

Deep learning is taking over

Face/Object/Scene recognition

• Self driving cars

Speech recognition ("speech to text")

- Siri, ...
- Machine translation
 - Google translate
- Sentiment analysis?

Deep learning core idea

- ♦ y = f(x)
 - Where we don't know the functional form of f(x)
- Given vast amounts of labeled training data we should be able use a very flexible model to fit f(x;w)

Sentiment analysis sometimes fits this form

- y = product rating
- **x** = review

Flexible model forms

Xybiopsy imageCancer present?

Flexible model forms

X y Camera image Objects in it

Lyle H Ungar, University of Pennsylvania

5

Artificial Neural Nets

Non-parametric

- Or, technically, semi-parametric
- Flexible model form

Used when there are vast amounts of data

- Hence popular (again) now
- But recently with slightly smaller training sets.

Deep networks

• Idea: representation should have *many* different levels of abstraction

Neural Nets can be

Supervised

• Generalizes *logistic regression* to a semi-parametric form

Unsupervised

• Generalizes PCA to a semi-parametric form

Neural nets often have built in structure

"Real" and Artificial neuron

One neuron does logistic regression

Neural Nets stack logistic regressions

Neural Nets stack logistic regressions

ANNs do pattern recognition

♦ Map input "percepts" to output categories or actions

- Image of an object → what it is
- Image of a person \rightarrow who it is (or how they are feeling)
- Picture \rightarrow caption describing it (or the sentiment it evokes)
- A word → the sound of saying it (or the sentiment it evokes)
- Sound of a word → the word
- Sequence of words in English \rightarrow their Chinese translation

Special ANNs for handling time series

• E.g. sequences of words

Street View House Numbers

- Classify 32x32 color images of digits
- Digits taken from housenumbers in Google Street View
- **Train:** 604,388
- **Test:** 26,032

Error (%)	Method	Reference	
36.7	WDCH	Netzer et al. (2011)	
15	HOG	Netzer et al. (2011)	
9.4	KNN	Netzer et al. (2011)	
2.47	conv-DNN	Goodfellow et al. (2013)	
2	Human	Netzer et al. (2013)	
1.92	conv-DNN	Lee et al. (2015)	14
SINE MORIBUS			

Static Deep Learning

- Supervised neural nets generalize logistic regressions of logistic regressions
 - First layers do data-driven feature transformations
 - Later layers find "deeper" features
- Estimated using "minibatch" stochastic gradient descent plus chain rule ("backpropagation")
- Often used together with unsupervised neural nets
 - Pretraining or dimensionality reduction

For image recognition, neural nets often have built in structure – local receptive fields and max-pooling

Recurrent Neural Nets

Generalize HMMs or Linear Dynamical Systems

• Hidden state dynamical models, but nonlinear

Needed if you have inputs of varying length

- E.g. sequence of observations
 - speech
 - text
 - robots
 - videos

Simple Recurrent Neural Net

$$s_t = \tanh(Ux_t + Ws_{t-1})$$

$$o_t = \operatorname{softmax}(Vs_t)$$

Softmax $\sigma(\mathbf{z})$ transforms the K-dimensional real valued output \mathbf{z} to a distribution – *like logistic regression*

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \quad ext{for } j = 1, \, ..., \, K.$$

istory is forgotten with an exponential decay

Lyle H Ungar, University of Pennsylvania http://deeplearning.net/tutorial/lstm.html

Recurrent Neural Nets

- Can predict the next observation given the past observations
- Or can map one sequence to another sequence
 - An encoder
 - sentence (sequence of words) to vector
 - A decoder
 - vector to sentence (sequence of words)

LSTM encodes a sentence

Jeff Dean, google

https://www.youtube.com/watch?v=90-S1M7Ny_o&spfreload=1

Encode and Decode = translate

... or a chatbot

It works (sort of)

User> hello , i have a problem with my machine BrainStop> hi BrainStop> this is shiva . BrainStop> how are you doing today ? User> hi shiva , how are you ? BrainStop> i ' m fine , thank you ! BrainStop> how may i assist you today ? User> i want to access using vpn BrainStop> currently the computer is connected to corp network ? User> no BrainStop> check this solution : BrainStop> check this solution : BrainStop> https : // INTERNAL_HOSTNAME_REDACTED / articles / connecting - to disconnecting - from - ssl - vpn # heading - 4 User> thanks , bye ! BrainStop> thank you .

