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How do people know as much as they do with as little information as they get? The problem takes

many forms; learning vocabulary from text is an especially dramatic and convenient case for research.

A new general theory of acquired similarity and knowledge representation, latent semantic analysis

(LSA), is presented and used to successfully simulate such learning and several other psycholinguistic

phenomena. By inducing global knowledge indirectly from local co-occurrence data in a large body

of representative text, LSA acquired knowledge about the full vocabulary of English at a comparable

rate to schoolchildren. LSA uses no prior linguistic or perceptual similarity knowledge; it is based

solely on a general mathematical learning method that achieves powerful inductive effects by ex-

tracting the right number of dimensions (e.g., 300) to represent objects and contexts. Relations to

other theories, phenomena, and problems are sketched.

Prologue

"How much do we know at any time? Much more, or so I believe,

than we know we know!"

—Agatha Christie, The Moving Finger

A typical American seventh grader knows the meaning of

10-15 words today that she did not know yesterday. She must

have acquired most of them as a result of reading because (a)

the majority of English words are used only in print, (b) she

already knew well almost all the words she would have encoun-

tered in speech, and (c) she learned less than one word by direct

instruction. Studies of children reading grade-school text find

that about one word in every 20 paragraphs goes from wrong

to right on a vocabulary test. The typical seventh grader would

have read less than 50 paragraphs since yesterday, from which

she should have learned less than three new words. Apparently,

she mastered the meanings of many words that she did not

encounter. Evidence for all these assertions is given in detail

later.

This phenomenon offers an ideal case in which to study a

problem that has plagued philosophy and science since Plato
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24 centuries ago, the fact that people have much more knowl-

edge than appears to be present in the information to which

they have been exposed. Plato's solution, of course, was that

people must come equipped with most of their knowledge and

need only hints and contemplation to complete it.

In this article we suggest a very different hypothesis to explain

the mystery of excessive learning. It rests on the simple notion

that some domains of knowledge contain vast numbers of weak

interrelations that, if properly exploited, can greatly amplify

learning by a process of inference. We have discovered that a

very simple mechanism of induction, the choice of the correct

dimensionality in which to represent similarity between objects

and events, can sometimes, in particular in learning about the

similarity of the meanings of words, produce sufficient enhance-

ment of knowledge to bridge the gap between the information

available in local contiguity and what people know after large

amounts of experience.

Overview

In this article we report the results of using latent semantic

analysis (LSA), a high-dimensional linear associative model

that embodies no human knowledge beyond its general learning

mechanism, to analyze a large corpus of natural text and gener-

ate a representation that captures the similarity of words and

text passages. The model's resulting knowledge was tested with

a standard multiple-choice synonym test, and its learning power

compared to the rate at which school-aged children improve

their performance on similar tests as a result of reading. The

model's improvement per paragraph of encountered text approx-

imated the natural rate for schoolchildren, and most of its ac-

quired knowledge was attributable to indirect inference rather

than direct co-occurrence relations. This result can be interpre-

ted in at least two ways. The more conservative interpretation

is that it shows that with the right analysis a substantial portion

of the information needed to answer common vocabulary test

questions can be inferred from the contextual statistics of usage

alone. This is not a trivial conclusion. As we alluded to earlier
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and elaborate later, much theory in philosophy, linguistics, arti-

ficial intelligence research, and psychology has supposed that

acquiring human knowledge, especially knowledge of language,

requires more specialized primitive structures and processes,

ones that presume the prior existence of special foundational

knowledge rather than just a general purpose analytic device.

This result questions the scope and necessity of such assump-

tions. Moreover, no previous model has been applied to simulate

the acquisition of any large body of knowledge from the same

kind of experience used by a human learner.

The other, more radical, interpretation of this result takes the

mechanism of the model seriously as a possible theory about all

human knowledge acquisition, as a homologue of an important

underlying mechanism of human cognition in general. In partic-

ular, the model employs a means of induction—dimension opti-

mization—that greatly amplifies its learning ability, allowing it

to correctly infer indirect similarity relations only implicit in

the temporal correlations of experience. The model exhibits

humanlike generalization that is based on learning and that does

not rely on primitive perceptual or conceptual relations or repre-

sentations. Similar induction processes are inherent in the mech-

anisms of certain other theories (e.g., some associative, seman-

tic, and neural network models). However, as we show later,

substantial effects arise only if the body of knowledge to be

learned contains appropriate structure and only when a suffi-

cient—possibly quite large—quantity of it has been learned.

As a result, the posited induction mechanism has not previously

been credited with the significance it deserves or exploited to

explain the many poorly understood psychological phenomena

to which it may be germane. The mechanism lends itself, among

other things, to a deep reformulation of associational learning

theory that appears to offer explanations and modeling direc-

tions for a wide variety of cognitive phenomena. One set of

phenomena that we discuss later in detail, along with some

auxiliary data and simulation results, is contextual disambigua-

tion of words and passages in text comprehension.

Because readers with different theoretical interests may find

these two interpretations differentially attractive, we have fol-

lowed a slightly unorthodox manner of exposition. Although we

later present a general theory, or at least the outline of one, that

incorporates and fleshes out the implications of the inductive

mechanism of the formal model, we have tried to keep this

development somewhat independent of the report of our simula-

tion studies. That is, we eschew the conventional stance that the

theory is primary and the simulation studies are tests of it.

Indeed, the historical fact is that the mathematical text analysis

technique came first, as a practical expedient for automatic infor-

mation retrieval, the vocabulary acquisition simulations came

next, and the theory arose last, as a result of observed empirical

successes and discovery of the unsuspectedly important effects

of the model's implicit inferential operations.

The Problem of Induction

One of the deepest, most persistent mysteries of cognition is

how people acquire as much knowledge as they do on the basis

of as little information as they get. Sometimes called "Plato's

problem'' o r ' 'the poverty of the stimulus,'' the question is how

observing a relatively small set of events results in beliefs that

are usually correct or behaviors that are usually adaptive in a

large, potentially infinite variety of situations. Following Plato,

philosophers (e.g., Goodman, 1972; Quine, 1960), psycholo-

gists (e.g., Shepard, 1987; Vygotsky, 1968), linguists (e.g.,

Chomsky, 1991; Jackendoff, 1992; Pinker, 1990), computation

scientists (e.g., Angluin & Smith, 1983; Michaelski, 1983) and

combinations thereof (Holland, Holyoak, Nisbett, & Thagard,

1986) have wrestled with the problem in many guises. Quine

(1960), following a tortured history of philosophical analysis

of scientific truth, has called the problem ' 'the scandal of induc-

tion," essentially concluding that purely experience-based ob-

jective truth cannot exist. Shepard (1987) has placed the prob-

lem at the heart of psychology, maintaining that a general theory

of generalization and similarity is as necessary to psychology as

Newton's laws are to physics. Perhaps the most well-advertised

examples of the mystery lie in the acquisition of language.

Chomsky (e.g., Chomsky, 1991) and followers assert that a

child's exposure to adult language provides inadequate evidence

from which to learn either grammar or lexicon. Gold, Osherson,

Feldman, and others (see Osherson, Weinstein, & Stob, 1986)

have formalized this argument, showing mathematically that

certain kinds of languages cannot be learned to certain criteria

on the basis of finite data. The puzzle presents itself with quanti-

tative clarity in the learning of vocabulary during the school

years, the particular case that we address most fully in this

article. Schoolchildren learn to understand words at a rate that

appears grossly inconsistent with the information about each

word provided by the individual language samples to which

they are exposed and much faster than they can be made to by

explicit tuition.

Recently Pinker (1994) has summarized the broad spectrum

of evidence on the origins of language—in evolution, history,

anatomy, physiology, and development. In accord with Chom-

sky's dictum, he concludes that language learning must be based

on a very strong and specific innate foundation, a set of general

rules and predilections that need parameter setting and filling

in, but not acquisition as such, from experience. Although this

"language instinct" position is debatable as stated, it rests on

an idea that is surely correct, that some powerful mechanism

exists in the minds of children that can use the finite information

they receive to turn them into competent users of human lan-

guage. What we want to know, of course, is what this mecha-

nism is, what it does, how it works. Unfortunately the rest of

the instinctivist answers are as yet of limited help. The fact

that the mechanism is given by biology or that it exists as an

autonomous mental or physical "module" (if it does), tells us

next to nothing about how the mind solves the basic inductive

problem.

Shepard's (1987) answer to the induction problem in stimulus

generalization is equally dependent on biological givens, but

offers a more precise description of some parts of the proposed

mechanism. He has posited that the nervous system has evolved

general functional relations between monotone transductions of

perceptual values and the similarity of central interpretive pro-

cesses. On average, he has maintained, the similarities generated

by these functions are adaptive because they predict in what

situations—consequential regions in his terminology—the

same behavioral cause-effect relations are likely to hold. Shep-

ard's mathematical laws for stimulus generalization are empiri-
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cally correct or nearly so for a considerable range of low-dimen-

sional perceptual continua and for certain functions computed

on behaviorally measured relations such as choices between

stimuli or judgments of similarity or inequality on some experi-

ential dimension. However, his laws fall short of being able to

predict whether cheetahs are considered more similar to zebras

or tigers, whether friendship is thought to be more similar to

love or hate, and are mute, or at least very incomplete, on the

similarity of the meanings of the words cheetah, zebra, tiger,

love, hate, andpode. Indeed, it is the generation of psychological

similarity relations based solely on experience and the achieve-

ment of bridging inferences from experience about cheetahs and

friendship to behavior about tigers and love and from hearing

conversations about one to knowledge about the other that pose

the most difficult and tantalizing puzzle.

Often the cognitive aspect of the induction puzzle is cast as

the problem of categorization, of finding a mechanism by which

a set of stimuli, words, or concepts (cheetahs, tigers) come to

be treated as the same for some purposes (running away from,

or using metaphorically to describe a friend or enemy). The

most common attacks on this problem invoke similarity as the

underlying relation among stimuli, concepts, or features (e.g.,

Rosch, 1978; Smith & Medin, 1981; Vygotsky, 1968). But as

Goodman (1972) has trenchantly remarked, "similarity is an

impostor," at least for the solution of the fundamental problem

of induction. For example, the categorical status of a concept

is often assumed to be determined by similarity to a prototype,

or to some set of exemplars (e.g., Rosch, 1978; Smith & Medin,

1981). Similarity is either taken as primitive (e.g., Posner &

Keele, 1968; Rosch, 1978) or as dependent on shared component

features (e.g.. Smith & Medin, 1981; Tversky, 1977; Tversky &

Gati, 1978). But this throws us into an unpleasant regress:

When is a feature a feature? Do bats have wings? When is a

wing a wing? Apparently, the concept wing is also a category

dependent on the similarity of features. Presumably, the regress

ends when it grounds out in the primitive perceptual relations

assumed, for example, by Shepard's theory. But only some basic

perceptual similarities are relevant to any feature or category,

others are not; a wing can be almost any color. The combining

of disparate things into a common feature identity or into a

common category must very often depend on experience. How

does that work? Crisp categories, logically defined on rules

about feature combinations, such as those often used in category

learning, probability estimation, choice and judgment experi-

ments, lend themselves to acquisition by logical rule-induction

processes, although whether such processes are what humans

always or usually use is questionable (Holland, Holyoak, Nis-

bett, & Thagard, 1986; Medin, Goldstone, & Centner, 1993;

Murphy & Medin, 1985; Smith & Medin, 1981). Sorely, the

natural acquisition of fuzzy or probabilistic features or catego-

ries relies on some other underlying process, some mechanism

by which experience with examples can lead to treating new

instances more or less equivalently, some mechanism by which

common significance, common fate, or common context of en-

counter can generate acquired similarity. We seek a mechanism

by which the experienced and functional similarity of con-

cepts—especially complex, largely arbitrary ones, such as the

meaning of concept, component, or feature, or, perhaps, the

component features of which concepts might consist—are cre-

ated from an interaction of experience with the logical (or math-

ematical or neural) machinery of mind.

In attempting to explain the astonishing rate of vocabulary

learning—some 7-10 words per day—in children during the

early years of preliterate language growth, theorists such as

Carey (1985), Clark (1987), Keil (1989), and Markman

(1994) have hypothesized constraints on the assignment of

meanings to words. For example it has been proposed that early

learners assume that most words are names for perceptually

coherent objects, that any two words usually have two distinct

meanings, that words containing common sounds have related

meanings, that an unknown speech sound probably refers to

something for which the child does not yet have a word, and

that children obey certain strictures on the structure of relations

among concept classes. Some theorists have supposed that the

proposed constraints are biological givens, some have supposed

that they derive from progressive logical derivation during devel-

opment, some have allowed that constraints may have prior

bases in experience. Many have hedged on the issue of origins,

which is probably not a bad thing, given our state of knowledge.

For the most part, proposed constraints on lexicon learning have

also been described in qualitative mentalistic terminology that

fails to provide entirely satisfying causal explanations; Exactly

how, for example does a child apply the idea that a new word

has a new meaning?

What all modern theories of knowledge acquisition (as well

as Plato's) have in common is the postulation of constraints

that greatly (in fact, infinitely) narrow the solution space of the

problem that is to be solved by induction, that is, by learning.

This is the obvious, indeed the only, escape from the inductive

paradox. The fundamental notion is to replace an intractably

large or infinite set of possible solutions with a problem that is

soluble on the data available. So, for example, if biology speci-

fies a function on wavelength of light that is assumed to map

the difference between two objects that differ only in color onto

the probability that doing the same thing with them will have

the same consequences, then a bear need sample only one color

of a certain type of berry before knowing which others to pick.

There are several problematical aspects to constraint-based

resolutions of the induction paradox. One is whether a particular

constraint exists as supposed. For example, is it true that young

children assume that the same object is given only one name,

and if so is the assumption correct about the language to which

they are exposed? (It is not in adult English usage; ask 100

people what to title a recipe or name a computer command, and

you will get almost 30 different answers on average—see Fur-

nas, Landauer, Gomez, & Dumais, 1983, 1987). These are em-

pirical questions, and ones to which most of the research in

early lexical acquisition has been addressed. One can also won-

der about the origin of a particular constraint and whether it is

plausible to regard it as a primitive process with an evolutionary

basis. For example, most of the constraints proposed for lan-

guage learning are very specific and relevant only to human

language, making their postulation consistent with a very strong

instinctive and modular view of mental processes.

The existence and origin of particular constraints is only one

part of the problem. The existence of some set of constraints is

a logical necessity, so that showing that some exist is good but

not nearly enough. We also need to know whether a particular
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set of constraints is logically and pragmatically sufficient, that
is, whether the problem space remaining after applying them is
soluble. For example, suppose that young children do, in fact,
assume that there are no synonyms. How much could that help
them in learning the lexicon from the language to which they
are exposed? Enough? Indeed, that particular constraint leaves
the mapping problem potentially infinite; it could even exacer-
bate the problem by tempting the child to assign too much or
the wrong difference to our dog, the collie, and Fido. Add in
the rest of the constraints that have been proposed: Enough
now?

How can one determine whether a specified combination of
constraints would solve the problem, or perhaps better, deter-
mine how much of the problem it would solve? We believe that
the best available strategy is to specify a concrete computational
model embodying the proposed constraints and to simulate as
realistically as possible its application to the acquisition of some
measurable and interesting properties of human knowledge. In
particular, with respect to constraints supposed to allow the
learning of language and other large bodies of complexly struc-
tured knowledge, domains in which there are very many facts
each weakly related to very many others, effective simulation
may require data sets of the same size and content as those
encountered by human learners. formally, that is because weak
local constraints can combine to produce strong inductive effects
in aggregate. A simple analog is the familiar example of a
diagonal brace to produce rigidity in a structure made of three
beams. Each connection between three beams can be a single
bolt. Two such connections exert no constraint at all on the
angle between the beams. However, when all three beams are
so connected, all three angles are completely specified. In struc-
tures consisting of thousands of elements weakly connected
(i.e., constrained) in hundreds of different ways (i.e., in hun-
dreds of dimensions instead of two), the effects of constraints
may emerge only in very large, naturally generated ensembles.
In other words, experiments with miniature or concocted subsets
of language experience may not be sufficient to reveal or assess
the forces that hold conceptual knowledge together. The relevant
quantitative effects of such phenomena may only be ascertain-
able from experiments or simulations based on the same masses
of input data encountered by people.

Moreover, even if a model could solve the same difficult
problem that a human does given the same data it would not
prove that the model solves the problem in the same way. What
to do? Apparently, one necessary test is to require a conjunction
of both kinds of evidence—observational or experimental evi-
dence, that learners are exposed to and influenced by a certain
set of constraints, and evidence that the same constraints approx-
imate natural human learning and performance when embedded
in a simulation model running over a natural body of data.
However, in the case of effective but locally weak constraints,
the first part of this two-pronged test—experimental or observa-
tional demonstration of their human use—might well fail. Such
constraints might not be detectable by isolating experiments or
in small samples of behavior. Thus, although an experiment
or series of observational studies could prove that a particular
constraint is used by people, it could not prove that it is not. A
useful strategy for such a situation is to look for additional
effects predicted by the postulated constraint system in other

phenomena exhibited by learners after exposure to large
amounts of data.

