gives us no idea which particular sets are not definable over a given infinite structure. In
the case of the graph B introduced above, we will show that if a set is neither finite nor co-finite, it is not
definable over B. In order to establish this, we will deploy one of the fundamental properties of polyadic
quantification theory: compactness. First, some definitions required to state the Compactness Theorem for
Polyadic Quantification Theory.

Definition 46. A schema S is satisfiable if and only if for some structure A, A |= S.

Definition 47. A set of schemata Γ is satisfiable if and only if there is structure A such that for every
schema S ∈ Γ, A |= S.

Definition 48. A set of schemata Γ is finitely satisfiable if and only if for every finite set ∆ ⊆ Γ, ∆ is
satisfiable.

Theorem 9 (Compactness Theorem). For every set Γ of schemata of polyadic quantification theory, if Γ is
finitely satisfiable, then Γ is satisfiable.

Though the Compactness Theorem makes no mention of the notion of a derivation, one of its well-known
proofs proceeds via the elaboration of a sound and complete formal system for logical deduction. We will
discuss this development in Section ??. For the moment, let’s see how we can apply the Compactness
Theorem to complete the analysis of the definable subsets of the structure B specified above.

Theorem 10. If V ⊆ UB is definable over B, then V is finite or V is co-finite.
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Proof : Suppose toward a contradiction that a schema T (x) defines a set V which is neither finite nor co-
finite over B. Let Λ = {S | B |= S}; Λ is the set of all schemata true in the structure B and is often
called the complete theory of B. Let y and z be fresh variables which occur nowhere in T (x), or any of the
schemata Sn(x) for n ≥ 0 (recall that Sn(x) says that x is the nth successor of the unique element with no
predecessors).

Define the set of schemata Γ as follows.

Γ = Λ ∪ {y 6= z ∧ T (y) ∧ ¬T (z)} ∪ {¬Sn(y) ∧ ¬Sn(z) | n ≥ 0}.

Let ∆ be a finite subset of Γ. As both T [B] and ¬T [B] are infinite by hypothesis, ∆ can be satisfied by B
with suitable assignments from UB to the variables y and z. Hence, by the Compactness Theorem, Γ itself
is satisfiable. Of course, if the structure C satisfies Γ, then C is not isomorphic to B since the the elements
of UC assigned to y and z in C (call them a and b respectively) are not reachable in C from the unique
element of C with no predecessor (whereas every element b ∈ B is reachable in this manner).

We will show that there is an automorphism h of C with h(a) = b. This will yield the desired contradiction,
since C |= T (y|a) and C |= ¬T (z|b).
Note that B, and hence C, satisfy the following schemata.

• (∃x)(∀y)((∀z)¬Lzy ≡ x = y)

• (∀x)(∃y)(∀z)(Lxz ≡ z = y)

• (∀x)(∀y)(∀z)((Lxz ∧ Lyz) ⊃ x = y)

• (∀x)¬Lxx
...
(∀x)(∀y1) . . . (∀yn)¬Lxy1 ∧ Ly1y2 . . . ∧ Lynx
...

The first three schemata guarantee that LC is an injective functional relation which is “almost” surjective –
there is a unique element of UC which lacks a pre-image under the function whose graph is LC . Note that
this guarantees that UC is infinite.

Why does this ensure that UC is infinite?

The final infinite list of schemata guarantee that the the function whose graph is LC contains no finite cycles.
Since C is not isomorphic to B, all this implies that C consists of an LC chain that is isomorphic to B and a
non-empty set of LC chains each of which is isomorphic to Z (the set of all integers) equipped with its usual
successor relation. But, since a and b must lie on one or two of these “Z-chains,” there is an automorphism h
of C with h(a) = b (if they lie on a single Z-chain, shifting the Z-chain works as an automorphism, whereas
if they lie on two Z-chains, interchanging the Z-chains suffices).
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3.9 The Expressive Power of PQT