Can map images to words

Connect sequence and image models, you get a captioning system

It works (sort of)

A man holding a tennis racquet on a tennis court.

A group of young people playing a game of Frisbee

Two pizzas sitting on top of a stove top oven

A man flying through the air while riding a snowboard

Lyle H Ungar, University of Pennsylvania

Input to RNN

- Words ("one-hot")
- Characters ("one-hot")
- Word embeddings
 - Typically 300 dimensional

Dynamic Network Summary

- ♦ Gated Neural Nets/LSTMs generalize HMMs
 - Dominate speech to text and machine translation
- Lots of black magic "engineering"
 - Unclear what matters about the network structure
 - depth, loss functions, regularization?
 - gating forms (LSTM, GRNN ...)?
 - attention methods?
 - gradient descent
- Good software: tensorflow, theano ...
- They are starting to be used in sentiment analysis

In a spoken dialog system, how frustrated is the speaker?

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts Improves accuracy from 80% up to 85.4%.

Parse tree for sentiment

Training: label phrases

nerdy folks

phenomenal fantasy best sellers

Really uses negative, somewhat negative, neutral, somewhat positive, positive

Learn recursive neural net

Compute parent vectors in a bottom up fashion using a compositionality function g and use node vectors as features for a classifier at that node.

Single Neural Tensor Layer

V weight tensor W weight matrix b, c word vectors

Minimize error

- **t** = target distribution (1 for correct class 0 for others)
- **y** = network output
- **Θ** = network parameters V, W, …

$$E(\theta) = \sum_{i} \sum_{j} t_{j}^{i} \log y_{j}^{i} + \lambda \|\theta\|^{2}$$

Sum over the nodes *i*, class *j*

Minimize error

$$E(\theta) = \sum_{i} \sum_{j} t_{j}^{i} \log y_{j}^{i} + \lambda \|\theta\|^{2}$$

Contrastive conjunction

SINE MORIBUS

Negation

Negation

Positive and negative n-grams

5	Most positive <i>n</i> -grams	Most negative <i>n</i> -grams
	engaging; best; powerful; love; beautiful	bad; dull; boring; fails; worst; stupid; painfully
	excellent performances; A masterpiece; masterful	worst movie; very bad; shapeless mess; worst
	film; wonderful movie; marvelous performances	thing; instantly forgettable; complete failure
	an amazing performance; wonderful all-ages tri- umph; a wonderful movie; most visually stunning	for worst movie; A lousy movie; a complete fail- ure; most painfully marginal; very bad sign
	nicely acted and beautifully shot; gorgeous im- agery, effective performances; the best of the	silliest and most incoherent movie; completely crass and forgettable movie; just another bad
	year; a terrific American sports movie; refresh- ingly honest and ultimately touching	movie. A cumbersome and cliche-ridden movie; a humorless, disjointed mess
	one of the best films of the year; A love for films shines through each frame; created a masterful	A trashy, exploitative, thoroughly unpleasant ex- perience ; this sloppy drama is an empty ves-
	piece of artistry right here; A masterful film from a master filmmaker.	sel.; quickly drags on becoming boring and pre- dictable.: be the worst special-effects creation of
		the year

Where is deep learning going?

Attention models to find the relevant parts of longer documents

- Most sentiment analysis is done using product reviews, which implicitly label a whole review
 - Labeling all the phrases is too expensive

Multi-modal

- All image analysis uses deep learning
- Semi-supervised learning
 - Learn a model to e.g. recognize smiling faces
 - Then use its outputs as features for SA
 - Or use the outputs of the penultimate layer
 - Lyle H Ungar, University of Pennsylvania