The Latent Semantic Analysis Model

The model we have used for simulation is a purely mathemati-
cal analysis technique. However, we want to interpret the model
in a broader and more psychological manner. In doing so, we
hope to show that the fundamental features of the theory that
we later describe are plausible, to reduce the otherwise magical
appearance of its performance, and to suggest a variety of rela-
tions to psychological phenomena other than the ones to which
we have as yet applied it.

We explicate all of this in a somewhat spiral fashion. First,
we try to explain the underlying inductive mechanism of dimen-
sionality optimization upon which the model's power hinges.
We then sketch how the model's mathematical machinery oper-
ates and how it has been applied to data and prediction. Next,
we offer a psychological process interpretation of the model
that shows how it maps onto but goes beyond familiar theoretical
ideas, empirical principles, findings, and conjectures. We finally
return to a more detailed and rigorous presentation of the model
and its applications.

An Informal Explanation of the Inductive Value
of Dimensionality Optimization

Suppose that Jack and Jill can only communicate by tele-
phone. Jack, sitting high on a hill and looking down at the
terrain below estimates the distances separating three houses:
A, B, and C. He says that House A is 5 units from both House
B and House C, and that Houses B and C are separated by 8
units. Jill uses these estimates to plot the position of the three
houses, as shown in the top portion of Figure I. But then Jack
says, "By the way, they are all on the same straight, flat road."
Now Jill knows that Jack's estimates must have contained errors
and revises her own in a way that uses all three together to
improve each one, to 4.5, 4.5, and 9.0, as shown in the bottom
portion of Figure 1.

Three distances among three objects are always consistent in

B

B A C

Figure 1. An illustration of the advantage of assuming the correct
dimensionality when estimating a set of interpoint distances. Given noisy
estimates of AB, AC, and CB, the top portion would be the best guess
unless the data source was known to be one-dimensional, in which
case the bottom construction would recover the true line lengths more
accurately.
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two dimensions so long as they obey the triangle inequality (the

longest distance must be less than or equal to the sum of the

other two). But, knowing that all three distances must be accom-

modated in one dimension strengthens the constraint (the longest

must be exactly equal to the sum of the other two). If the

dimensional constraint is not met, the apparent errors in the

estimates must be resolved. One compromise is to adjust each

distance by the same proportion so as to make two of the lengths

add up to the third. The important point is that knowing the

dimensionality improves the estimates. Of course, this works

the other way around as well. Had the distances been generated

from a two- or three-dimensional array (e.g., the road was

curved or hilly), accommodating the estimates on a straight line

would have distorted their original relations and added error

rather than reducing it.

Sometimes researchers have considered dimensionality reduc-

tion as a method to reduce computational complexity or for

smoothing, that is for simplifying the description of data or

interpolating intermediate points (e.g., Church & Hanks, 1990;

Grefenstette, 1994; Schutze, 1992a, 1992b). However, as we

will see later, choosing the optimum dimensionality, when appro-

priate, can have a much more dramatic effect than these interpre-

tations would seem to suggest.

Let us now construe the semantic similarity between two

words in terms of distance in semantic space: The smaller the

distance, the greater the similarity. Suppose we also assume that

two words that appear in the same window of discourse—a

phrase, a sentence, a paragraph, or what have you—tend to

come from nearby locations in semantic space.1 We could then

obtain an initial estimate of the relative similarity of any pair

of words by observing the relative frequency of their joint occur-

rence in such windows.

Given a finite sample of language, such estimates would be

quite noisy. Moreover, because of the huge number of words

relative to received discourse, many pairwise frequencies would

be zero. But two words could also fail to co-occur for a variety

of reasons other than thin sampling statistics, with different

implications for their semantic similarity. The words might be

truly unrelated (e.g., semantic and carburetor). On the other

hand, they might be near-perfect synonyms of which people

usually use only one in a given utterance (e.g., overweight or

corpulent), have somewhat different but systematically related

meanings (e.g., purple and lavender), or be relevant to different

aspects of the same object (e.g., gears and brakes) and therefore

tend not to occur together (just as only one view of the same

object may be present in a given scene). To estimate similarity

in this situation, more complex, indirect relations (for example,

that both gears and brakes co-occur with cars, but semantic

and carburetor have no common bridge) must somehow be

used.

One way of doing this is to take all of the local estimates of

distance into account at once. This is exactly analogous to our

houses example, and, as in that example, the choice of dimen-

sionality in which to accommodate the pairwise estimates deter-

mines how well their mutual constraints combine to give the

right results. That is, we suppose that word meanings are repre-

sented as points (or vectors; later we use angles rather than

distances) in k dimensional space, and we conjecture that it is

possible to materially improve estimates of pairwise meaning

similarities, and to accurately estimate the similarities among

related pairs never observed together, by fitting them simultane-

ously into a space of the same (k) dimensionality.

This idea is closely related to familiar uses of factor analysis

and multi-dimensional scaling, and to unfolding, (J. D. Car-

roll & Arabie, in press; Coombs, 1964), but using a particular

kind of data and writ very large. Charles Osgood (1971) seems

to have anticipated such a theoretical development when compu-

tational power eventually rose to the task, as it now has. How

much improvement results from optimal dimensionality choice

depends on empirical issues, the distribution of interword dis-

tances, the frequency and composition of their contexts in natu-

ral discourse, the detailed structure of distances among words

estimated with varying precision, and so forth.

The scheme just outlined would make it possible to build a

communication system in which two parties could come to agree

on the usage of elementary components (e.g., words, at least

up to the relative similarity among pairs of words). The same

process would presumably be used to reach agreement on simi-

larities between words and perceptual inputs and between per-

ceptual inputs and each other, but for clarity and simplicity

and because the word domain is where we have data and have

simulated the process, we concentrate here on word-word rela-

tions. Suppose that a communicator possesses a representation

of a large number of words as points in a high dimensional

space. In generating strings of words, the sender tends to choose

words located near each other. Over short time spans, contigu-

ities among output words would reflect closeness in the sender's

semantic space. A receiver could make first-order estimates of

the distance between pairs by their relative frequency of occur-

rence in the same temporal contexts (e.g., a paragraph). If the

receiver then sets out to represent the results of its statistical

knowledge as points in a space of the same or nearly the same

dimensionality as that from which it was generated, it may be

able to do better, especially, perhaps, in estimating the similari-

ties of words that never or rarely occur together. How much

better depends, as we have already said, on matters that can

only be settled by observation.

Except for some technical matters, our model works exactly

as if the assumption of such a communicative process character-

izes natural language (and, possibly, other domains of natural

knowledge). In essence, and in detail, it assumes that the psy-

chological similarity between any two words is reflected in the

way they co-occur in small subsamples of language, that the

source of language samples produces words in a way that en-

sures a mostly orderly stochastic mapping between semantic

similarity and output distance. It then fits all of the pairwise

similarities into a common space of high but not unlimited

dimensionality. Because, as we see later, the model predicts

what words should occur in the same contexts, an organism

using such a mechanism could, either by evolution or learning,

1 For simplicity of exposition, we are intentionally imprecise here in

the use of the terms distance and similarity. In the actual modeling,

similarity was measured as the cosine of the angle between two vectors

in hyperspace. Note that this measure is directly related to the distance

between two points described by the projection of the vectors onto the

surface of the hypersphere in which they are contained; thus at a qualita-

tive level the two vocabularies for describing the relations are equivalent.
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adaptively adjust the number of dimensions on the basis of trial

and error. By the same token, not knowing this dimensionality

a priori, in our studies we have varied the dimensionality of the

simulation model to determine what produces the best results.2

More conceptually or cognitively elaborate mechanisms for

the representation of meaning also might generate dimensional

constraints and might correspond more closely to the mentalistic

hypotheses of current linguistic and psycho-linguistic theories.

For example, theories that postulate meaningful semantic fea-

tures could be effectively isomorphic to LSA given the identifi-

cation of a sufficient number of sufficiently independent features

and their accurate quantitative assignment to all the words of a

large vocabulary. But suppose that it is not necessary to add

such subjective interpretations or elaborations for the model to

work. Then LSA could be a direct expression of the fundamental

principles on which semantic similarity (as well as other percep-

tual and memorial relations) are built rather than being a reflec-

tion of some other system. It is too early to tell whether the

model is merely a mathematical convenience that approximates

the effects of true cognitive features and processes or corre-

sponds directly to the actual underlying mechanism of which

more qualitative theories now current are themselves but partial

approximations. The model we propose is at the computational

level described by Marr (1982; see also Anderson, 1990), that

is, it specifies the natural problem that must be solved and an

abstract computational method for its solution.

A Psychological Description of LSA as a Theory

of Learning, Memory, and Knowledge

We give a more complete description of LSA as a mathemati-

cal model later when we use it to simulate lexical acquisition.

However, an overall outline is necessary to understand a roughly

equivalent psychological theory we wish to present first. The

input to LSA is a matrix consisting of rows representing unitary

event types by columns representing contexts in which instances

of the event types appear. One example is a matrix of unique

word types by many individual paragraphs in which the words

are encountered, where a cell contains the number of times

that a particular word type, say model, appears in a particular

paragraph, say this one. After an initial transformation of the

cell entries, this matrix is analyzed by a statistical technique

called singular value decomposition (SVD) closely akin to fac-

tor analysis, which allows event types and individual contexts

to be re-represented as points or vectors in a high dimensional

abstract space (Golub, Luk, & Overton, 1981). The final output

is a representation from which one can calculate similarity mea-

sures between all pairs consisting of either event types or con-

texts (e.g., word-word, word-paragraph, or paragraph-para-

graph similarities).

Psychologically, the data that the model starts with are raw,

first-order co-occurrence relations between stimuli and the local

contexts or episodes in which they occur. The stimuli or event

types may be thought of as unitary chunks of perception or

memory. The first-order process by which initial pairwise asso-

ciations are entered and transformed in LSA resembles classical

conditioning in that it depends on contiguity or co-occurrence,

but weights the result first nonlinearly with local occurrence

frequency, then inversely with a function of the nu mber of differ-

ent contexts in which the particular component is encountered

overall and the extent to which its occurrences are spread evenly

over contexts. However, there are possibly important differences

in the details as currently implemented; in particular, LSA asso-

ciations are symmetrical; a context is associated with the indi-

vidual events it contains by the same cell entry as the events

are associated with the context. This would not be a necessary

feature of the model; it would be possible to make the initial

matrix asymmetrical, with a cell indicating the co-occurrence

relation, for example, between a word and closely following

words. Indeed, Lund and Burgess (in press; Lund, Burgess, &

Atchley, 1995). and SchUtze (1992a, 1992b), have explored

related models in which such data are the input.

The first step of the LSA analysis is to transform each cell

entry from the number of times that a word appeared in a

particular context to the log of that frequency. This approximates

the standard empirical growth functions of simple learning. The

fact that this compressive function begins anew with each con-

text also yields a kind of spacing effect; the association of A

and B is greater if both appear in two different contexts than if

they each appear twice in one context. In a second transforma-

tion, all cell entries for a given word are divided by the entropy

for that word, -S p log p over all its contexts. Roughly speaking,

this step accomplishes much the same thing as conditioning

rules such as those described by Rescorla & Wagner (1972),

in that it makes the primary association better represent the

informative relation between the entities rather than the mere

fact that they occurred together. Somewhat more formally, the

inverse entropy measure estimates the degree to which observing

the occurrence of a component specifies what context it is in;

the larger the entropy of, say, a word, the less information its

observation transmits about the places it has occurred, so the

less usage-defined meaning it acquires, and conversely, the less

the meaning of a particular context is determined by containing

the word.

It is interesting to note that automatic information retrieval

methods (including LSA when used for the purpose) are greatly

improved by transformations of this general form, the present

one usually appearing to be the best (Harman, 1986). It does

not seem far-fetched to believe that the necessary transform

for good information retrieval, retrieval that brings back text

corresponding to what a person has in mind when the person

offers one or more query words, corresponds to the functional

relations in basic associative processes. Anderson (1990) has

drawn attention to the analogy between information retrieval in

external systems and those in the human mind. It is not clear

which way the relationship goes. Does information retrieval in

automatic systems work best when it mimics the circumstances

that make people think two things are related, or is there a

general logic that tends to make them have similar forms? In

automatic information retrieval the logic is usually assumed to

be that idealized searchers have in mind exactly the same text

as they would like the system to find and draw the words in

2 Although this exploratory process takes some advantage of chance,

there is no reason why any number of dimensions should be much better

than any other unless some mechanism like the one proposed is at work.

In all cases, the model's remaining parameters were filled only to its

input (training) data and not to the criterion (generalization) test.
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their queries from that text (see Bookstein & Swanson, 1974).

Then the system's challenge is to estimate the probability that

each text in its store is the one that the searcher was thinking

about. This characterization, then, comes full circle to the kind

of communicative agreement model we outlined above: The

sender issues a word chosen to express a meaning he or she has

in mind, and the receiver tries to estimate the probability of

each of the sender's possible messages.

Gallistel (1990), has argued persuasively for the need to

separate local conditioning or associative processes from global

representation of knowledge. The LSA model expresses such a

separation in a very clear and precise way. The initial matrix

after transformation to log frequency divided by entropy repre-

sents the product of the local or pairwise processes.3 The subse-

quent analysis and dimensionality reduction takes all of the pre-

viously acquired local information and turns it into a unified

representation of knowledge.

Thus, the first processing step of the model, modulo its associ-

ational symmetry, is a rough approximation to conditioning or

associative processes. However, the model's next steps, the sin-

gular value decomposition and dimensionality optimization, are

not contained as such in any extant psychological theory of

learning, although something of the kind may be hinted at in

some modern discussions of conditioning and, on a smaller scale

and differently interpreted, is often implicit and sometimes ex-

plicit in many neural net and spreading-activation architectures.

This step converts the transformed associative data into a con-

densed representation. The condensed representation can be seen

as achieving several things, although they are at heart the result

of only one mechanism. First, the re-representation captures

indirect, higher-order associations. That is, if a particular stimu-

lus, X, (e.g., a word) has been associated with some other

stimulus, Y, by being frequently found in joint context (i.e.,

contiguity), and Y is associated with Z, then the condensation

can cause X and Z to have similar representations. However, the

strength of the indirect XZ association depends on much more

than a combination of the strengths of XY and YZ. This is

because the relation between X and Z also depends, in a well-

specified manner, on the relation of each of the stimuli, X, Y,

and Z, to every other entity in the space. In the past, attempts

to predict indirect associations by stepwise chaining rules have

not been notably successful (see, e.g., Pollio, 1968; \bung,

1968). If associations correspond to distances in space, as sup-

posed by LSA, stepwise chaining rules would not be expected

to work well; if X is two units from Y and Y is two units from

Z, all we know about the distance from X to Z is that it must

be between zero and four. But with data about the distances

between X, Y, Z, and other points, the estimate of XZ may be

greatly improved by also knowing XY and YZ.

An alternative view of LSA's effects is the one given earlier,

the induction of a latent higher order similarity structure (thus

its name) among representations of a large collection of events.

Imagine, for example, that every time a stimulus (e.g., a word)

is encountered, the distance between its representation and that

of every other stimulus that occurs in close proximity to it is

adjusted to be slightly smaller. The adjustment is then allowed

to percolate through the whole previously constructed structure

of relations, each point pulling on its neighbors until all settle

into a compromise configuration (physical objects, weather sys-

tems, and Hopfield nets do this too; Hopfield, 1982). It is easy

to see that the resulting relation between any two representations

depends not only on direct experience with them but with every-

thing else ever experienced. Although the current mathematical

implementation of LSA does not work in this incremental way,

its effects are much the same. The question, then, is whether such

a mechanism, when combined with the statistics of experience,

produces a faithful reflection of human knowledge.

Finally, to anticipate what is developed later, the computa-

tional scheme used by LSA for combining and condensing local

information into a common representation captures multivariate

correlational contingencies among all the events about which it

has local knowledge. In a mathematically well-defined sense it

optimizes the prediction of the presence of all other events from

those currently identified in a given context and does so using

all relevant information it has experienced.

Having thus cloaked the model in traditional memory and

learning vestments, we next reveal it as a bare mathematical

formalism.

