
Tutorial outline 
u Core sentiment analysis (SA) methods 

l  Simple: using lexica (dictionaries) 
l  Aspect-based: using information extraction 

u Machine learning for SA 
l  Unsupervised: open language SA (LDA) 
l  Supervised: regression and deep learning 

u SA extensions 
l  Generalized sentiment: person and community  
l  Multilingual, multimedia 
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Generalized sentiment: 
emotion, personality, and 

subjective well-being 
Johannes Eichstaedt, Peggy Kern, Marty Seligman, 

Andy Schwartz 
 

Lyle Ungar 



Communication is more than facts 
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Photo credit: https://onlinelearninginsights.wordpress.com/
2016/06/07/need-to-know-news-chatbots-the-new-online-
teaching-assistant-and-credit-worthy-moocs-go-global/ 

Can I help 
you? 

What are you 
in the mood 
to buy? 



Sentiment beyond like/dislike 
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u What people feel 
l  Emotion 
l  Stress 
l  Empathy 

u Who people are 
l  Personality 

u What communities think and feel 

http://www.cio.com/article/facial-expressions-test http://www.cio.com/article/facial-expressions-test http://www.cio.com/article/facial-expressions-test 

States 

Traits 



Emotion 
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u anger,  
u  fear,  
u disgust, 
u happiness, 
u sadness,  
u surprise 

http://www.cio.com/article/
facial-expressions-test 
 



Other universal emotions 
u Amusement 
u Contempt 
u Contentment 
u Embarrassment 
u Excitement 
u Guilt 

u Pride in achievement 
u Relief 
u Satisfaction 
u Sensory pleasure 
u Shame 

6 
Paul Ekman 



Use hashtags as labels 
u “distant supervision” 
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Using Hashtags to Capture Fine 
Emotion Categories from Tweets 



Personality – 5 Factor Model 
u extroversion vs. introversion  

l  sociable, assertive vs. aloof, shy 
u neuroticism vs. emotional stability 

l  insecure, anxious vs. calm, unemotional 
u agreeableness (high vs. low) 

l  friendly, cooperative vs. antagonistic, fault-finding 
u conscientiousness (high vs. low) 

l   self-disciplined, organized vs. inefficient, careless 
u openness to experience vs. conventionality 

l   intellectual, insightful vs. shallow, unimaginative 
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Emotion correlates with personality 

As do words, images, Facebook likes … 
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Or get people to label words 
u Linguistic Inquiry and Word Count (LIWC) 

l  POSEMO, NEGEMO …. 
u WordNet Affect 
u NRC Emotion Lexicon 
Dodds hedonometer 
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Like most SA, a different use of NLP  
Historically: 
u what people say 

l  Information extraction, question answering, …   
Today: 
u how people say it 

l  Language variation with gender, age, personality, 
education, mood, health, stress, optimism, 
empathy, depression, satisfaction with life 
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??? 



Closed vs. Open Language 
u Closed: use a lexicon 
u Open: use words, LDA topics 
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Person-level models require 
different data collection 
u Not just using people to generate labels 
u But learning about people 

l  People share their social media and  
n  take questionnaires 
n  or share their medical record 
n  or shopping history, … 
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LIWC happiness lexicon 

14 

�  heartfelt 
�  heaven* 
�  heh* 
�  helper* 
�  helps 
�  hilarious 
�  hoho* 
�  honest* 
�  honour* 
�  hoped 
�  hopefully 
�  hopes 

�  terrific* 
�  thank 
�  thanked 
�  thanks 
�  toleran* 
�  treasur* 
�  treat 
�  trueness 
�  truer 
�  truest 
�  truly 
�  trust* 
�  values 
�  valuing 

 
• accept 
• accepta*  
• accepts  
• advantag*  
• agreeing  
• …. 
• happy 
• … 
• merry 
• …. 

Pennebaker 



Blogger Happiness 
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Measuring the Happiness of Large-Scale Written 
 Expression: Songs, Blogs, and Presidents 
Dodds and Danforth 2010 



Twitter Happiness 
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Diurnal and Seasonal Mood Vary with Work, Sleep, and 
Daylength Across Diverse Cultures 
Golder* and Macy (2011) 

Positive 
Affect 

Negative 
Affect 

Hour of day 



Facebook Gross National Happiness 
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Kramer, A. D. I. (2010). An unobtrusive model of "gross national 
happiness.”  Proc. CHI, 2010,  ACM Press, 287-290. 



Facebook Gross National Happiness 
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Kramer, A. D. I. (2010). An unobtrusive model of "gross national 
happiness.”  Proc. CHI, 2010,  ACM Press, 287-290. 

What are they measuring? 

Jan 1 
Dec 25 

Nov 25 



Be careful about ambiguity 
u Happy birthday 
u Merry Christmas 
u Michael Jackson is dead 
u Great Britain 
u Legal tender 
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Lexicon-based results can be flawed 



Open-vocabulary personality 
estimation from Facebook 

u Use Facebook posts, demographics and personality 
tests from 70,000 people 
l  To find words that most correlate with sex, age, IQ, happiness, 

personality 
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wwbp.org 



Open Vocabulary Analysis Method 
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Modeling Individuals 
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N=70,000 



Females 
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Males 
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Females 

25 



Males 
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Extraversion 
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Intraversion 
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Neurotic words 
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Well-adjusted (non-neurotic) words 
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32 



Language vs. Friends 
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Language predicts 
Personality as well 
As friends do. 

R = 0.4 



Depression 
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Depression – low mood 
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Depression – low self-worth 
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Depression (ER sample) 
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High Stress 



Low Stress 



Salutogenic empathy 



Pathogenic empathy 



Visualization is important 
u Changes in sentiment over time 
u Differences between populations by 

l  Demography etc. 
n  Age, sex, country of origin 
n  Income, education, political orientation 

l  Location 
l  Time of day 
l  Device 
l  … 
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Life stages 



Alcohol consumption 



Older people are less negative 



Older people are more positive 



Older people are more other-oriented 

I 
 
we 



Person-level Takeaways 
u Language reveals personality, conveys emotions 

l  Images do too! 
u Crowdsourcing lets us predict personal traits from 

language  
l  Age, sex, race 
l  Personality 
l  Stress, burnout, emotion, life satisfaction 
l  Political beliefs 
l  Mental and physical health 
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The World Well Being Project 
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wwbp.org 