In the preceding sections we’ve studied aspects of the expressive power of first-order logic. We’ve seen that
various well-known properties of directed graphs can be expressed using schemata of PQT, for example,
reflexivity, transitivity, and symmetry. Moreover, we’ve exhibited several infinite/co-infinite sets, such as
the powers of two, that are spectra of PQT-schemata. Finally, in the immediately preceding section, we’ve
considered which subsets of the universe of a given structure are definable by one variable open schemata over
the structure. We gave a complete analysis of the situation for finite structures in terms of automorphisms
and showed that PQT is expressive as possible in this case, since no logical language can distinguish objects
that lie in the same orbit of the group of automorphisms on a structure. On the other hand, in the infinite
case, we saw that there are intrinsic limitations on definability owing to general cardinality considerations.
Moreover, we saw that special properties of PQT, in particular compactness, enable us to demonstrate
substantial limits to definability over particular infinite structures. In this section, we will explore the
expressive power of PQT in greater depth and consider the extent to which the “whole truth” about a
structure, as expressed by schemata of PQT, can characterize the structure up to isomorphism. Again, we
will observe a dramatic difference between the case of finite and infinite structures.

The Theory of a Structure

When we speak of the “whole truth” about a structure A, we mean the theory of A defined as follows.

Definition 49. The theory of a structure A is the set of all PQT-schemata that are satisfied by A, that is,

Th(A) = {S | A |= S}.

Structures A and B are PQT-equivalent (written A ≡P B) if and only if Th(A) = Th(B). That is, A ≡P B
if and only if A and B are indistinguishable by PQT-schemata.

We have already seen that if structures A and B are isomorphic, then A ≡P B. We turn now to consider
the circumstances under which the converse may hold.

The Finite Case

In the finite case, non-isomorphic structures are distinguishable by schemata of PQT.

Theorem 11. If A is a finite graph and A ≡P B, then A ∼= B. Indeed, for every finite graph A, there is a
schema S such that for every graph B,

B |= S if and only if B ∼= A.

Proof Sketch: Intuitively, if a graph is finite, you only need to specify finitely many things about it, that
is, how many nodes there are and which of these are connected by edges, in order to describe it up to
isomorphism. In fact, this is exactly what done in the proof sketch of Theorem 6. We encourage the reader
to refer to that proof and supply the necessary details here.

The Infinite Case

The following result stands in sharp contrast to Theorem 11.

Theorem 12. For every infinite graph A, there is a graph B, B ≡P A, but B 6∼= A.

Theorem 12 is a corollary to Theorem 7 and the following proposition, which is a version of the Löwenheim-
Skolem Theorem.
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Theorem 13. For every infinite graph A and every infinite set X, there is an infinite graph B such that
UB = X, and A ≡P B.

Proof Sketch of Theorem 12: It follows at once from Theorem 7 that for every infinite graph A there is
an infinite set X such that there is no bijection from UA onto X. By Theorem 13, there is a graph B such
that UB = X and A ≡P B. But then there is no bijection from UA onto UB , hence B 6∼= A.
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3.10 Satisfiability and Implication

Up to this point, we have focussed primarily on questions surrounding the expressive power of polyadic
quantification theory. Which classes of structures can be characterized by (sets of) schemata of polyadic
quantification theory? Which sets of numbers are the spectra of schemata? What subsets of the universe
of discourse of a structure can be defined by schemata? We now turn to the study of satisfiability and
implication in the context of polyadic quantification theory.

Definition 50. A structure A satisfies a set of PQT schemata X (A |= X) if and only if for every schema
S ∈ X, A |= X. A set of PQT schemata is satisfiable if and only if there is a structure A such that A |= X.
A set of PQT schemata X implies a schema S if and only if for all structures A, if A |= X, then A |= S.

Thus, in order to show that a schema S is not implied by a set of schemata X, it suffices to present a
counterexample, that is, a structure A such that A |= X and A 6|= S, in other words, a structure A that
satisfies X∪{¬S}. Moreover, a set of schemata X is satisfiable if and only if it does not imply an unsatisfiable
schema, for example, (∃x)x 6= x. Hence, questions concerning satisfiability and questions concerning failure
of implication can be reduced to one another. We give an example here to illustrate the subtlety of questions
concerning the satisfiability of sets of schemata; in later sections we will explore implication and satisfiability
more systematically.

Let S be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)

• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx

• (∀x)((∃y)Lxy ⊃ (∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy)))

• (∀x)((∃y)Lyx ⊃ (∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx)))

• ¬(∀x)(∃y)Lyx

• ¬(∀x)(∃y)Lxy

For each n ≥ 2, let Rn be the schema,

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

Lxixj .

