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Deep Learning

for sentiment analysis

Based on slides from C.J. Taylor, Alex
Krizhevsky, llya Sutskever, Geoff Hinto
Jeff Dean, Richard Socher, Lyle Ungar




Deep learning is taking over

¢ Face/Object/Scene recognition
e Self driving cars

¢ Speech recognition (“speech to text”)
° Siri,

¢ Machine translation
o Google translate

¢ Sentiment analysis?

Lyle H Ungar, University of Pennsylvania



Deep learning core idea

¢y =f(x)
o Where we don’t know the functional form of f(x)
< Given vast amounts of labeled training data we
should be able use a very flexible model to fit f(x;w)

¢ Sentiment analysis sometimes fits this form
e Yy = product rating
o X =review

Lyle H Ungar, University of Pennsylvania



Flexible model forms

X y
biopsy image Cancer present?
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Flexible model forms

X y
Camera image Objects in it
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Flexible model forms
X y
English sentence Translation

English - detected ~ & o) & Arabic v

| love machine
|earning 'uhibb taelam alala

Open in Google Translate
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Artificial Neural Nets

¢ Non-parametric
e Or, technically, semi-parametric
o Flexible model form
¢ Used when there are vast amounts of data
e Hence popular (again) now
o But recently with slightly smaller training sets.
¢ Deep networks
o |dea: representation should have many different levels
of abstraction
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Neural Nets can be

¢ Supervised
o Generalizes logistic regression to a semi-parametric form

¢ Unsupervised
o Generalizes PCA to a semi-parametric form

Neural nets often have built in structure

Lyle H Ungar, University of Pennsylvania



“Real” and Artificial neuron
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http://cs231n.github.io/neural-networks-1/
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One neuron does logistic regression

b: We can have an “always on”

h (x) = f(wa + b) <«— feature, which gives a class prior,
w.,b . .
or separate it out, as a bias term
1

JS(2)= " .

+e -
X1
X 6 2 2 % 2 51 6
hw,b(x)
X3
44 w, b are the parameters of this neuron
i.e., this logistic regression model
] Socher and Manning tutorial
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Neural Nets stack logistic regressions

_—
hvmb(x)

Layer L,

Every line represents a
Layer L, parameter in the model

P Lyle H Ungar, University of Pennsylvania (



Neural Nets stack logistic regressions

—
P (x)
R —
+1 Layer L,
Layer L,

Every line represents a
parameter in the model,
estimated using gradient
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ANNs do pattern recognition

¢ Map input “percepts” to output categories or actions
Image of an object — what it is

Image of a person — who it is (or how they are feeling)
Picture — caption describing it (or the sentiment it evokes)

A word — the sound of saying it (or the sentiment it evokes)
Sound of a word — the word

Sequence of words in English — their Chinese translation

¢ Special ANNs for handling time series
e E.g. sequences of words

Lyle H Ungar, University of Pennsylvania
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Street View House Numbers
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Static Deep Learning

¢ Supervised neural nets generalize logistic regressions of

logistic regressions
o Firstlayers do data-driven feature transformations
o Later layers find “deeper” features

¢ Estimated using “minibatch” stochastic gradient descent
plus chain rule (“backpropagation”)

& Often used together with unsupervised neural nets
e Pretraining or dimensionality reduction

For image recognition, neural nets often have built in

— structure - local receEtive fields and max-EooIing

Lyle H Ungar, University of Pennsylvania
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Recurrent Neural Nets

¢ Generalize HMMs or Linear Dynamical Systems
o Hidden state dynamical models, but nonlinear

¢ Needed if you have inputs of varying length
o E.g. sequence of observations
= Speech
= text
= robots
= Videos

Lyle H Ungar, University of Pennsylvania



Simple Recurrent Neural Net

O
sy = tanh(Uxy, + Ws,_ 1) O
o, = softmax(V s;) %4 -
= input (e.g. a word) ) -
= hidden state "
= output (e.g. probability of the next word)
y, = true value (e.g. x;,,) x
Softmax o(z) transforms the e - -
K-dimensional real valued 77 = S5 - /=T K

output z to a distribution -
l/ke logistic regression.,

istory is forgotten with an exponential decay

30@\753‘3 Lyle H Ungar, University of Pennsylvania 18




Long Short Term Memory (LSTM)

o LSTMisakind of gated RNN '~ OIUX* Ws,y)
e All of these gates have weights f= ofUxi+ Wis,y)
which are sigmoidal functions of 0 = ofUx+ Wos,,)
weightedinputs h = tanh(Unx+ Whs, )

S, — hidden state — ;
0= output gate (not output) ~ forget gate Ct— f ‘;gtn;_'l' [oh

recurrent

| s = ocdlamdoey)

f f
Ct.1
p Mmemory cell ol , |, Mmemory cell
input ; T c.=foc. +i°h o output

| I
Input gate output gate

@ .
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Recurrent Neural Nets

¢ Can predict the next observation given the past
observations
¢ Or can map one sequence to another sequence
e An encoder
= Sentence (sequence of words) to vector

o A decoder
= vector to sentence (sequence of words)

Lyle H Ungar, University of Pennsylvania



LSTM encodes a sentence

=

Jeff Dean, google
https://www.yOt%tu Ibe.com/watch?v=90-

@8
g e Lyle H Ungar, University of Pennsylvania 21



Encode and Decode = translate

— e,

Jeff Dean, google
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... or a chatbot

Lyle H Ungar, University of Pennsylvania
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It works (sort of)

User> hello , i have a problem with my machine

BrainStop> hi

BrainStop> this is shiva.