A Neural Net Analog of LSA

We describe the matrix-mathematics of singular value de-

composition used in LSA more fully, but still informally, next

and in somewhat greater detail in the Appendix. But first, for

those more familiar with neural net models, we offer a rough

equivalent in that terminology. Conceptually, the LSA model

can be viewed as a simple but rather large three-layered neural

net. It has a Layer 1 node for every word type (event type), a

Layer 3 node for every text window (context or episode) ever

encountered, several hundred Layer 2 nodes—the choice of

number is presumed to be important—and complete connectiv-

ity between Layers 1 and 2 and between Layers 2 and 3. (Obvi-

ously, one could substitute other identifications of the elements

and episodes). The network is symmetrical; it can be run in

either direction. One finds an optimal number of middle-layer

nodes, then maximizes the accuracy (in a least-squares sense)

with which activating any Layer 3 node activates the Layer 1

nodes that are its elementary contents, and, simultaneously, vice

versa. The conceptual representation of either kind of event, a

unitary episode or a word, for example, is a pattern of activation

across Layer 2 nodes. All activations and summations are linear.

Note that the vector multiplication needed to generate the

middle-layer activations from Layer 3 values is, in general, dif-

ferent from that to generate them from Layer 1 values. Thus a

different computation is required to assess the similarity be-

tween two episqdes, two event types, or an event type and an

episode, even though both kinds of entities can be represented

as values in the same middle-layer space. Moreover, an event

type or a set of event types could also be compared with another

of the same or with an episode or combination of episodes by

computing their activations on Layer 3. Thus the network can

3 Strictly speaking, the entropy operation is global, added up over all

occurrences of the event type (conditioned stimulus; CS), but it is here

represented as a local consequence, as might be the case, for example,

if the presentation of a CS on many occasions in the absence of the

unconditioned stimulus (US) has its effect by appropriately weakening

the local representation of the CS-US connection.
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create artificial or "imaginary" episodes, and, by the inverse

operations, episodes can generate "utterances" to represent

themselves as patterns of event types with appropriately varying

strengths. The same things are true in the equivalent singular-

value-decomposition matrix model of LSA.

The Singular Value Decomposition (SVD)

Realization of LSA

The principal virtues of SVD for this research are that it

embodies the kind of inductive mechanisms that we want to

explore, that it provides a convenient way to vary dimensional-

ity, and that it can fairly easily be applied to data of the amount

and kind that a human learner encounters over many years of

experience. Realized as a mathematical data-analysis technique,

however, the particular model studied should be considered only

one case of a class of potential models that one would eventually

wish to explore, a case that uses a very simplified parsing and

representation of input and makes use only of linear relations.

In possible elaborations one might want to add features that

make it more closely resemble what we know or think we know

about the basic processes of perception, learning, and memory.

It is plausible that complicating the model appropriately might

allow it to simulate phenomena to which it has not been applied

and to which it currently seems unlikely to give a good account,

for example certain aspects of grammar and syntax that involve

ordered and hierarchical relations rather than unsigned similari-

ties. However, what is most interesting at this point is how much

it does in its present form.

Singular Value Decomposition (SVD)

SVD is the general method for linear decomposition of a

matrix into independent principal components of which factor

analysis is the special case for square matrices with the same

entities as columns and rows. Factor analysis finds a parsimoni-

ous representation of all the intercorrelations between a set of

variables in terms of a new set of abstract variables, each of

which is unrelated to any other but which can be combined to

regenerate the original data. SVD does the same thing for an

arbitrarily shaped rectangular matrix in which the columns and

rows stand for different things, as in the present case one stands

for words, the other for contexts in which the words appear. (For

those with yet other vocabularies, SVD is a form of eigenvalue-

eigenvector analysis or principal components decomposition

and, in a more general sense, of two-way, two-mode multidimen-

sional scaling (see J. D. Carroll & Arabic, in press).

To implement the model concretely and simulate human word

learning, SVD was used to analyze 4.6 million words of text

taken from an electronic version of Grolier's Academic Ameri-

can Encyclopedia, a work intended for young students. This

encyclopedia has 30,473 articles. From each article we took a

sample consisting of (usually) the whole text, or its first 2,000

characters, whichever was less, for a mean text sample length

of 151 words, roughly the size of a rather long paragraph. The

text data were cast into a matrix of 30,473 columns, each column

representing one text sample, by 60,768 rows, each row repre-

senting a unique word type that appeared in at least two samples.

The cells in the matrix contained the frequency with which a

particular word type appeared in a particular text sample. The

raw cell entries were first transformed to [In (1 + cell fre-

quency)/entropy of the word over all contexts]. This matrix

was then submitted to SVD and the—for example—300 most

important dimensions were retained (those with the highest sin-

gular values, i.e., the ones that captured the greatest variance

in the original matrix). The reduced dimensionality solution

then generates a vector of 300 real values to represent each

word and each context. See Figure 2. Similarity was usually

measured by the cosine between vectors.4

We postulate that the power of the model comes from (opti-

mal) dimensionality reduction. Here is still another, more spe-

cific, explanation of how this works. The condensed vector for

a word is computed by SVD as a linear combination of data

from every cell in the matrix. That is, it is not only the informa-

tion about the word's own occurrences across documents, as

represented in its vector in the original matrix, that determines

the 300 values of its condensed vector. Rather, SVD uses every-

thing it can—all linear relations in its assigned dimensional-

ity—to induce word vectors that best predict all and only those

text samples in which the word occurs. This expresses a belief

that a representation that captures much of how words are used

in natural context captures much of what we mean by meaning.

Putting this in yet another way, a change in the value of any

cell in the original matrix can, and usually does, change every

coefficient in every condensed word vector. Thus, SVD, when

the dimensionality is reduced, gives rise to a new representation

that partakes of indirect inferential information.

A Brief Note on Neurocognitive and Psychological

Plausibility

We, of course, intend no claim that the mind or brain actually

computes a SVD on a perfectly remembered event-by-context

matrix of its lifetime experience using the mathematical machin-

ery of complex sparse-matrix manipulation algorithms. What

we suppose is merely that the mind-brain stores and reprocesses

its input in some manner that has approximately the same effect.

The situation is akin to the modeling of sensory processing with

Fourier decomposition, where no one assumes that the brain

uses fast Fourier transform the way a computer does, only that

the nervous system is sensitive to and produces a result that

reflects the frequency-spectral composition of the input. For

4 We initially used cosine similarities because they usually work best

in the information-retrieval application. Cosines can be interpreted as

representing the direction or quality of a meaning rather than its magni-

tude. For a text segment, that is roughly like what its topic is rather than

how much it says about it. For a single word, the interpretation is less

obvious. It is worth noting that the cosine measure sums the degree of

overlap on each of the dimensions of representation of the two entities

being compared. In LSA, the elements of this summation have been

assigned equal fixed weights, but it would be a short step to allow

differential weights for different dimensions in dynamic comparison

operations, with instantaneous weights influenced by, for example, atten-

tional, motivational, or contextual factors. This would bring LSA's simi-

larity computations close to those proposed by Tversky (1977), allowing

asymmetric judgments, for example, while preserving its dimension-

matching inductive properties.
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Figure 2. A schematic illustration of dimension reduction by singular value decomposition (SVD). In
Figure 2A, rows stand for word types, columns for text contexts in which the words occurred, and cell
entries (x) are (transformed raw) frequencies with which a given word appeared in a given context. In
Figures 2B and 2C columns are artificial orthogonal factors extracted from the data, and the cell entries (y
and z) are derived by linear combination of all the data in the upper matrix in a way that is optimal for
reconstructing the pattern similarities between words in a smaller number of dimensions.

LSA, hypotheses concerning how the brain might produce an
SVD-like result remain to be specified, although it may not be
totally vacuous to point out certain notable correspondences:

1. Intemeuronal communication processes are effectively
vector multiplication processes between axons, dendrites, and
cell bodies; the excitation of one neuron by another is propor-
tional to the dot product (the numerator of a cosine) of the
output of one and the sensitivities of the other across the synaptic
connections that they share.

2. Single-cell recordings from motor-control neurons show
that their combined population effects in immediate, delayed, and
mentally rotated movement control are well described as vector
averages (cosine weighted sums) of their individual representa-
tions of direction (Georgopoulos, 1996), just as LSA's context
vectors are vector averages of their component word vectors.

3. The neural net models popularly used to simulate brain
processes can be recast as matrix algebraic operations.

It is also worth noting that many mathematical models of
laboratory learning and other psychological phenomena have

employed vector representations and linear combination opera-
tions on them to good effect (e.g., Eich, 1982; Estes, 1986;
Hintzman, 1986; Murdock, 1993), and many semantic network-
represented theories, such as Kintsch (1988), could easily be
recast in vector algebra. From this one can conclude that such
representations and operations do not always distort psychologi-
cal reality. LSA differs from prior application of vector models
in psychology primarily in that it derives element values empiri-
cally from effects of experience rather than either prespecifying
them by human judgment or experimenter hypothesis or fitting
them as free parameters to predict behavior, that it operates over
large bodies of experience and knowledge, and that, in general,
it uses much longer vectors and more strongly and explicitly
exploits optimal choice of dimensionality.

Evaluating the Model

Four pertinent questions were addressed by simulation. The
first was whether such a simple linear model could acquire
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knowledge of humanlike word meaning similarities to a signifi-

cant extent if given a large amount of natural text. Second,

supposing it did, would its success depend strongly on the di-

mensionality of its representation? Third, how would its rate of

acquisition compare with that of a human reading the same

amount of text? Fourth, how much of its knowledge would

come from indirect inferences that combine information across

samples rather than directly from the local contextual contiguity

information present in the input data?

LSA's Acquisition of Word Knowledge From Text

In answer to the first question, we begin with results from

the most successful runs, which used around 300 dimensions,

a value that we have often found effective in other applications

to large data sets. After training, the model's word knowledge

was tested with 80 retired items from the synonym portion of

the Test af English as a Foreign Language (TOEFL), kindly

provided, along with normative data, by Educational Testing

Service (ETS; Landauer & Dumais, 1994, 1996). Each item

consists of a stem word, the problem word in testing parlance,

and four alternative words from which the test taker is asked to

choose that with the most similar meaning to the stem. The

model's choices were determined by computing cosines be-

tween the vector for the stem word in each item and each of

the four alternatives and choosing the word with the largest

cosine (except in six cases where the encyclopedia text did not

contain the stem, the correct alternative, or both, for which it

was given a score of .25). The model got 51.5 correct, or 64.4%

(52.5% corrected for guessing by the standard formula [correct-

chance/(l-chance)]. By comparison, a large sample of appli-

cants to U.S. colleges from non-English-speaking countries who

took tests containing these items averaged 51.6 items correct,

or 64.5% (52.7% corrected for guessing). Although we do not

know how such a performance would compare, for example,

with U.S. school children of a particular age, we have been

told that the average score is adequate for admission to many

universities. For the average item, LSA's pattern of cosines over

incorrect alternatives correlated .44 with the relative frequency

of student choices.

Thus, the model closely mimicked the behavior of a group

of moderately proficient English readers with respect to judg-

ments of meaning similarity. We know of no other fully auto-

matic application of a knowledge acquisition and representation

model, one that does not depend on knowledge being entered

by a human but only on its acquisition from the kinds of experi-

ence on which a human relies, that has been capable of per-

forming well on a full-scale test used for adults. It is worth

noting that LSA achieved this performance using text samples

whose initial representation was simply a "bag of words"; that

is, all information from word order was ignored, and there was,

therefore, no explicit use of grammar or syntax. Because the

model could not see or hear, it could also make no use of

phonology, morphology, orthography, or real-world perceptual

knowledge. More about this later.

The Effect of Dimensionality

The idea underlying our interpretation of the model supposes

that the correct choice of dimensionality is important to success.
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Figure.?. The effect of number of dimensions retained in latent-seman-

tic-analysis (LSA)-singular-value-decomposition (SVD) simulations

of word-meaning similarities. The dependent measure is the proportion

of SO multiple-choice synonym test items for which the model chose

the correct answer. LSA was trained on text samples from 30,473 articles

in an electronic file of text for the Gwliers Academic American

Encyclopedia.

To determine whether it was, the simulation was repeated using

a wide range of numbers of dimensions. See Figure 3 (note that

the abscissa is on a log scale with points every 5(1 dimensions

in the midregion of special interest). Two or three dimensions,

as used, for example in many factor analytic and multidimen-

sional scaling attacks on word meaning (e.g., Deese, 1965;

Fillenbaum & Rapoport, 1971; Rapoport & Fillenbaum, 1972)

and in the Osgood semantic differential (Osgood, Suci, & Tan-

nenbaum, 1957), resulted in only 13% correct answers when

corrected for guessing. More importantly, using too many fac-

tors also resulted in very poor performance. With no dimension-

ality reduction at all, that is, using cosines between rows of the

original (but still transformed) matrix, only 16% of the items

were correct.5 Near maximum performance of 45-53%, cor-

rected for guessing, was obtained over a fairly broad region
around 300 dimensions. The irregularities in the results (e.g.,

the dip at 200 dimensions) are unexplained; very small changes

in computed cosines can tip LSA's choice of the best test alterna-

tive in some cases. Thus choosing the optimal dimensionality

of the reconstructed representation approximately tripled the

number of words the model learned as compared to using ihe

dimensionality of the raw data.

5 Given the transform used, this result is similar to what would be

obtained by a mutual information analysis, a method for capturing word

dependencies often used in computational linguistics (e.g.. Church and

Hanks, 1990). Because of the transform, this poor result is still better

than that obtained by a gross correlation over raw co-occurrence fre-

quencies, a statistic often assumed to be the way statistical extraction

of meaning from usage would be accomplished.
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Computational constraints prevented assessing points above

1,050 dimensions, except for the full-dimensional case at 30,473

dimensions that could be computed without performing an SVD.

However, it is the mid range around the hypothesized optimum

dimensionality that is of particular interest here, the matter of

determining whether there is a distinct nonmonotonicity in ac-

cord with the idea that dimensionality optimization is important.

To test the statistical significance of the obvious nonmonoton-

icity in Figure 3, we fitted separate log functions to the points

below and above the observed maximum at 300 dimensions, not

including the 300 point itself to avoid the bias of having selected

the peak, or the extreme 30,473 point. The positive and negative

slopes, respectively, had r = .98 (df = 5) and -.86 (df =12) ,

and associated ps < .0002. Thus, it is clear that there is a strong

nonmonotonic relation between number of LSA dimensions and

accuracy of simulation, with several hundred dimensions needed

for maximum performance, but still a small fraction of the di-

mensionality of the raw data.

The Learning Rate of LSA Versus Humans and Its

Reliance on Induction

Next, in order to judge how much of the human learner's

problem the model is able to solve, we need to know how

rapidly it gains competence relative to human language learners.

Even though the model can pass an adult vocabulary test, if it

were to require much more data than a human to achieve the

same performance one would have to conclude that its induction

method was missing something important that humans possess.

Unfortunately, we cannot use the ETS normative data directly

for this comparison because we don't know how much English

their sample of test takers had read, and because, unlike LSA,

the ETS students were mostly second-language learners.

For similar reasons, although we have shown that LSA makes

use of dimensionality reduction, we do not know how much,

quantitatively, this feature would contribute to the problem given

the language exposure of a normal human vocabulary learner.

We report next some attempts to compare LSA with human

word-knowledge acquisition rates and to assess the utility of its

inductive powers under normal circumstances.

The rate and sources of schoolchildren's vocabulary acquisi-

tion. LSA gains its knowledge of words by exposure to text,

a process that is at least partially analogous to reading. How

much vocabulary knowledge do humans learn from reading and

at what rate? We expand here on the brief summary given earlier.

The main parameters of human learning in this major expertise

acquisition task have been determined with reasonable accuracy.

First note that we are concerned only with knowledge of the

relative similarity of individual words taken as units, not with

their production or with knowledge of their syntactical or gram-

matical function, their component spelling, sounds, or morphol-

ogy or with their real-world pragmatics or referential semantics.

That is not to say that these other kinds of word knowledge,

which have been the focus of most of the work on lexicon

acquisition in early childhood, are unimportant, only that what

has been best estimated quantitatively for English vocabulary

acquisition as a whole and what LSA has so far been used to

simulate is knowledge of the similarity of word meanings.

Reasonable bounds for the long-term overall rate of gain of

human vocabulary comprehension, in terms comparable to our

LSA results, are fairly well established. The way such numbers

usually have been estimated is to choose words at random from

a large dictionary, do some kind of test on a sample of people

to see what proportion of the words they know, then reinflate.

Several researchers have estimated comprehension vocabularies

of young adults, with totals ranging from 40,000 to 100,000 for

high school graduates (Nagy & Anderson, 1984; Nagy & Her-

man, 1987). The variation appears to be largely determined by

the size of the dictionaries sampled and to some extent by the

way in which words are defined as being separate from each

other and by the testing methods employed (see Anglin, 1993;

Miller, 1991; and Miller and Wakefield's commentary in Anglin,

1993, for review and critiques). The most common testing meth-

ods have been multiple-choice tests much like those of TOEFL,

but a few other procedures have been employed with comparable

results. Here is one example of an estimation method. Moyer

and Landauer (Landauer, 1986) sampled 1,000 words from Web-

ster's Third New International Dictionary (1964) and presented

them to Stanford University undergraduates along with a list of

30 common categories. If a student classified a word correctly

and rated it familiar it was counted as known. Landauer then

went through the dictionary and guessed how many of the words

could have been classified correctly by knowing some other

morphologically related word and adjusted the results accord-

ingly. The resulting estimate was around 100,000 words. This

is at the high end of published estimates. The lowest frequently

cited estimate is around 40,000 by the last year of high school

(Nagy & Anderson, 1984). It appears, however, that all existing

estimates are somewhat low because as many as 60% of the

words found in a daily newspaper do not occur in dictionaries—

mostly names, some quite common (Walker & Amsler, 1986) —

and most have not adequately counted conventionalized

multiword idioms and stock phrases whose meanings cannot or

might not be derived from their components.