Finally, let X = {S} ∪ {Rn | n ≥ 2}.
Is there a structure A that satisfies X? The conjunction of the first three schemata require of any such
structure A that LA be a strict linear ordering of UA. The fourth and fifth conjuncts require that this order
be “discrete,” that is, every element with a predecessor has an immediate predecessor, and every element
with a successor has an immediate successor. The sixth and seventh conjuncts say that there is a first and
last element with respect to the order. The last set of schemata require that UA is an infinite set.

At first, you may think that X is not satisfiable - after all, a discrete linear order with endpoints certainly
sounds like it must be finite. Intuition is often tricky when dealing with the infinite, though, so it’s best to
be careful. In fact, the union of the first seven schemata with any finite subset ∆ of the set {Rn | n ≥ 2} is
satisfiable - if m is the largest integer for which Rm appears in ∆, a strict linear order of size m suffices. So
every finite subset of X is satisfiable, and hence, by the Compactness Theorem, X itself is satisfiable.

Since X is satisfiable, there is a structure A such that A |= X. In general, even if we can show that a set
of sentences is satisfiable, it may be quite difficult to exhibit a structure that satisfies it.14 In the current
example, we may easily exhibit a structure A satisfying X.

14This may even be the case when we can prove that there is a finite structure A satisfying a given schema S, as we discuss
further below.
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• UA = Z.

• LA = {〈i, j〉 | (0 ≤ i and j < 0) or (i < j and (0 ≤ i, j or i, j < 0))}.

Explain why A |= X.
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3.11 Review

Concept Review

Isomorphisms: An isomorphism is a function which preserves the structure of a model. Formally, an
isomorphism from A onto B is a bijection f from UA to UB such that 〈f(i), f(j)〉 ∈ LB ⇐⇒ 〈i, j〉 ∈ LA.

Automorphisms: An automorphism an isomorphism from a structure A onto itself; in other words,
it is an isomorphism which leaves the edge-set unchanged. Aut(A) is the set of automorphisms of A.

Image of a Structure: The structure f [A], the image of A under the function f , is the structure
with the same universe as A and with the edge relation defined by Lf [A] := {〈f(i), f(j)〉 | 〈i, j〉 ∈ LA}.
Orbit of a node: The orbit of a node a in a graph A is the set of all images of that node under
automorphisms of the graph. Intuitively, this is the set of all nodes which “look the same, structurally”
as a.

Orbit of a graph: The orbit of a graph A ∈ mod(SG, k) under the action of Sk (the permutation
group on [k]) is the set of all graphs B ∈ mod(SG, k) such that A ∼= B.

Definability in the Finite: The definable subsets of a finite graph are exactly the unions of orbits of
its nodes. We categorized all size-4 simple graphs and found all of their definable subsets.

Definability in the Infinite: Every definable subset of an infinite graph is a union of orbits of (some)
of its nodes. It is not the case (in general) that every orbit is definable, nor every union thereof, however,
so one must give an explicit schema which defines an orbit in order to assert that it is definable. We saw
the examples of the integers with absolute-value and the natural numbers with successor. In the former
case, we showed that there were 8 possible definable sets, generated by the three orbits {0},Z−,Z+.
In the latter case, we used the Compactness Theorem to show that the only definable subsets were the
finite and cofinite sets.

Orbit-Stabilizer Theorem: We gave a proof for the Orbit-Stabilizer Theorem, which states that
|Sn| = |orb(A,Sn)| · |Aut(A)|.
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Problems

1. We say that a list L of structures is succinct iff no pair of structures on the list are isomorphic.
Give a maximal succinct list of mod(S, 3) where

S := (∀x)(∃y)(∀z)(Lxz ≡ z = y)

2. For each structure A in your list L and each O ∈ Orbs(A,Aut(A)), give a schema S(x) such that
S[A] = O.

3. Let A be the structure with triadic predicate P defined by

UA = Z, PA = {〈i, j, k〉 | |i− j| = k}

Is X = {i ∈ Z | i < 0} definable in A?

4. Let B be the structure with triadic predicte Q defined by

UB = Z, QB = {〈i, j, k〉 | i+ j = k}

Is X = {i ∈ Z | i < 0} definable in B?