BrainStop> how are you doing today ?

User> hi shiva , how are you ?

BrainStop> i ' m fine , thank you !

BrainStop> how may i assist you today ?

User> i want to access using vpn

BrainStop> currently the computer is connected to corp network ?
User> no

BrainStop> check this solution :

BrainStop> https : // INTERNAL_HOSTNAME_REDACTED / articles / connecting - to -
disconnecting - from - ssl - vpn # heading - 4

User> thanks , bye !

BrainStop> thank you .

& Jeff Dean, google
D
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Can map imaages to words

Connect sequence and image models, you get a
captioning system
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It works (sort of) _

A man holding a tennis racquet Two pizzas sitting on top
on a tennis court. of a stove top oven

A group of young people A man flying through the air
= eun) laying a game of Frisbee while riding a snowboard

Lyle H Ungar, University of Pennsylvania Jeff Dean. CIOO(J@



Input to RNN

¢ Words (“one-hot”)
¢ Characters (“one-hot”)

¢ Word embeddings
e Typically 300 dimensional
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Dynamic Network Summary

¢ Gated Neural Nets/LSTMs generalize HMMs
e Dominate speech to text and machine translation

¢ Lots of black magic “engineering”
o Unclear what matters about the network structure
=« depth, loss functions, regularization?
= gating forms (LSTM, GRNN ...)?
= attention methods?
= gradient descent

¢ Good software: tensorflow, theano ...
¢ They are starting to be used in sentiment analysis

Lyle H Ungar, Univer’sity of Pennsylvania
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L
‘Recursive Deep Models for Semantic

Compositionality Over a Sentiment
Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu,
Jason Chuang, Christopher D. Manning,
Andrew Y. Ng and Christopher Potts

Improves accuracy from 80% up to 85.4%.




Parse tree for sentiment

O
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This film :
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about O ©
® ©O @ (+)
© NOJNO @ ®
© 0 wit  any o © of .
cleverness - other kind intelligent humor
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Training: label phrases

nerdy folks

[ J
| | | | | | |

Very Negative Somewhat Neutral Somewhat Positive Very
negative negative positive positive

phenomenal fantasy best sellers

Very Negative Somewhat Neutral Somewhat Positive Very
negative negative positive positive

Really uses negative, somewhat negative, neutral,
— somewhat positive, positive
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Learn recursive neural net

oo P2 = g(a,p1)

not very good..
a b C

Lyle H Ungar, University of Pennsylvania

Compute parent
vectors in a bottom up
fashion using a
compositionality
function g and use
node vectors as
features for a classifier
at that node.

32



Single Neural Tensor Layer
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- Tensor Layer Layer N
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Minimize error

t = target distribution (1 for correct class 0 for others)
y = network output
O = network parameters V, W, ...

E@) =) Y tilogy:+ A0
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Contrastive conjunction

& “A but B”
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Negation

Roger Dodger

most compelling least compelling

Lyle H Ungar, University of Pennsylvania 37




Negation

single minute . single minute .
& this  film &em this  film
x}@-‘s
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Positive and negative n-grams

Most positive n-grams

Most negative n-grams

engaging; best; powerful; love; beautiful
excellent performances; A masterpiece; masterful
film; wonderful movie; marvelous performances
an amazing performance; wonderful all-ages tri-
umph; a wonderful movie; most visually stunning
nicely acted and beautifully shot; gorgeous im-
agery, effective performances; the best of the
year; a terrific American sports movie; refresh-
ingly honest and ultimately touching

one of the best films of the year; A love for films
shines through each frame; created a masterful
piece of artistry right here; A masterful film from
a master filmmaker,

bad; dull; boring; fails; worst; stupid; painfully
worst movie; very bad; shapeless mess; worst
thing; instantly forgettable; complete failure

for worst movie; A lousy movie; a complete fail-
ure; most painfully marginal; very bad sign
silliest and most incoherent movie; completely
crass and forgettable movie; just another bad
movie. A cumbersome and cliche-ridden movie;
a humorless, disjointed mess

A trashy, exploitative, thoroughly unpleasant ex-
perience ; this sloppy drama is an empty ves-
sel.; quickly drags on becoming boring and pre-
dictable.; be the worst special-effects creation of
the year

Lyle H Ungar, University of Pennsylvania 39



Where is deep learning going?

¢ Attention models to find the relevant parts of

longer documents
o Most sentiment analysis is done using product reviews,
which implicitly label a whole review
=« Labeling all the phrases is too expensive

¢ Multi-modal
o All image analysis uses deep learning

¢ Semi-supervised learning
e Learn a model to e.g. recognize smiling faces
e Then use its outputs as features for SA
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