By simple division, knowing 40,000 to 100,000 words by 20

years of age means adding an average of 7-15 new words a

day from age 2 onwards. The rate of acquisition during late

elementary and high school years has been estimated at between

3,000 and 5,400 words per year (10-15 per day), with some

years in late elementary school showing more rapid gains than

the average (Anglin, 1993; Nagy & Herman, 1987; M. Smith,

1941). In summary, it seems safe to assume that, by the usual

measures, the total meaning comprehension vocabularies of av-

erage fifth-to-eighth-grade students increase by somewhere be-

tween 10 and 15 new words per day.

In the LSA simulations every orthographically distinct word,

defined as a letter string surrounded by spaces or punctuation

marks, is treated as a separate word type. Therefore the most

appropriate, although not perfect, correspondence in human

word learning is the number of distinct orthographic forms for

which the learner must have learned, rather than deduced, the

meaning tested by TOEFL. Anglin's (1993; Anglin, Alexan-

der, & Johnson, 1996) recent estimates of schoolchildren's vo-

cabulary attempted to differentiate words whose meaning was

stored literally from ones deduced from morphology. This was

done by noting when the children mentioned or appeared to use

word components during the vocabulary test and measuring

their ability to do so when asked. He estimated gains of 9-12
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separate learned words per day for first-to-fifth-grade students,

without including most proper names or words that have entered

the language since around 1980. In addition to the usual factors

noted above, there are additional grounds for suspecting that

Anglin's estimates may be somewhat low; in particular, the

apparent use of morphological analysis could sometimes instead

be the result of induced similarity between meanings of indepen-

dently learned words. For example, LSA computes a relatively

high cosine between independent and independence (cos =

.60), perception and perceptual (cos = .84), comprehension

and incomprehensible (cos = .25; where the average cosine

between unrelated words is =-.07 ± =.04). LSA, of course has

no knowledge of the internal structure of words. Thus children

(or adults) asked to tell what independently means might think

of independent not by breaking down independence into mor-

phemic components, but because one word reminds them of

the other (and adult introspection might fool itself similarly).

However, these quibbles are rather beside the point for present

purposes. The issue is whether LSA can achieve a rate of learn-

ing of word-meaning similarity that approaches or exceeds that

of children, and for that purpose the estimates of Anglin, and

virtually all others, give an adequate target. To show that its

mechanism can do a substantial part of what children accom-

plish, LSA need only learn a substantial fraction of 10 words

per day.

However, a further step in interpreting the LSA-child com-

parison allows us to more fully resolve the "excess learning"

paradox. As mentioned earlier, children in late grade school

must acquire most of their new word meanings from reading.

The proof is straightforward. The number of different word

types in spoken vocabulary is less than a quarter that in the

printed vocabulary that people are able to read by the end of

high school.6 Moreover, because the total quantity of heard

speech is very large and spoken language undoubtedly provides

superior cues for meaning acquisition, such as perceptual corre-

lates, pragmatic context, gestures, and the outright feedback of

disambiguating social and tutorial interactions, almost all of the

words encountered in spoken language must have been well

learned by the middle of primary school. Indeed estimates of

children's word understanding knowledge by first grade range

upwards toward the tens of thousands used in speech by an

average adult (Seashore, 1947). Finally, very little vocabulary

is learned from direct instruction. Most schools devote very

little time to it, and it produces meager results. Authorities guess

that at best 100 words a year could come from this source

(Durkin, 1979).

It has been estimated that the average fifth-grade child spends

about 15 min per day reading in school and another 15 min out

of school reading books, magazines, mail, and comic books

(Anderson, Wilson, & Fielding, 1988; Taylor, Frye, & Maruy-

ama, 1990). If we assume 30 min per day total for 150 school

days and 15 min per day for the rest of the year, we get an

average of 21 min per day. At an average reading speed of 165

words per min (Carver, 1990) and a nominal paragraph length

of 70 words, they read about 2.5 paragraphs per minute and

about 50 per day. Thus, while reading, schoolchildren are adding

about one new word to their comprehension vocabulary every

2 min or five paragraphs. Combining estimates of reader and

text vocabularies (Nagy, Herman, & Anderson, 1985) with an

average reading speed of 165 words per minute (Anderson &

Freebody, 1983; Carver, 1990; Taylor et al., 1990), one can infer

that young readers encounter about one not-yet-known word per

paragraph of reading. Thus the opportunity is there to acquire

the daily ration. However, this would be an extremely rapid

rate of learning. Consider the necessary equivalent list-learning

speed. One would have to give children a list of 50 new words,

each with one paragraph of exemplary context, and expect them

to derive and permanently retain 10-15 sufficiently precise

meanings after a single very rapid study trial.

Word meanings are acquired by reading, but how? Several

research groups have tried to mimic or enhance the contextual

learning of words. The experiments are usually done by select-

ing nonsense or unknown words at the frontier of grade-level

vocabulary knowledge and embedding them in sampled or care-

fully constructed sentences or paragraphs that imply aspects of

meaning for the words. The results are uniformly discouraging.

For example, Jenkins, Stein, and Wysocki (1984) constructed

paragraphs around 18 low-frequency words and had fifth graders

read them up to 10 times each over several days. The chance

of learning a new word on one reading, as measured by a forced-

choice definition test, was between .05 and .10. More naturalistic

studies have used paragraphs from school books and measured

the chance of a word moving from incorrect to correct on a

later test as a result of one reading or one hearing (Elley, 1989;

Nagy et al., 1985). About one word in 20 paragraphs makes

the jump, a rate of 0.05 words per paragraph read. At 50 para-

graphs read per day, children would acquire only 2.5 words per

day. (Carver and Leibert, 1995, assert that even these rates are

high as a result of methodological flaws.)

Thus, experimental attempts intended to produce accelerated

vocabulary acquisition have attained less than one half the natu-

ral rate, and measurements made under more realistic conditions

6 From his log-normal model of word frequency distribution and the

observations in J. B. Carroll, Davies, and Richmond, (1971), Carroll

estimated a total vocabulary of 609,000 words in the universe of text

to which students through high school might be exposed. Dahl (1979),

whose distribution function agrees with a different but smaller sample

of Howes (as cited by Dahl), found 17,871 word types in 1,058,888

tokens of spoken American English, compared to 50,406 in the compara-

bly-sized adult sample of Kucera and Francis (1967). By J. B. Carroll's

(1971) model, Dahl' s data imply a total of roughly 150,000 word types

in spoken English, thus approximately one fourth the total, less to the

extent that there are spoken words that do not appear in print Moreover,

the ratio of spoken to printed words to which a particular individual is

exposed must be even more lopsided because local, ethnic, favored-TV

channels, and family usage undoubtedly restrict the variety of vocabulary

more than published works intended for the general school-age reader-

ship. If we assume that seventh graders have met a total of 50 million

word tokens of spoken English (140 min a day at 100 words per minute

for 10 years) then the expected number of occasions on which the they

would have heard a spoken word of mean frequency would be about

370. Carroll's estimate for the total vocabulary of seventh-grade texts

is 280,000, and we estimate later that typical students would have read

about 3.8 million words of print Thus, the mean number of times they

would have seen a printed word to which they might be exposed is only

about 14. The rest of the frequency distributions for heard and seen

words, although not proportional, would, at every point, show that spo-

ken words have already had much greater opportunity to be learned than

printed words, so profit much less from additional experience.
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find at best one fourth the normal rate.7 This leads to the conclu-

sion that much of what the children learned about words from

the texts they read must have gone unmeasured in these

experiments.

The rate and sources of ISA's vocabulary acquisition. We

wish now to make comparisons between the word-knowledge

acquisition of LSA and that of children. First, we want to obtain

a comparable estimate of LSA's overall rate of vocabulary

growth. Second, to evaluate our hypothesis that the model, and

by implication, a child, relies strongly on indirect as well as

direct learning in this task, we wish to estimate the relative

effects of experience with a passage of text on knowledge of

the particular words contained in it, and its indirect effects on

knowledge of all other words in the language, effects that would

not have been measured in the empirical studies of children

acquiring vocabulary from text. If LSA learns close to 10 words

from the same amount of text that students read, assuming that

children use a similar mechanism would resolve the excess-

learning paradox.

Because the indirect effects in LSA depend both on the mod-

el's computational procedures and on empirical properties of

the text it learns from, it is necessary to obtain estimates relevant

to a body of text equivalent to what school-age children read,

We currently lack a full corpus of representative children's read-

ing on which to perform the SVD. However, we do have access

to detailed word-distribution statistics from such a corpus, the

one on which the American Heritage Word Frequency Book

(J. B. Carroll, Davies, & Richman, 1971) was based. By assum-

ing that learners would acquire knowledge about the words in

the J. B. Carroll et al. materials in the same way as knowledge

about words in the encyclopedia, except with regard to the

different words involved, these statistics can provide the desired

estimates.

It is clear enough that, for a human, learning about a word's

meaning from a textual encounter depends on knowing the

meaning of other words. As described above, in principle this

dependence is also present in the LSA model. The reduced

dimensional vector for a word is a linear combination of infor-

mation about all other words. Consequently, data solely about

other words, for example a text sample containing words Y and

Z, but not word X, can change the representation of X because

it changes the representations of Y and Z, and all three must be

accommodated in the same overall structure. However, estimat-

ing the absolute sizes of such indirect effects in words learned

per paragraph or per day, and its size relative to the direct effect

of including a paragraph actually containing word X calls for

additional analysis.

Details of estimating direct and indirect effects. The first

step in this analysis was to partition the influences on the knowl-

edge that LSA acquired about a given word into two compo-

nents, one attributable to the number of passages containing the

word itself, the other attributable to the number of passages not

containing it. To accomplish this we performed variants of our

encyclopedia-TOEFL analysis in which we altered the text data

submitted to SVD. We independently varied the number of text

samples containing stem words and the number of text samples

containing no words from the TOEFL test items. For each stem

word from the TOEFL test we randomly selected various num-

bers of text samples in which it appeared and replaced all occur-

rences of the stem word in those contexts with a corresponding

nonsense word. After analysis we tested the nonsense words by

substituting them for the originals in the TOEFL test items. In

this way we maintained the natural contextual environment of

words while manipulating their frequency. Ideally, we wanted

to vary the number of text samples per nonsense word so as to

have 2,4,8,16, and 32 occurrences in different repetitions of the

experiment. However, because not all stem words had appeared

sufficiently often in the corpus, this goal was not attainable, and

the actual mean numbers of text samples in the five conditions

were 2.0, 3.8, 7.4, 12.8, and 22.2. We also varied the total

number of text samples analyzed by the model by taking succes-

sively smaller nested random subsamples of the original corpus.

We examined total corpus sizes of 2,500; 5,000; 10,000; 15,000;

20,000; 25,000; and 30,473 text samples (the full original cor-

pus). In all cases we retained every text sample that contained

any word from any of the TOEFL items.8 Thus the stem words

were always tested by their discriminability from words that

had appeared the same, relatively large, number of times in all

conditions.

For this analysis we adopted a new, more sensitive outcome

measure. Our original figure of merit, the number of TOEFL

test items in which the correct alternative had the highest cosine

with the stem, mimics human test scores but contains unneces-

sary binary quantification noise. We substituted a discrimination

7 Carver and Leibert (1995) have recently put forward a claim that

word meanings are not learned from ordinary reading. They report

studies in which a standardized 100-item vocabulary test was given

before and after a summer program of nonschool book reading. By the

LSA model and simulation results to be presented later in this article,

one would expect a gain in total vocabulary of about 600 words from

the estimated 225,000 words of reading reported by their fourth- through

sixth-grade participants. Using J. B. Carroll's (1971) model, this would

amount to a 0.1%-0.2% gain in total vocabulary. By direct estimates

such as Anderson and Freebody (1981), Anglin (1993), Nagy and An-

derson (1984), Nagy and Herman ( 1987), or M. Smith (1941). it would

equal about '/i2 to Vfi of a year's increase. Such an amount could not be

reliably detected with a 100-item test and 50 students, which would

have an expected binomial standard error of around 0.7% or more.

Moreover, Carver and Leibert report that the actual reading involved was

generally at a relatively easy vocabulary level, which, on a commonsense

interpretation, would mean that almost all the words were already

known. In terms of LSA, as described later, it would imply that the

encountered words were on average at a relatively high point on their

learning curves and thus the reading would produce relatively small

gains.
8 Because at least one TOEFL-altemative word occurred in a large

portion of the samples, we could not retain all the samples containing

them directly, as it would then have been impossible to get small nested

samples of the coipus. Instead, we first replaced each TOEFL-alternative

word with a corresponding nonsense word so that the alternatives them-

selves would not be differentially learned, then analyzed the subset

corpora in the usual way to obtain vectors for all words. We then com-

puted new average vectors for all relevant samples in the full corpus

and finally computed a value for each TOEFL-altemative word other

than the stem as the centroid of all the paragraphs in which it appeared

in the full corpus. The result is that alternatives other than the stem are

always based on the same large set of samples, and the growth of a

word's meaning is measured by its progress toward its final meaning,

that is, its vector value at the maximum learning point simulated.
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ratio measure, computed by subtracting the average cosine be-

tween a stem word and the three incorrect alternatives from the

cosine between the stem word and the correct alternative, then

dividing the result by the standard deviation of cosines between

the stem and the incorrect alternatives, that is, (cos stem.correct

— mean cos stem.incorrect^jJ/Cstd cos stem.incorrect^). This

yields a z score, which can also be interpreted as a d' measure.

The z scores also had additive properties needed for the follow-

ing analyses.

The results are depicted in Figure 4. Both experimental fac-

tors had strong influences; on average the difference between

correct and incorrect alternatives grows with both the number

of text samples containing the stem word, S, and with additional

text samples containing no words on the test, T, and there is a

positive interaction between them. For both overall log functions

r > .98; F(6) for T = 26.0, p « .001; f (4) for S = 64.6, p

« .001; the interaction was tested as the linear regression of

slope on log S as a function of log T, r2 = .98, F(4) = 143.7,

p — .001.) These effects are illustrated in Figure 4 along with

logarithmic trend lines for T within each level of 5.

Because of the expectable interaction effects—experience

with a word helps more when there is experience with other

words—quantitative estimates of the total gain from new read-

ing and of the relative contributions of the two factors are only

meaningful for a particular combination of the two factors. In

other words, to determine how much learning encountering a

particular word in a new text sample contributes, one must know

10,000 20.000 30,000

Total Contexts

Figure 4. The combined effect in latent semantic analysis (LSA) simu-
lations of the average number of contexts in which a test word appeared
(the parameter). and the total number of other contexts, those containing
no words from the synonym test items. The dependent measure is the
normalized difference in LSA similarity (cosine) of the test words to
their correct and incorrect alternatives. The variables were experimen-
tally manipulated by randomly replacing test words with nonsense words
and choosing random nested subsamples of total text. The fitted lines
are separate empirical log functions for each parameter value.

how many other text samples with and without that word the

learner or model has previously met.

In the last analysis step, we estimated, for every word in the

language, how much the z score for that word increased as a

result of including a text sample that contained it and for includ-

ing a text sample that did not contain it, given a selected point

in a simulated schoolchild's vocabulary learning history. We

then calculated the number of words that would be correct given

a TOEFL-style synonym test of all English words. To anticipate

the result, for a simulated seventh grader we concluded that the

direct effect of reading a sample on knowledge of words in the

sample was an increase of approximately 0.05 words of total

vocabulary, and the effect of reading the sample on other words

(i.e., all those not in the sample) was a total vocabulary gain of

approximately 0.15 words. Multiplying by a nominal 50 samples

read, we get a total vocabulary increase of about 10 words per

day. Details of this analysis are given next.