5. Let X be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)
• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx
• (∀x)(∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy))

• (∀x)(∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx))

• (∀x)(∃y)(Lyx ∧ Fy)

• (∀x)(∃y)(Lxy ∧ Fy)

• (∀x)(∀y)((Fx ∧ Fy ∧ Lxy) ⊃ (∃z)(Fz ∧ Lxz ∧ Lzy))

Is X satisfiable?

6. Let
X = (∃=5x) ∧ (∀x)(¬Lxx) ∧ (∀xy)(Lxy ⊃ Lyx)

S = (∃xyz)(Lxy ∧ Lxz ∧ Lyz) ∨ (∃xyz)(¬Lxy ∧ ¬Lxz ∧ ¬Lyz ∧ x 6= y ∧ x 6= z ∧ y 6= z)

Does X imply S? If so, give a deduction. If not, give a counterexample.

7. Let S be the schema
(∀x)(Fx ⊃ (∃y)(¬Fy ∧ (∀z)(Lxz ≡ y = z)))

For each n ≥ 2, let Rn be the schema

(∀y)(¬Fy ⊃ (∃x1) . . . (∃xn)
∧

1≤i<j≤n

(xi 6= xj ∧ Fxi ∧ Lxiy));
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and for each n ≥ 2, let Tn be the schema

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

(xi 6= xj ∧ ¬Fxi).

Let X = {S,Rn, Tn | n ≥ 2}.
Is X satisfiable?
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Solutions

1. S suffices to say that L is a function. Drawing size-3 graphs leads us to the following maximal
collection.

A B C D

E F G

1

3

2
1

3

2 1

3

2 1

3

2

1

3

2 1

3

21

3

2

2. Let O1 = {1}, O2 = {2}, O3 = {3}, O4 = {2, 3}, O5 = {1, 2, 3}. Then

• Orbs(A,Aut(A)) = {O5}. This can be defined by the schema x = x.

• Orbs(B,Aut(B)) = {O1, O2, O3}. O1 can be defined by Lxx ∧ (∃y)(Lyx ∧ y 6= x), O2 can be
defined by Lxx ∧ ¬(∃y)(Lyx ∧ y 6= x), and O3 can be defined by ¬Lxx.

• Orbs(C,Aut(C)) = {O1, O4}. O1 can be defined by Lxx, and O4 can be defined by ¬Lxx.

• Orbs(D,Aut(D)) = {O1, O2, O3}. O1 can be defined by Lxx, O2 can be defined by (∃y)(Lyx∧
x 6= y), and O3 can be defined by ¬(∃y)Lyx.

• Orbs(E,Aut(E)) = {O1, O4}. O1 can be defined by Lxx, and O4 can be defined by ¬Lxx.

• Orbs(F,Aut(F )) = {O1, O2, O3}. O1 can be defined by ¬(∃y)Lyx, O2 can be defined by
(∃yz)(Lyx ∧ Lxz ∧ z 6= y), and O3 can be defined by (∃y)(∀z)(Lzx ≡ y = z).

• Orbs(G,Aut(G)) = {O5}. This can be defined by the schema x = x.

3. Yes, it is definable. PA is the distance relation; 〈i, j, k〉 ∈ PA iff the distance between i, j is k.
No two numbers have a negative distance, so we can define the set of all negative numbers by the
schema

(∀yz)(¬Pyzx)

4. No, it is not definable. The function h defined by h(i) = −i is an automorphism of B, but
h[X] 6= X.

5. X does not imply S. X states that we have a simple graph of size 5, and S expresses the three-
mutuality that we considered on day 1 of class. We shows that a “friendship pentagon” lacked
3-mutuality; that same pentagon acts as a counterexample here.

6. Yes, it is. To show this, we give a satisfying model for X. Recall that Z is the set of integers and
Q+ is the set of positive rational numbers. Let A be defined by
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• UA = Q+ × Z = {〈r, i〉 | r ∈ Q+ and i ∈ Z} (the cartesian product of Q+ and Z).

• LA = {〈〈r, i〉, 〈s, j〉〉 | r < s} ∪ {〈〈r, i〉, 〈s, j〉〉 | r = s and i < j}.

Then A |= X.

7. Yes, it is. We show that X is satisfiable by constructing a structure B with B |= X. B is defined
by

• UB = Z+.

• FB = {2i | i ∈ Z+}.
• LB = {〈2i · j, j〉 | i ∈ Z+ and j 6∈ FB}.
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