Details of LSA simulation of total vocabulary gain. First,

we devised an overall empirical model of the joint effects of

direct and indirect textual experience that could be fit to the full

set of data of Figure 4:

z = a(log b D(log c 5) (D

where T is the total number of text samples analyzed, S is the

number of text samples containing the stem word, and a, b,

and c are fitted constants (a = 0.128, b = 0.076, c = 31.910

for the present data, least squares fitted by the Microsoft Excel

Version 5.0 (1993) iterative equation solver.) Its predictions are

correlated with observed z with r = .98. To convert its predic-

tions to an estimate of probability correct, we assumed z to be

a normal deviate and determined the area under the normal

curve to the right of its value minus that of the expected value

for the maximum from a sample of three. In other words, we

assumed that the cosines for the three incorrect alternatives in

each item were drawn from the same normal distribution and

that the probability of LSA choosing the right answer is the

probability that the cosine of the stem to the correct alternative

is greater than the expected maximum of three incorrect alterna-

tives. The overall two-step model is correlated r = .89 with

observed percentage correct.

Next, we estimated for every word in the language (a) the

probability that a word of its frequency appears in the next text

sample that a typical seventh grader encounters and (b) the

number of times the individual would have encountered that

word previously. We then calculated, from Equation 1, (c) the

expected increase in z for a word of that frequency as a result

of one additional passage containing it and (d) the expected

increase in z for a word of that frequency as a result of one

additional passage not containing it. Finally, we converted z to

probability correct, multiplied by the corresponding frequencies,

and cumulated gains in number correct over all individual words

in the language to get the total vocabulary gains from reading

a single text sample.

The J. B. Carroll et al. (1971) data give the frequency of

occurrence of each word type in a representative corpus of text

read by schoolchildren. Conveniently, this corpus is nearly the

same in both overall size, five million words, and in number of

word types, 68,000, as our encyclopedia sample (counting, for
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the encyclopedia sample, singletons not included in the SVD

analysis), so that no correction for sample size, which alters

word frequency distributions, was necessary.

Simulating a schoolchild's learning. To simulate the rate of

learning for an older grade school child, we assumed that she

would have read a total of 3.8 million words, equivalent to

25,000 of our encyclopedia text samples, and set T equal to

25,000 before reading a new paragraph and to 25,001 afterward.

We divided the word types in J. B. Carroll et al. (1971) into

37 frequency bands (< 1,1, 2,. . .20 and roughly logarithmic

thereafter to > 37,000) and for each band set S equal to an

interpolated central frequency of words in the band.9 We then

calculated the expected number of additional words known in

each band (the probability correct estimated from the joint-

effect model times the probability of occurrence of a token

belonging to the band, or the total number of types in the band,

respectively) to get (a) the expected direct increase due to one

encounter with a test word and (b) the expected increase due

to the indirect effect of reading a passage on all other words in

the language.10

The result was that the estimated direct effect was 0.0007

words gained per word encountered, and the indirect effect was

a total vocabulary gain of 0.1500 words per text sample read.

Thus the total increase per paragraph read in the number of

words the simulated student would get right on a test of all

the words in English would be approximately 0.0007 X 70

(approximate number of words in an average paragraph) + 0.15

= 0.20. Because the average student reads about 50 paragraphs

a day (Taylor et al., 1990), the total amounts to about 10 new

words per day.

About the accuracy of the simulations. Before further inter-

preting these results, let us consider their likely precision. The

only obvious factors that might lead to overestimated effects

are differences between the training samples and text normally

read by schoolchildren. First, it is possible that the heterogeneity

of the text samples, each of which was drawn from an article

on a different topic, might cause a sorting of words by meaning

that is more beneficial to LSA word learning than is normal

children's text. Counterpoised against this possibility, however,

is the reasonable expectation that school reading has been at

least partially optimized for children's vocabulary acquisition.

Second, the encyclopedia text samples had a mean of 151

words, and we have equated them with assumed 70 word para-

graphs read by schoolchildren. This was done because our hy-

pothesis is that connected passages of text on a particular topic

are the effective units of context for learning words and that the

best correspondence was between the encyclopedia initial-text

samples, usually full short articles, and paragraphs of text read

by children. To check the assumption that window-size differ-

ences would not materially alter conclusions from the present

analysis, we recomputed the TOEFL discrimination ratio results

at 300 dimensions for a smaller window size by subdividing the

original < 2,000 character samples into exhaustive sequential

subsets of s 500 characters, thus creating a set of 68,527 con-

texts with a mean of 73 words per sample. The new result was

virtually identical to the original value, z = 0.93. versus 0.89,

corresponding by the models above to about 53% versus 52%

correct on TOEFL, respectively.

There are a several reasons to suspect that the estimated LSA

learning rate is biased downward rather than upward relative to

children's learning. First to continue with the more technical

aspects of the analysis, the text samples used were suboptimal

in several respects. The crude 2,000 character length cutoff was

used because the available machine-readable text had no consis-

tent paragraph or sentence indicators. This resulted in the inclu-

sion of a large number of very short samples, things like "Con-

stantinople: See Istanbul,'' and of many long segments that con-

tained topical changes that surely would have been signaled by

paragraphs in the original.

Of course, we do not know how the human mind chooses the

context window. Several alternatives suggest themselves. And it

is plausible that the effective contexts are sliding windows rather

than the independent samples used here and likely that experi-

enced readers parse text input into phrases, sentences, para-

graphs, and other coherent segments rather than arbitrary iso-

lated pieces. Thus, although LSA learning does not appear to

be very sensitive to moderate differences in the context window

size, window selection was probably not optimized in the re-

ported simulations as well as it is in human reading. The more

general question of the effect of window size and manner of

selection is of great interest, but requires additional data and

analysis.

For the present discussion, more interesting and important

differences involve a variety of sources of evidence about word

meanings to which human word learners have access but LSA

did not. First, of course, humans are exposed to vast quantities

of spoken language in addition to printed words. Although we

have noted that almost all words heard in speech would be

passed on vocabulary tests before seventh grade, the LSA mech-

anism supposes both that knowledge of these words is still

growing slowly in representational quality as a result of new

9 To estimate the number of words that the learner would see for the

very first time in a paragraph, we used the lognormal model proposed

by J. B. Carroll (1971) in his introduction to the Word Frequency Book.

We did not attempt to smooth the other probabilities by the same function

because it would have had too little effect to matter, but used a function

of the same form to interpolate the center values used to stand for

frequency bands.
10 For example, there are 11,915 word types that appear twice in the

corpus. The z for the average word that has appeared twice when 25,000

total samples have been met, according to Equation 1 is 0.75809. If

such a word is met in the next sample, which we call a direct effect, it

has been met three times, there have been 25,001 total samples, and the

word's z increases to 0.83202. By the maximum of three from a normal

distribution criterion, its probability of being correct on the TOEFL test

rises by 0.029461. But the probability of a given word in a sample being

a word of frequency two in the corpus is (11,915 X 2)/(5 X 106) =

0.0047, so the direct gain in probability correct for a single word actually

encountered attributable to words of frequency two is just 0.000138.

However, there is also a very small gain expected for every frequency-

two word type that was not encountered, which we call an indirect

effect. Adding an additional paragraph makes these words add no occur-

rences but go from 25,000 to 25,001 samples. By Equation 1, the z for

such a word type goes, on average, from 0.75809 to 0.75810, and its

estimated probability correct goes up by 7.0674 X 10 ~6. But, because

there are 11,195 word types of frequency two, the total indirect vocabu-

lary gain is .07912. Finally, we cumulated these effects over all 37 word-

frequency bands.
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contextual encounters and, more importantly, that new experi-

ence with any word improves knowledge of all others.

Second, the LSA analysis treats text segments as mere ' 'bags

of words,'' ignoring all information present in the order of the

words, thus making no use of syntax or of the logical, grammati-

cal, discursive, or siluational relations it caries. Experts on read-

ing instruction (e.g., Drum & Konopak, 1987; Durkin, 1979)

mental abilities (e.g., Sternberg, 1987) and psycholinguistics

(e.g., Kintsch & Vipond, 1979; Miller, 1978) have stressed the

obvious importance of these factors to the reader's ability to

infer word meanings from text. Indeed, Durkin (1983, p. 139)

asserts that scrambled sentences would be worthless context for

vocabulary instruction (which may well have some validity for

human students who have learned some grammar, but clearly is

not for LSA).

In the simulations, words were treated as arbitrary units with

no internal structure and no perceptual identities; thus LSA

could also take no advantage of morphological relations or sound

or spelling similarities. Moreover, the data for the simulations

was restricted to text, with no evidence provided on which to

associate either words or text samples with real-world objects

or events or with its own thoughts, emotions, or intended actions

as a person might. LSA could make no use of perceptual or

experiential relations in the externally referenced world of lan-

guage or of phonological symbolism (onomatopoeia) to infer

the relation between words. Finally, LSA is neither given nor

acquires explicitly usable knowledge of grammar (e.g., part-of-

speech word classes) or of the pragmatic constraints, such as

one-object-one-word, postulated by students of early language

acquisition.

Thus, the LSA simulations must have suffered considerable

handicaps relative to the modeled seventh-grade student to

whom it was compared. Suppose that the seventh grader's extra

abilities are used simply to improve the input data represented

in Figure 2, for example, by adding an appropriate increment

to plurals of words whose singulars appear in a text sample,

parsing the input so that verbs and modifiers were tallied jointly

only with their objects rather than everything in sight. Such

additional information and reduced noise in the input data would

improve direct associational effects and presumably be duly

amplified by the inductive properties of the dimensionality-

matching mechanisms.

Conclusions From the Vocabulary Simulations

There are three important conclusions to be drawn from the

results we have described. In descending order of certainty, they

are

1. LSA learns a great deal about word meaning similarities

from text, an amount that equals what is measured by multiple-

choice tests taken by moderately competent English readers.

2. About three quarters of LSA's word knowledge is the

result of indirect induction, the effect of exposure to text not

containing words used in the tests.
3. Putting all considerations together, it appears safe to con-

clude that there is enough information present in the language

to which human learners are exposed to allow them to acquire

the knowledge they exhibit on multiple-choice vocabulary tests.

That is, if the human induction system equals LSA in its effi-

ciency of extracting word similarity relations from discourse

and has a moderately better system for input parsing and uses

some additional evidence from speech and real-world experi-

ence, it should have no trouble at all doing the relevant learning

it does without recourse to language-specific innate knowledge.

Let us expand a bit on the apparent paradox of schoolchildren

increasing their comprehension vocabularies more rapidly than

they learn the words in the text they read. This observation

could result from either a measurement failure or from induced

learning of words not present. The LSA simulation results actu-

ally account for the paradox in both ways. First, of course,

we have demonstrated very strong inductive learning. But, the

descriptive model fitted to the simulation data was also continu-

ous, that is, it assumed that knowledge, in the form of correct

placement in the high-dimensional semantic space, is always

partial and grows on the basis of small increments distributed

over many words. Measurements of children's vocabulary

growth from reading have usually looked only at words gotten

wrong before reading to see how many of them are gotten

right afterwards. In contrast, the LSA simulations computed an

increment in probability correct for every word in the potential

vocabulary. Thus, it implicitly expresses the hypothesis that

word meanings grow continuously and that correct performance

on a multiple choice vocabulary test is a stochastic event gov-

erned by individual differences in experience, by sampling of

alternatives in the test items and by fluctuations, perhaps contex-

tually determined, in momentary knowledge states. As a result,

word meanings are constantly in flux, and no word is ever

perfectly known. So, for the most extreme example, the simula-

tion computed a probability of one in 500,000 that even the

word the would be incorrectly answered by some seventh grader

on some test at some time.

It is obvious, then, that LSA provides a solution to Plato's

problem for at least one case, that of learning word similarities

from text. Of course, human knowledge of word meaning is

evinced in many other ways, supports many other kinds of per-

formance, and almost certainly reflects knowledge not captured

by judgments of similarity. However, it is an open question to

what extent LSA, given the right input, can mimic other aspects

of lexical knowledge as well.

Generalizing the Domain of LSA

There is no reason to suppose that the mind uses dimensional-

ity optimization only to induce similarities involving words.

Many other aspects of cognition would also profit from a means

to extract more knowledge from a multitude of local co-occur-

rence data. Although the full range and details of LSA's implica-

tions and applicability await much more research, we give some
examples of promising directions, phenomena for which it pro-

vides new explanations, interpretations, and predictions. In what

follows there are reports of new data, new accounts of estab-

lished experimental facts, reinterpretation of common observa-
tions, and some speculative discussion of how old problems

might look less opaque in this new light.

Other Aspects of Lexical Knowledge

By now many readers may wonder how the word similarities

learned by LSA relate to meaning. Whereas it is probably impos-
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sible to say what word meaning is in a way that satisfies all

students of the subject, it is clear that two of its most important

aspects are usage and reference. Obviously, the similarity rela-

tions between words that are extracted by LSA are based on

usage. Indeed, the underlying mathematics can be described as

a way to predict the use of words in context, and the only

reference of a word that LSA can be considered to have learned

in our simulations is reference to other words and to sets of

words (although the latter, the contexts of the analysis, may be

considered to be coded descriptions of nonlinguistic events). It

might be tempting to dismiss LSA's achievements as a sort of

statistical mirage, a reflection of the conditions that generate

meaning, but not a representation that actually embodies it. We

believe that this would be a mistake. Certainly words are most

often used to convey information grounded in nonlinguistic

events. But to do so, only a small portion of them, and few of

the encounters from which the meanings even of those are de-

rived, need ever have been directly experienced in contextual

association with the perception of objects, events, or nonlinguis-

tic internal states. Given the strong inductive possibilities inher-

ent in the system of words itself, as the LSA results have shown,

the vast majority of referential meaning may well be inferred

from experience with words alone. Note that the inductive leaps

made by LSA in the simulations were all from purely abstract

symbols to other purely abstract symbols. Consider how much

more powerful word-based learning would be with the addition

of machinery to represent other relations. But for such more

elaborate mechanisms to work, language users must agree to

use words in the same way, a job much aided by the LSA

mechanism.

Even without such extension, however, the LSA model sug-

gests new ways of understanding many familiar properties of

language other than word similarity. Here is one homely exam-

ple. Because, in LSA, word meaning is generated by a statistical

process operating over samples of data, it is no surprise that

meaning is fluid, that one person's usage and referent for a

word is slightly different from the next person's, that one's

understanding of a word changes with time, that words drift in

both usage and reference over time for the whole community.

Indeed, LSA provides a potential technique for measuring the

drift in an individual or group's understanding of words as a

function of language exposure or interactive history.

Real-World Reference

But still, to be more than an abstract system like mathematics

words must touch reality at least occasionally. LSA's inductive

mechanism would be valuable here as well. Although not so

easily quantified, Plato's problem surely frustrates identification

of the perceptual or pragmatic referent of words like mommy,

rabbit, cow, girl, good-bye, chair, run, cry, and eat in the infinite

number of real-world situations in which they can potentially

appear. What LSA adds to this part of lexicon learning is again

its demonstration of the possibility of stronger indirect associa-

tion than has usually been credited. Because, purely at the word-

word level, rabbit has been indirectly preestablished to be some-

thing like dog, animal, object, furry, cute, fast, ears, etc., it is

much less mysterious that a few contiguous pairings of the

word with scenes including the thing itself can teach the proper

correspondences. Indeed, if one judiciously added numerous

pictures of scenes with and without rabbits to the context col-

umns in the encyclopedia corpus matrix, and filled in a handful

of appropriate cells in the rabbit and hare word rows, LSA

could easily learn that the words rabbit and hare go with pic-

tures containing rabbits and not to ones without, and so forth.

Of course, LSA alone does not solve the visual figure-ground,

object parsing, binding, and recognition parts of the problem,

but even here it may eventually help by providing a powerful

way to generate and represent learned and indirect similarity

relations among perceptual features. In any event, the mecha-

nisms of LSA would allow a word to become similar to a

perceptual or imaginal experience, thus, perhaps, coming to

"stand for'' it in thought, to be evoked by it, or to evoke similar

images.

Finally, merely using the right word in the right place is, in

and of itself, an adaptive ability. A child can usefully learn that

the place she lives is Colorado, a college student that operant

conditioning is related to learning, a businessperson that TQM

is the rage, before needing any clear idea of what these terms

stand for. Many well-read adults know that Buddha sat long

under a banyan tree (whatever that is) and Tahitian natives lived

idyllically on breadfruit and poi (whatever those are). More or

less correct usage often precedes referential knowledge (Levy &

Nelson, 1994), which itself can remain vague but connotatively

useful. Moreover, knowing in what contexts to use a word can

function to amplify learning more about it by a bootstrapping

operation in which what happens in response provides new

context if not explicit verbal correction.

Nonetheless, the implications of LSA for learning pragmatic

reference seem most interesting. To take this one step deeper,

consider Quine's famous gavagai problem. He asks us to imag-

ine a child who sees a scene in which an animal runs by. An

adult says' 'gavagai.'' What is the child to think gavagai means:

ears, white, running, or something else in the scene? There are

infinite possibilities. In LSA, if two words appear in the same

context and every other word in that context appears in many

other contexts without them, the two can acquire similarity to

each other but not to the rest. This is illustrated in Figures A2

and A4 in the Appendix, which we urge the reader to examine.

This solves the part of the problem that is based on Quine's

erroneous implicit belief that experiential knowledge must di-

rectly reflect first-order contextual associations. What about legs

and ears and running versus the whole gavagai? Well, of course,

these might actually be what is meant. But by LSA's inductive

process, component features of legs, tail, ears, fur, and so forth

either before or later are all related to each other, not only

because of the occasions on which they occur together, but by

indirect result of occasions when they occur with other things

and more important, by occasions in which they do not occur

at all. Thus the new object in view is not just a collection of

unrelated features, each in a slightly different orientation than

ever seen before, but a conglomerate of weakly glued features

all of which are changed and made yet more similar to each

other and to any word selectively used in their presence.

Now consider the peculiar fact that people seem to agree on

words for totally private experiences, words like ache and love.

How can someone know that his experience of an ache or of

love is like that of his sister? Recognizing that we are having
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the same private experience as someone else is an indirect infer-

ence, an inference that is often mediated by agreeing on a com-

mon name for the experience. We have seen how LSA can lead

to agreement on the usage of a word in the absence of any

external referent and how it can make a word highly similar to

a context even if it never occurs in that context. It does both by

resolving the mutual entailments of a multitude of other word-

word, word-context, and context-context similarities, in the

end defining the word as a point in meaning space that is much

the same—but never identical—for different speakers and, per-

force, is related to other words and other contextual experiences

in much the same way for all. If many times when a mother has

a dull pain in her knee, she says "nache," the child may find

himself thinking "nache" when having the same experience,

even though the mother has never overtly explained herself and

never said "nache" when the child's knee hurt. But the verbal

and situational contexts of knee pains jointly point to the same

place in the child's LSA space as in hers and so does her novel

name for the child's similar private experiences. Note, also,

how experiences with verbal discourse alone could indirectly

influence similarity among perceptual concepts as such, and

vice versa, another way to make ears and tails, aches and pains,

run together. Thus, language does not just reflect perception;

the two are reciprocally helpful to each other (see D'Andrade,

1993; Lucy & Shweder, 1979, for cogent anthropological evi-

dence on this point).

Conditioning, Perceptual Learning, and Chunking

In this section we take the notion of the model as a homologue

of associative learning a few tentative steps further. At this point

in the development of the theory, this part must remain conjec-

tural and only roughly specified. The inductive processes of

LSA depend on and accrue only to large bodies of naturally

interrelated data; thus testing more elaborate and complex mod-

els demands more data, computational resources, and time than

has been available. Nevertheless, a sketch of some possible im-

plications and extensions shows how the dimensionality-opti-

mizing inductive process might help to explain a variety of

important phenomena that appear more puzzling without it and

suggests new lines of theory and investigation.

After the dimensionality reduction of LSA every component

event is represented as a vector, and so is each context. There

is, then, no fundamental difference between components and

contexts, except in regard to temporal scale and repeatability;

words, for example, are shorter events that happen more than

once, and paragraphs are longer events that are almost never

met again. Thus, in a larger theoretical framework, or in a real

brain, any mental event might serve in either or both roles. For

mostly computational reasons, we have so far been able to deal

only with two temporal granularities, one nested relation in

which repeatability was a property of one type of event and

not the other. But there is no reason why much more complex

structures, with mental (or neural) events at varying temporal

scales and various degrees of repeatability could not exploit the

same dimensionality-matching mechanism to produce similari-

ties and generalization among and between psychological enti-

ties of many kinds, such as stimuli, responses, percepts, con-

cepts, memories, ideas, images, and thoughts. Because of the

mathematical manner in which the model creates representa-

tions, a condensed vector representing a context is the same as

an appropriately weighted vector average of the condensed vec-

tors of all the events whose local temporal associations consti-

tuted it. This has the important property that a new context

composed of old units also has a vector representation in (tech-

nically, a linear transform of) the space, which in turn gives

rise to similarity and generalization effects among new event

complexes in an essentially identical fashion to those for two

old units or two old contexts. In some examples we give later,

the consequences of representing larger segments of experience

as a weighted vector sum of the smaller components of which

they are built are illustrated. For example, we show how the

vector-average representation of a sentence or a paragraph pre-

dicts comprehension of a following paragraph, whereas its shar-

ing of explicit words, even when appropriately weighted, does

not, and we give examples in which the condensed-vector repre-

sentation for a whole paragraph determines which of two words

it is most similar to, whereas any one word in it may not.

A New Light on Classical Association Theory

Since at least the English associationists, the question of

whether association happens by contiguity, similarity, or both

has been much argued. LSA provides an interesting answer. In

the first instance, similarity is acquired by a process that begins,

but only begins, with contiguity. The high-dimensional combi-

nation of contiguity data finishes the construction of similarity.

But the relations expressed by the high-dimensional representa-

tion into which contiguity data are fit are themselves ones of

similarity. Thus similarity itself is built of both contiguity and

still more similarity. This might explain why an introspectionist,

or an experimentalist, could be puzzled about which does what.

Even though they are different, the two keep close company, and

after sufficient experience, there is a chicken-and-egg relation

between their causative effects on representation.

Analogy to Episodic and Semantic Memories

Another interesting aspect of this notion is the light in which

it places the distinction between episodic and semantic memory.

In our simulations, the model represents knowledge gained from

reading as vectors standing for unique paragraph-like samples

of text and as vectors standing for individual word types. The

word representations are thus semantic, meanings abstracted

and averaged from many experiences, while the context repre-

sentations are episodic, unique combinations of events that oc-

curred only once ever. The retained information about the con-

text paragraph as a single average vector is a representation of

gist rather than surface detail. (And, as mentioned earlier, al-

though text passages do not contain all the juice of real biologi-

cal experience, they are often reasonably good surrogates of

nonverbal experience.) Yet both words and episodes are repre-

sented by the same defining dimensions, and the relation of each

to the other has been retained, if only in the condensed, less

detailed form of induced similarity rather than perfect knowl-

edge of history.
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Analogy to Explicit and Implicit Memories

In a similar way, the word-versus-context difference might

be related to difference between implicit and explicit memories.

Retrieving a context vector brings a particular past happening

to mind, whereas retrieving a word vector instantiates an ab-

straction of many happenings irreversibly melded. Thus, for

example, recognition that a word came from a particular pre-

viously presented list might occur by having the word retrieve

one or more context vectors—perhaps experienced as conscious

recollections—and evaluating their relation to the word. On the

other hand, changes in a word's ability to prime other words

occur continuously, and the individual identity of the many occa-

sions that caused the changes, either directly or indirectly, are

irretrievable. Although such speculations obviously go far be-

yond supporting evidence at this point, there is no reason to

believe that the processes that rekindle context and word vectors

could not be different (indeed, different mathematical operations

are required in the S VD model), or even differentially supported

by different brain structures. We go no further down this path

now than to drop this crumb for future explorations to follow.

Expertise

The theory and simulation results bear interestingly on exper-

tise. Compare the rate of learning a new word, one never encoun-

tered before, for a simulated rank novice and an expert reader.

Take the rank novice to correspond to the model meeting its

second text sample (so as to avoid log 1 in the descriptive

model). Assume the expert to have spent 10 years acquiring

domain knowledge. Reading 3 hr per day, at 240 words per

minute, the expert is now reading his 2,000,001 st 70-word para-

graph. Extrapolating the model of Equation 1 predicts that the

novice gains .14 in probability correct for the new word, the

expert .56. Although these extrapolations should not be taken

seriously as estimates for human learners because they go out-

side the range of the empirical data to which the model is known

to conform, they nevertheless illustrate the large effects on the

ability to acquire new knowledge that can arise from the induc-

tive power inherent in the possession of large bodies of old

knowledge. In this case the learning rate, the amount learned

about a particular item per exposure to it, is approximately four

times as great for the simulated expert as for the simulated

novice.

The LSA account of knowledge growth casts a new light on

expertise by suggesting that great masses of knowledge contrib-

ute to superior performance not only by direct application of

the stored knowledge to problem solving, but also by greater

ability to add new knowledge to long-term memory, to infer

indirect relations among bits of knowledge and to generalize

from instances of experience.

Contextual Disambiguation

LSA simulations to date have represented a word as a kind

of frequency-weighted average of all its predicted usages. For

words that convey only one meaning, this is fine. For words

that generate a few closely related meanings, it is a good com-

promise. This is the case for the vast majority of word types

but, unfortunately, not necessarily for a significant proportion

of word tokens, because relatively frequent words like line, fly,

and bear often have many senses, as this phenomenon is tradi-

tionally described." For words that are seriously ambiguous

when standing alone, such as line, ones that might be involved

in two or more very different meanings with nearly equal fre-

quency, this would appear to be a serious flaw. The average

LSA vector for balanced homographs like bear can bear little

similarity to any of their major meanings. However, we see later

that although this raises an issue in need of resolution, it does not

prevent LSA from simulating contextual meaning, a potentially

important clue in itself.

It seems manifest that skilled readers disambiguate words as

they go. The introspective experience resembles that of perceiv-

ing an ambiguous figure; only one or another interpretation

usually reaches awareness. Lexical priming studies beginning

with Ratcliff & McKoon (1978) and Swinney (1979) as well

as eye movement studies (Rayner, Pacht, & Duffy, 1994), sug-

gest that ambiguous words first activate multiple interpretations,

but very soon settle to that sense most appropriate to their

discourse contexts. A contextual disambiguation process can be

mimicked using LSA in its current form, but the acquisition

and representation of multiple separate meanings of a single

word cannot.

Consider the sentence, "The player caught the high fly to left

field.'' On the basis of the encyclopedia-based word space, the

vector average of the words in this sentence has a cosine of .37

with ball, .31 with baseball, and .27 with hit, all of which are

related to the contextual meaning of fly, but none of which is

in the sentence. In contrast, the sentence vector has cosines of

.17, .18, and .13 with insect, airplane, and bird. Clearly, if LSA

had appropriate separate entries foifly that included its baseball

sense, distance from the sentence average would choose the

right one. However, LSA has only a single vector to represent

fly, and (as trained on the encyclopedia) it is unlike any of the

right words. It has cosines of only .02, .01, and —.02 respectively

with ball, baseball, and hit (compared to .69, .53 and .24,

respectively with insect, airplane, and bird). The sentence repre-

sentation has correctly caught the drift, but the single averaged-

vector representation for the word^ry, which falls close to mid-

way between airplane and insect, is nearly orthogonal to any

of the other words. More extensive simulations of LSA-based

contextual disambiguation and their correlations with empirical

data on text comprehension are described later. Meanwhile, we

sketch several ways in which LSA might account for multiple

meanings of the same word: first a way in which it might be

extended to induce more than one vector for a word, then ways

in which a single vector as currently computed might give rise

to multiple meanings.

It is well-known that, for a human reader, word senses are

almost always reliably disambiguated by local context. Usually

one or two words to either side of an ambiguous word are

enough to settle the overall meaning of a phrase (Choueka &

Lusignan, 1985). Context-based techniques for lexical disam-

" For example, among the most frequent 400 words in the Kucera

and Francis (1967) count, at least 60 have two or more common mean-

ings, whereas in a sample of 400 that appeared only once in the corpus

there were no more than 10.
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biguation have been tried in computational linguistic experi-

ments with reasonably good results (e.g., Grefenstette, 1994;

Schutze, 1992a; Schtitze & Pedersen, 1995; Walker & Amsler,

1986). However; no practical means for automatically extracting

and representing all the different senses of all the words in a

language from language experience alone has emerged.

How might separate senses be captured by an LSA-like

model? Suppose that the input for LSA were a three-way rather

than a two-way matrix, with columns of paragraphs, ranks of

all the phrases that make up all the paragraphs, and rows of all

the word types that make up all the phrases. Partway between

paragraphs and words, phrases would seldom, but sometimes,

repeat. Cells would contain the number of times that a word

type appeared in a particular phrase in a particular paragraph.

(A neural network equivalent might have an additional layer of

nodes. Note that in either case, the number of such intermediate

vectors would be enormous, a presently insurmountable compu-

tational barrier.)

The reduced-dimensionality representation would constitute

a predictive device that would estimate the likelihood of any

word occurring in any phrase context or any paragraph, or any

phrase occurring in any paragraph, whether they had occurred

there in the first place or not. The idea is that the phrase-level

vectors would carry distinctions corresponding approximately

to differential word senses. In simulating text comprehension,

a dynamic performance model might start with the average of

the words in a paragraph and, using some constraint satisfaction

method, arrive at a representation of the paragraph as a set of

imputed phrase vectors and their average.

A very different, much simpler, possibility is that each word

has but a single representation, but because LSA representations

have very high dimensionality, the combination of a word with

a context can have very different effects on the meaning of

different passages. Consider the sentences, "The mitochondria

are in the cells," versus "The monks are in the cells," in which

abstract semantic dimensions of the context determine the sense

of cells as biological or artificial objects. In one case the overall

passage-meaning vector has a direction intermediate between

that of mitochondria and that of cells, in the other case between

monks and cells. If mitochondria and monks are in orthogonal

planes in semantic space, the resultant vectors are quite different.

Now suppose that the current context-specific meaning of

cells—and perhaps its conscious expression—is represented

by the projection of its vector onto the vector for the whole

passage; that is, only components of meaning that it shares

with the context, after averaging, comprise its disambiguated

meaning. In this way, two or more distinct senses could arise

from a single representation, the number and distinctions among

senses depending only on the variety and distinctiveness of dif-

ferent contexts in which the word is found. In this interpretation,

the multiple senses described by lexicographers are categoriza-

tions imposed on the contextual environments in which a word

is found.

Put another way, a 300-dimensional vector has plenty of room

to represent a single orthographic string in more than one way

so long as context is sufficient to select the relevant portion of

the vector to be expressed. In addition, it might be supposed

that the relations among the words in a current topical context

would be subjected to a local re-representation process, a sec-

ondary SVD-like condensation, or some other mutual constraint

satisfaction process using the global cosines as input that would

have more profound meaning-revision effects than simple

projection.

Finally, the contextual environment of a word might serve to

retrieve related episode representations that would, by the same

kinds of processes, cause the resultant meaning, and perhaps

the resultant experience, to express the essence of a particular

subset of past experiences. Given an isolated word, the system

might settle competitively on a retrieved vector for just one or

the average of a concentrated cluster of related episodes, thus

giving rise to the same phenomenology, perhaps by the same

mechanism, as the capture quality of ambiguous visual figures.

Thus the word cell might give rise to an image of either a

microscopic capsule or a room.

A resolution of which, if any, of these hypothetical mecha-

nisms accounts for multiple word-meaning phenomena is be-

yond the current state of LSA theory and data; the moral of the

discussion is just that LSA's single-vector representation of a

word is not necessarily a fatal or permanent flaw. Whereas some

of the evidence to follow inclines us to the single-representation

view, we consider the issue as distinctly open.

Text Comprehension: An LSA Interpretation of

Construction-Integration Theory

Some research has been done using LSA to represent the

meaning of segments of text larger than words and to simulate

behaviors that might otherwise fall prey to the ambiguity prob-

lem. In this work, individual word senses are not separately

identified or represented, but the overall meaning of phrases,

sentences, or paragraphs is constructed from a linear combina-

tion of their words. By hypothesis, the various unintended-mean-

ing components of the many different words in a passage tend

to be unrelated and point in many directions in meaning hypers-

pace, whereas their vector average reflects the overall topic or

meaning of the passage. We recount two studies illustrating this

strategy. Both involve phenomena that have previously been

addressed by the construction-integration (CI) model (Kintsch,

1988). In both, the current version of LSA, absent any mecha-

nism for multiple-word-sense representation, is used in place of

the intellectually coded prepositional analyses of CI.

Predicting coherence and comprehensibility. Fbltz, Kintsch,

and Landauer, in an unpublished study (1993), reanalyzed data

from experiments on text comprehension as a function of dis-

course coherence. As part of earlier studies (McNamara,

Kintsch, Butler-Songer, & Kintsch, 1996), a single short text

about heart function had been reconstructed in four versions

that differed greatly in coherence according to the propositional

analysis measures developed by Van Dijk and Kintsch (1983).

In coherent passages, succeeding sentences used concepts intro-

duced in preceding sentences so that the understanding of each

sentence and of the overall text—the building of the text base

and situation model in CI terms—could proceed in a gradual,

stepwise fashion. In less coherent passages, more new concepts

were introduced without precedent in the propositions of preced-

ing sentences. The degree of coherence was assessed by the

number of overlapping concepts in propositions of successive

sentences. Empirical comprehension tests with college student
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readers established that the relative comprehensibility of the

four passages was correctly ordered by their propositionally

estimated coherence.

In the reanalysis, sentences from a subcorpus of 27 encyclope-

dia articles related to the heart were first subjected to SVD

and a 100-dimensional solution used to represent the contained

words. Then each sentence in the four experimental paragraphs

was represented as the average of the vectors of the words it

contained. Finally, the coherence of each paragraph was re-

estimated as the average cosine between its successive sentences.

Figure 5 shows the relation of this new measure of coherence

to the average empirical comprehension scores for the para-

graphs. The LSA coherence measure corresponds well to mea-

sured comprehensibility. In contrast, an attempt to predict com-

prehensibility by correlating surface-structure word types in

common between successive sentences (i.e., computing cosines

between vectors in the full-dimension transformed matrix), also

shown in Figure 5, fails, largely because there is little overlap

at the word level. LSA, by capturing the central meaning of

the passages appears to reflect the differential relations among

sentences that led to comprehension differences.

Simulating contextual word disambiguation and sentential

meaning inference. Another reanalysis illustrates this reinter-

pretation of CI in LSA terms more directly with a different

data set. Till, Mross, and Kintsch (1988) performed semantic

priming experiments in which readers were presented word by

word with short paragraphs and interrupted at strategically

placed points to make lexical decisions about words related

either to one or another of two senses of a just-presented homo-

graphic word or to words not contained in the passages but

0.26
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0.22

0.20

0.18

0.16

0.14

LSA
r a 0.93

0.3 0.4

Comprehension (%)

Figure 5. Prediction of measured text comprehensibility of a set of

experimentally altered text passages taken from McNamara et a].

(1996). Predictions were based on the similarity of each sentence to

that of the succeeding sentence, putative measures of conceptual coher-

ence. For latent semantic analysis (LSA), sentences were represented

by the average of the LSA-derived vectors of the words they contained.

The control condition (word level) used the same analysis but without

dimension reduction.

related inferentially to the story situation that a reader would

presumably assemble in comprehending the discourse up to that

point. They also varied the interval between the last text word

shown and the target for lexical decision. Here is an example

of two matched text paragraphs and the four target words for

lexical decisions used in conjunction with them.

1. The gardener pulled the hose around to the holes in the

yard. Perhaps the water would solve his problem with the mole.

2. The patient sensed that this was not a routine visit. The

doctor hinted that there was serious reason to remove the mole.

Targets for lexical decision: ground, face; drown, cancer

Across materials, Till et al. (1988) balanced the materials by

switching words and paragraphs with different meanings and

included equal numbers of nonwords. In three experiments of

this kind, the principal findings were (a) in agreement with

Ratcliff and McKoon (1978) and Swinney (1979), words re-

lated to both senses of an ambiguous word were primed immedi-

ately after presentation, (b) after about 300 ms only the context

appropriate associates remained significantly primed, and (c)

words related to inferred situational themes were not primed at

short intervals, but were at delays of 1 s.

The standard CI interpretation of these results is that in the

first stage of comprehending a passage—construction—multi-

ple nodes representing all senses of each word are activated in

long-term memory, and in the next stage—integration—itera-

tive excitation and inhibition among the nodes leads to domi-

nance of appropriate word meanings and finally to creation of

a prepositional structure representing the situation described by

the passage.

LSA as currently developed is, of course, mute on the tempo-

ral dynamics of comprehension, but it does provide an objective

way to represent, simulate, and assess the degree of semantic

similarity between words and between words and longer pas-

sages. To illustrate, an LSA version of the CI account for the

Till et al. (1988) experiment might go like this:

1. First, a central meaning for each graphemic word type is

retrieved: the customary vector for each word. Following this,

there are two possibilities, depending on whether one assumes

single or multiple representations for words.

2. Assuming only a single, average representation for each

word, the next step is computation of the vector average for all

words in the passage. As this happens, words related to the

average meanings being generated, including both appropriate

relatives of the homograph and overall "inference" words, be-

come activated, while unrelated meanings, including unrelated

associates of the homograph, decline.

On the other interpretation, an additional stage is inserted

between these two in which the average meaning for some or

all of the words in the passage disambiguates the separate words

individually, choosing a set of senses that are then combined.

The stimulus asynchrony data of Till et al. (1988) seems to

suggest the latter interpretation in that inappropriate homograph

relatives lose priming faster than inference words acquire it, but

there are other possible explanations for this result, in particular

that the overall passage meaning simply evolves slowly with the

most holistic interpretations emerging last. In any event, the

current LSA representation can only simulate the meaning rela-

tions between the words and passages and is indifferent to which
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of these alternatives, or some other, is involved in the dynamics

of comprehension.

In either case, LSA predicts that (a) there should be larger

cosines between the homographic word and both of its related

words than between it and control words, (b) the vector average

of the passage words coming before the homographic word

should have a higher cosine with the context-relevant word re-

lated to it than to the context-irrelevant word, and (c) the vector

average of the words in a passage should have a higher cosine

with the word related to the passage's inferred situational mean-

ing than to control words.

These predictions were tested by computing cosines based

on word vectors derived from the encyclopedia analysis and

comparing the differences in mean similarities corresponding

to the word-word and passage-word conditions in Till et al.

(1988, Experiment 1). There were 28 pairs of passages and 112

target words. For the reported analyses, noncontent words such

as it, of, and, to, is, him, and had were first removed from the

passages, then vectors for the full passages up to or through the

critical homograph were computed as the vector average of the

words. The results are shown in Table 1. Here is a summary.

1. Average cosines between ambiguous homographs and the

two words related to them were significantly higher than be-

tween the homographs and unrelated words (target words for

other sentence pairs). The effect size for this comparison was

at least as large as that for priming in the Till et al. (1988)

experiment.

2. Homograph-related words that were also related to the

meaning of the paragraph had significantly higher cosines with

the vector average of the passage than did paired words related

to a different sense of the homograph. For 37 of the 56 passages

the context-appropriate sense related word had a higher cosine

with the passage preceding the homograph than did the inappro-

priate sense-related word (p — .01). (Note that these are rela-

tions to particular words, such a&face, that are used to stand—

imperfectly at best—for the correct meaning of mole, rather

than the hypothetical correct meaning itself. Thus, for all we

know, the true correct disambiguation, as a point in LSA mean-

ing space, was always computed).

3. To assess the relation between the passages and the words

ostensibly related to them by situational inference, we computed

cosines between passage vector averages and the respective ap-

propriate and inappropriate inference target words and between

the passages and unrelated control words from passages dis-

placed by two in the Till et al. (1988) list. On average, the

passages were significantly closer to the appropriate than to

either the inappropriate inferentially related words or unrelated

control words (earlier comment relevant here as well).

These word and passage relations are fully consistent with

either LSA counterpart of the construction-integration theory as

outlined above. In particular, they show that an LSA based on

(only) 4.6 million words of text produced representations of

word meanings that would allow the model to mimic human

performance in the Till et al. (1988) experiment given the right

activation and interaction dynamics. Because homographs are

similar to both tested words presumably related to different

meanings, they presumably could activate both senses. Because

the differential senses of the homographs represented by their

related words are more closely related to the average of words

in the passage from which they came, the LSA representation

of the passages would provide the information needed to select

the homograph's contextually appropriate associate. Finally, the

LSA representations of the average meaning of the passages are

similar to words related to meanings thought to be inferred from

mental processing of the textual discourse. Therefore, the LSA

representation of the passages must also be related to the overall

inferred meaning.

Some additional support is lent to these interpretations by

findings of Lund, Burgess, and colleagues (Lund & Burgess, in

press; Lund et al., 1995) who have mimicked other priming

Table 1

LSA Simulation of Till et al. (1988) Sentence and Homograph Priming Experiment

Sense targets

Prime

Homograph alone

Full passage with
homograph

Right
(A)

.20

.24

Wrong

(B)

.21

.21

Inference targets

Right

(C)

.09

.21

Wrong

(D)

.05

.14

Unrelated
(control)

.07
p vs. A or B < .00001

z = .89

.15

Full passage without
homograph .21 .15

p vs. A = .006
z = .48

p vs. C = .0008 p vs. C = .0005
z = 1.59 z = .55

.21 .14 .16
p vs. C = .0002 p vs. C = .002

z = .69 z = .46

Note. Simulated discourse was from Till, Kintsch, and Mross (1988). Cell entries are latent semantic
analysis (LSA) cosines between words, or words and sentences, based on a large texl-coipus analysis.
Targets in Columns A and B were common associates of the homographic word ending the sentence, either
related or not to the sense of the passage. Targets in Columns C and D were words not in a sentence but
intuitively related, or not, to its overall inferred meaning. Probabilities are based on individual two-sample,
one-tailed f-tests, d/s ^ 54. Differences < .05 and without stated p values had p > .09.
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data using a high-dimensional semantic model, HAL, that is

related to LSA.12 Lund et al. derived 200 element vectors to

represent words from analysis of 160 million words from Usenet

newsgroups. They first formed a word-word matrix from a 10-

word sliding window in which the co-occurrence of each pair

of words was weighted inversely with the number of intervening

words. They reduced the resulting 70,000-by-70,000 matrix to

one of 70,000 by 200 simply by selecting only the 200 columns

(following words) with the highest variance. In a series of

simulations and experiments, they have been able to mimic se-

mantic priming results that contrast pairs derived from free-

association norms and pairs with intuitively similar meanings,

interpreting their high-dimensional word vectors as representing

primarily (judged) semantic relatedness.

At least two readings of the successful mimicking of lexical

priming relations by high-dimensional, semantic-space similari-

ties are possible. One is that some previous findings on textual

word and discourse processing may have been a result of word-

to-word and word-set-to-word similarities rather than the more

elaborate cognitive-linguistic processes of syntactic parsing and

sentential semantic meaning construction that have usually been

invoked to explain them. Word and, especially, word-set seman-

tic relations were not conveniently measurable prior to LSA and

could easily have been overlooked. However, we believe it would

be incorrect to suggest that previous text-processing results are

in any important sense artifactual. For one thing, even the more

cognitively elaborate theories, such as CI, depend on semantic

relations among words, which are customarily introduced into

the models on the basis of expert subjective judgments or human

association norms. LSA might be viewed as providing such

models with a new tool for more objective simulation, for acquir-

ing word-word relations from input data like that used by hu-

mans rather than "black-box" outputs of some of the processes

we wish to understand. For another, we have no intention of

denying an important role to syntax-using, meaning-construc-

tion processes. We are far from ready to conclude that LSA's

representation of a passage as a weighted vector average of the

words in it is a complete model of a human's representation of

the same passage.

On the other hand, we think it would be prudent for research-

ers to attempt to assess the degree to which language-processing

results can be attributed to word and word-set meaning relations

and to integrate these relations into accounts of psycholinguistic

phenomena. We also believe that extensions of LSA, including

extensions involving iterative construction of context-dependent

superstructures, and dynamic processes for comprehension,

might in many cases present a viable alternative to psycholin-

guistic models based on more traditional linguistic processes

and representations.

Mimicking the representation of single-digit Arabic numerals.

The results described up to here have assessed the LSA repre-

sentation of words primarily with respect to the similarity be-

tween two words or between a word and the combination of a

set of words. But a question still needs asking as to the extent

to which an LSA representation corresponds to all or which

aspects of what is commonly understood as a word's meaning.

The initial performance of the LSA simulation on TOEFL ques-

tions was as good as that of students who were asked to judge

similarity of meaning. This suggests that the students did not

possess more or better representations of meaning for the words

involved, that the LSA representation exhausted the usable

meaning for the judgment. However, the students had limited

abilities and the tests had limited resolution and scope; thus

much of each word's meaning may have gone undetected on

both sides. The rest of the simulations, for example the predic-

tions of paragraph comprehension and sentence-inference prim-

ing, because they also closely mimic human performances usu-

ally thought to engage and use meaning, add weight to the

hypothesis that LSA's representation captures a large component

of human meaning. Nevertheless, it is obvious that the issue is

far from resolved.

At this point, we do no more than to add one more intriguing

finding that demonstrates LSA's representation of humanlike

meaning in a rather different manner. Mover & Landauer (1967)

reported experiments in which participants were timed as they

made button presses to indicate which of two single-digit numer-

als was the larger. The greater the numerical difference between

the two, the faster was the average response. An overall function

that assumed that single-digit numerals are mentally represented

as the log of their arithmetic values and judged as if they were

line lengths fit the data nicely. But why should people represent

digits as the logs of their numerical value? It makes no apparent

sense either in terms of the formal properties of mathematics,

of what people have learned about these symbols for doing

arithmetic, or for their day-to-day role in counting or communi-

cation of magnitudes.

A model of meaning acquisition and generation should be

able to account for nonobvious and apparently maladaptive cases

as well as those that are intuitively expectable. What relations

among the single-digit number symbols does LSA extract from

text? To find out, we performed a multidimensional scaling on

a matrix of all 36 dissimilarities (defined as 1-LSA cosine)

between the digits 1 through 9 as encountered as single isolated

characters in the encyclopedia text sample. A three-dimensional

solution accounted for almost all the interdigit dissimilarities

(i.e., their local structure, not the location or orientation of that

structure in the overall space). Projections of the nine digit

representations onto the first (strongest) dimension of the local

structure are shown in Figure 6.

Note first that the digits are aligned in numerical order on

this dimension, second that their magnitudes on the dimension

are nearly proportional to the log of their numerical values.

Clearly, the LSA representation captures the connotative mean-

ing reflected in inequality judgment times. The implication is

that the reason that people treat these abstract symbols as having

continuous analog values on a log scale is simply that the statisti-

cal properties of their contextual occurrences implies these rela-

tions. Of course, this raises new questions, in particular, where

or how generated is the memory representation that allows peo-

ple to use numerals to add and subtract with digital accuracy:

12 There is a direct line of descent between LSA and the HAL model

of Burgess and colleagues (Lund & Burgess, in press; Lund et al., 1995).

They credit an unpublished article of H. Schiltze as the inspiration for

their method of deriving semantic distance from large corpora, and

Schiltze, in the same and other articles (e.g., 1992a), cites Deerwester

et al. (1990), the initial presentation of the LSA method for information

retrieval.
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Figure 6. The dissimilarities (1-cosine) between all pairs of latent

semantic analysis (LSA) vectors representing the single-digit numerals

1 -9, as derived from large text-corpus training, were subjected to multi-

dimensional scaling. The projection of the point for each numeral onto

the first principal component of this LSA subspace is shown. (The scale

of the dimension has been linearly adjusted to an arbitrary 0-1 range.)

The numeral representations align in numerical order and scale as their

logs, reflecting, it is proposed, the dimension of meaning tapped by

inequality judgment times as observed by Moyer and Landauer (1967).

in another projection, in the representation of number-fact

phrases, or somewhere or somehow else?

It must be noted that the frequency of occurrence in English

of the Arabic numerals 1-9 is also related to the log of their

numerical value, larger numbers having smaller frequencies (Da-

vies, 1971), in which case it might appear that people's judg-

ment of numeral differences are in reality judgments that the

one with the smaller frequency is the larger. However, this possi-

bility does not greatly affect the point being made here, which

is that a particular context-conditioned projection of the LSA

representations revealed a component dimension related to a

meaning-based performance, judgment of relative size, that goes

beyond judgment of the pairwise similarities of the objects.

A hint for future research that we take from this result is that

there may often be projections of word meanings onto locally

defined dimensions that create what from other perspectives may

be puzzling combinations of meaning. For example, the reading

of a lexically ambiguous word in a sentence or the effect of an

otherwise anomalous word in a metaphorical expression might

depend, not on the position of the word in all 300 dimensions,

but on its position in a perhaps temporary local subspace that

best describes the current context. This conjecture awaits further

pursuit.

Summary

We began by describing the problem of induction in knowl-

edge acquisition, the fact that people appear to know much more

than they could have learned from temporally local experiences.

We posed the problem concretely with respect to the learning

of vocabulary by school-age children, a domain in which the

excess of knowledge over apparent opportunity to learn is quan-

tifiable and for which a good approximation to the total relevant

experience available to the learner is also available to the re-

searcher. We then proposed a new basis for long-range induction

over large knowledge sets containing only weak and local con-

straints at input. The proposed induction method depends on

reconstruction of a system of multiple similarity relations in a

high dimensional space. It is supposed that the co-occurrence

of events, words in particular, in local contexts is generated by

and reflects their similarity in some high-dimensional source

space. By reconciling all the available data from local co-occur-

rence as similarities in a space of nearly the same dimensionality

as the source, a receiver can, we propose, greatly improve its

estimation of the source similarities over their first-order estima-

tion from local co-occurrence. The actual value of such an in-

duction and representational scheme is an empirical question

and depends on the statistical structure of large natural bodies

of information. We hypothesized that the similarity of topical

or referential meaning ("aboutness") of words is a domain of

knowledge in which there are very many indirect relations

among a very large number of elements and, therefore, one in

which such an induction method might play an important role.

We implemented the dimensionality-optimizing induction

method as a mathematical matrix-decomposition method called

singular value decomposition (SVD) and tested it by simulating

the acquisition of vocabulary knowledge from a large body of

text. After analyzing and re-representing the local associations

between some 60,000 words and some 30,000 text passages

containing them, the model's knowledge was assessed by a

standardized synonym test. The model scored as well as the

average of a large sample of foreign students who had taken

this test for admission to U.S. colleges. The model's synonym

test performance depended strongly on the dimensionality of

the representational space into which it fit the words. It did very

poorly when it relied only on local co-occurrence (too many

dimensions), well when it assumed around 300 dimensions, and

very poorly again-when it tried to represent all its word knowl-

edge in much less than 100 dimensions. From this, we concluded

that dimensionality-optimization can greatly improve the extrac-

tion and representation of knowledge in at least one domain of

human learning.

To further quantify the model's (and thus the induction meth-

od's) performance, we simulated the acquisition of vocabulary

knowledge by school-children. The model simulations learned at

a rate—in total vocabulary words added per paragraph read—

approximating that of children and considerably exceeding

learning rates that have been attained in laboratory attempts to

teach children word meanings by context. Additional simula-

tions showed that the model, when emulating a late-grade school

child, acquired most of its knowledge about the average word

in its lexicon through induction from data about other words.

One evidence of this was an experiment in which we varied the

number of text passages either containing or not containing

tested words and estimated that three fourths of total vocabulary

gain from reading a passage was in words not in the paragraph

at all.

Given that the input to the model was data only on occurrence
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of words in passages, so that LSA had no access to word-

similarity information based on spoken language, morphology,

syntax, logic, or perceptual world knowledge, all of which can

reasonably be assumed to be additional evidence that a dimen-

sionality-optimizing system could use, we conclude that this

induction method is sufficiently strong to account for Plato's

paradox—the deficiency of local experience—at least in the

domain of knowledge measured by synonym tests.

Based on this conclusion, we suggested an underlying asso-

ciative learning theory of a more traditional psychological sort

that might correspond to the mathematical model and offered a

sample of conjectures as to how the theory would generate novel

accounts for aspects of interesting psychological problems, in

particular for language phenomena, expertise, and text compre-

hension. Then, we reported some reanalyses of human text pro-

cessing data in which we illustrated how the word and passage

representations of meaning derived by LSA can be used to

predict such phenomena as textual coherence and comprehensi-

bility and to simulate the contextual disambiguation of homo-

graphs and generation of the inferred central meaning of a para-

graph. Finally, we showed how the LSA representation of digits

can explain why people apparently respond to the log of digit

values when making inequality judgments.

At this juncture, we believe the dimensionality-optimizing

method offers a promising solution to the ancient puzzle of

human knowledge induction. It still remains to determine how

wide its scope is among human learning and cognition phenom-

ena: Is it just applicable to vocabulary, or to much more, or,

perhaps, to all knowledge acquisition and representation? We

would suggest that applications to problems in conditioning,

association, pattern and object recognition, contextual disambig-

uation, metaphor, concepts and categorization, reminding, case-

based reasoning, probability and similarity judgment, and com-

plex stimulus generalization are among the set where this kind

of induction might provide new solutions. It still remains to

understand how a mind or brain could or would perform opera-

tions equivalent in effect to the linear matrix decomposition of

SVD and how it would choose the optimal dimensionality for

its representations, whether by biology or an adaptive computa-

tional process. And it remains to explore whether there are better

modeling approaches and input representations than the linear

decomposition methods we applied to unordered bag-of-words

inputs. Conceivably, for example, different input and different

analyses might allow a model based on the same underlying

induction method to derive aspects of grammar and syntactically

based knowledge. Moreover, the model's objective technique

for deriving representations of words (and perhaps other ob-

jects) offers attractive avenues for developing new versions and

implementations of dynamic models of comprehension, learn-

ing, and performance. On the basis of the empirical results and

conceptual insights that the theory has already provided, we

believe that such explorations are worth pursuing.
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Appendix

An Introduction to Singular Value Decomposition and an LSA Example

Singular Value Decomposition (SVD)

A well-known proof in matrix algebra asserts that any rectangular

matrix (X) is equal to the product of three other matrices (W, S, and

C) of a particular form (see Berry, 1992, and Golub et al., 1981, for

the basic math and computer algorithms of SVD). The first of these

(W) has rows corresponding to the rows of the original, but has m

columns corresponding to new, specially derived variables such that

there is no correlation between any two columns; that is, each is linearly

independent of the others, which means that no one can be constructed

as a linear combination of others. Such derived variables are often called

principal components, basis vectors, factors, or dimensions. The third

matrix (C) has columns corresponding to the original columns, but m

rows composed of derived singular vectors. The second matrix (S) is a

diagonal matrix; that is, it is a square m X m matrix with nonzero entries

only along one central diagonal. These are derived constants called

singular values. Their role is to relate the scale of the factors in the first

two matrices to each other. This relation is shown schematically in Figure

Al. To keep the connection to the concrete applications of SVD in the

main text clear, we have labeled the rows and columns words (w) and

contexts (c). The figure caption defines SVD more formally.

The fundamental proof of SVD shows that there always exists a

decomposition of this form such that matrix multiplication of the three

derived matrices reproduces the original matrix exactly so long as there

are enough factors, where enough is always less than or equal to the

smaller of the number of rows or columns of the original matrix. The

number actually needed, referred to as the rank of the matrix, depends

on (or expresses) the intrinsic dimensionality of the data contained in

the cells of the original matrix. Of critical importance for latent semantic

analysis (LSA), if one or more factor is omitted (that is, if one or more

singular values in the diagonal matrix along with the corresponding

singular vectors of the other two matrices are deleted), the reconstruction

is a least-squares best approximation to the original given the remaining

dimensions. Thus, for example, after constructing an SVD, one can

reduce the number of dimensions systematically by, for example, remov-

ing those with the smallest effect on the sum-squared error of the approx-

imation simply by deleting those with the smallest singular values.

The actual algorithms used to compute SVDs for large sparse matrices

of the sort involved in LSA are rather sophisticated and are not described

here. Suffice it to say that cookbook versions of SVD adequate for

small (e.g., 100 X 100) matrices are available in several places (e.g.,

Mathematica, 1991), and a free software version (Berry, 1992) suitable

Contexts

X = w

n

\
\

> x m I

C

n x c

for very large matrices such as the one used here to analyze an encyclope-

dia can currently be obtained from the Worldwide Web (http://www.net-

lib.org/svdpack/index.html). University-affiliated researchers may be

able to obtain a research-only license and complete software package

for doing LSA by contacting Susan Dumais.AI With Berry's software

and a high-end Unix work-station with approximately 100 megabytes

of RAM, matrices on the order of 50,000 X 50,000 (e.g., 50,000 words

and 50,000 contexts) can currently be decomposed into representations

in 300 dimensions with about 2-4 hr of computation. The computational

complexity is O(3Dz), where z is the number of nonzero elements in

the Word (w) X Context (c) matrix and D is the number of dimensions

returned. The maximum matrix size one can compute is usually limited

by the memory (RAM) requirement, which for the fastest of the methods

in the Berry package is (10 + D + q}N + (4 + q)q, where N = w +

c and q = min (N, 600), plus space for the W x C matrix. Thus,

whereas the computational difficulty of methods such as this once made

modeling and simulation of data equivalent in quantity to human experi-

ence unthinkable, it is now quite feasible in many cases.

Note, however, that the simulations of adult psycholinguistic data

reported here were still limited to corpora much smaller than the total

text to which an educated adult has been exposed.

An LSA Example

Here is a small example that gives the flavor of the analysis and

demonstrates what the technique can accomplish.A2 This example uses

as text passages the titles of nine technical memoranda, five about human

computer interaction (HCI), and four about mathematical graph theory,

topics that are conceptually rather disjoint. The titles are shown below.

c 1: Human machine interface for ABC computer applications

c2: A survey of user opinion of computer system response time

c3: The EPS user interface management system

c4: System and human system engineering testing of EPS

c5: Relation of user perceived response time to error measurement

ml: The generation of random, binary, ordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-order ing

m4: Graph minors: A survey

The matrix formed to represent this text is shown in Figure A2. (We

discuss the highlighted parts of the tables in due course.) The initial

matrix has nine columns, one for each title, and we have given it 12

rows, each corresponding to a content word that occurs in at least two

contexts. These are the words in italics. In LSA analyses of text, includ-

ing some of those reported above, words that appear in only one context

are often omitted in doing the SVD. These contribute little to derivation

of the space, their vectors can be constructed after the SVD with little

loss as a weighted average of words in the sample in which they oc-

curred, and their omission sometimes greatly reduces the computation.

See Deerwester, Dumais, Purnas, Landauer, and Harshman (1990) and

Dumais (1994) for more on such details. For simplicity of presentation.

Figure Al. Schematic diagram of the singular value decomposition

(SVD) of a rectangular word (w) by context (c) matrix (X). The

original matrix is decomposed into three matrices: W and C, which are

orthonormal, and S, a diagonal matrix. The m columns of W and the m

rows of C' are linearly independent.

A1 Inquiries about LSA computer programs should be addressed to

Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey

07960. Electronic mail may be sent via Internet to std@bellcore.com.
A3 This example has been used in several previous publications (e.g.,

Deerwester et al., 1990; Landauer & Dumais, 1996).
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X = x =
cl c2 c3 c4 c5 ml m2 m3 m4

[human 1
interface 1
computer!
user 0
system 0
response 0
time 0
EPS 0
survey 0
trees 0
graph 0
| minors 0

0
0
1
1
1
1
1
0
1
0
0
0

0
1
0
1
1
0
0
1
0
0
0
0

1
0
0
0
2
0
0
1
0
0
0
0

0
0
0
1
0
1
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0-
1
1
1

0 1
0
0
0
0
0
0
0
1
0
11 1

Figure A2. A miniature dataset of titles described by means of a word-
by-context matrix (X) in which cell entries indicate the frequency with
which a given word occurs in a given context. (The usual preliminary
transformation is omitted here for simplicity.) There are five titles (cl-
c5) about human computer interaction and four titles (ml-m4) about
mathematical graph theory. Highlighted portions are used to indicate
modifications in pattern similarities by dimension reduction between
this figure and its dimension-reduced version shown in Figure A4. Here
?•( human, user) = -.38; r(human.minors) = -.29.

X = W S C'
w=
0.22
0.20
0.24
0.40
0.64
0.27
0.27
0.30
0.21
O.OJ
0.04
0.03

-0.11
-0,07
0.04
0.06

-0.17
0.11
O.H

-0.14
0.27
0.49
0.62
0.45

0.29
0.14

-0.16
-0.34
0.36

-0.43
-0.43
0.33

-0.18
0.23
0.22
0.14

-0.41
-0.55
-0.59
0.10
0.33
0.07
0.07
0.19

-0.03
0.03
0.00

-0.01

-0.11
0.28

-0.11
0.33

-0.16
0.08
0.08
0.11

-0.54
0.59

-0.07
-0.30

-0.34
0.50

-0.25
0.38

-0.21
-0.17
-0.17
0.27
0.08
-0.39
0.11
0.28

0.52
-0.07
-0.30
0.00

-0.17
0.28
0.28
0.03

-0.47
-0.29
0.16
0.34

-0.06
-0.01
0.06
0.00
0.03

-0.02
-0.02
-0.02
-0.04
0.25

-0.68
0.68

-0.41
-0.11
0.49
0.01
0.27

-0.05
-0.05
-0.17
-0.58
-0.23
0.23
0.18

s=
3.34

2.54
2.35

1.64
1.50

1.31
0.85

0.56
0.36

c =
0.20

-0.06
0.11

-0.95
0.05

-0.08
0.18

-0.01
-0.06

0.61
0.17

-0.50
-0.03
-0.21
-0.26
-0.43
0.05
0.24

0.46
-0.13
0.21
0.04
0.38
0.72

-0.24
0.01
0.02

0.54
-0.23
0.57
0.27

-0.21
-0.37
0.26

-0.02
-0.08

0.28
0.11

-0.51
0.15
0.33
0.03
0.67

-0.06
-0.26

0.00
0.19
0.10
0.02
0.39

-0.30
-0.34
0.45

-0.62

0.01
0.44
0.19
0.02
0.35

-0.21
-0.15
-0.76
0.02

0.02
0.62
0.25
0.01
0.15
0.00
0.25
0.45
0.52

0.08
0.53
0.08

-0.03
-0.60
0.36
0.04

-0.07
-0.45

Figure A3, The singular value decomposition of the word-by-context ma-
trix (X) of Figure A2, in which cell entries indicate the frequency with
which a given word occurs in a given context Highlighted portions are the
values on the first and second dimensions of the component matrices.

c2 c3 c4 c5 ml m2 m3 m4
1 human

interface
computer
user
system
response
time
EPS
survey
trees
graph

1 minors

0.16
0.14
0.15
0.26
0.45
0.16
0.16
0.22
0.10

-0.06
-0.06
-0.04

0.40
0.37
0.51
0.84
1.23
0.58
0.58
0.55
0.53
0.23
0.34

0.25

0.38
0.33
0.36
0.61
1.05
0.38
0.38
0.51
0.23
-0.14
-0.15
-0.10

0.47
0.40
0.41
0.70
1.27
0.42
0.42
0.63
0.21

-0.27
-0.30
-0.21

0.18
0.16
0.24
0.39
0.56
0.28
0.28
0.24
0.27
0.14
0.20
0.15

-0.05
-0.03
0.02
0.03

-0.07
0.06
0.06

-0.07
0.14
0.24
0.31
0.22

-0.12
-0.07
0.06
0.08

-0.15
0.13
0.13

-0.14
0.31
0.55
0.69
0.50

-0.16
-0.10
0.09
0.12

-0.21
0.19
0.19

-0.20
0.44
0.77

0.98
0.71

-0.09
-0.04
0.12
0.19

-0.05
0.22
0.22

-0.11
0.42
0.66
0.85
0.62

|

1

Figure A4. A least squares best approximation (X) to the word-by-
context matrix in Figure A2 obtained by retaining only the two largest
columns and rows from the matrices in Figure A3. Highlighted portions
illustrate modifications in pattern similarities by dimension reduction
between Figures A2 and A4. In Figure A2 the cell entries indicate the
frequency with which a given word occurs in a given context. There are
nine titles about human computer interaction (cl-c5) and mathematical
graph theory (ml -m4). Figure A3 shows the singular value decomposi-
tion (SVD) of the matrix of Figure A2. In this reconstruction, /•(huma-
n.user) = .94; r(human.minors) = -.83.

the customary preliminary transformation of cell entries is omitted in
this example.

The complete SVD of this matrix in nine dimensions is shown in
Figure A3. Its cross-multiplication would perfectly (ignoring rounding
errors) reconstruct the original.

Next we show a reconstruction based on just two dimensions (Figure
A4) that approximates the original matrix. This uses vector elements
only from the first two shaded columns of the three matrices shown in
Figure A3 (which is equivalent to setting all but the highest two values
in S to zero).

Each value in this new representation has been computed as a linear
combination of values on the two retained dimensions, which in turn
were computed as linear combinations of the original cell values. 'Very
roughly and anthropomorphically, SVD, with only values along two
orthogonal dimensions to go on, has to guess what words actually appear
in each cell. It does that by saying, "This text segment is best described
as having so much of abstract concept one and so much of abstract
concept two, and this word has so much of concept one and so much
of concept two, and combining those two pieces of information (by
linear vector arithmetic), my best guess is that word X actually appeared
0.66 times in context Y."

The dimension reduction step has collapsed the component matrices
in such a way that words that occurred in some contexts now appear
with greater (or lesser) estimated frequency, and some that did not
appear originally now do appear, at least fractionally. Look at the two
shaded cells for survey and trees in column m4. The word tree did not
appear in this graph theory title. But because text m4 did contain graph
and minors, the zero entry for tree has been replaced with 0.66. By
contrast, the value 1.00 for survey, which appeared once in text m4, has
been replaced by 0.42, reflecting the fact that it is undifferentiating in
this context and should be counted as unimportant in characterizing the
passage.

Consider now what such changes may do to the imputed relations
between words and between multiword textual passages. For two exam-
ples of word-word relations, compare the shaded and/or boxed rows
for the words human, user, and minors (in this context, minor is a
technical term from graph theory) in the original and in the two-dimen-

(Appendix continues on next page)
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LSA Titles example:

c2
c3
c4
c5
ml
m2 '•
m3
m4

cl
-0.19
0.00
0.00

-0.33
-0.17
-0.26
-0.33
-0.33

c2

0.00
0.00
0.58

-0.30
-0.45
-0.58
-0.19

c3

0.47
0.00

-0.21
-0.32
-0.41
-0.41

c4

-0.31
-0.16
-0.24
-0.31
-0.31

c5

-0.17
-0.26
-0.33
-0.33

ml

0.67
0.52

-0.17

m2 m3

0.77
0.26 0.56

A. Correlations between titles in raw data.

means c(l-5) m(l-4
c(l-5) 0.02

-0.30 0.44

c2
c3
c4
c5
ml
m2
m3
m4

0.91
1.00
1.00
0.85

-0.85
-0.85
-0.85
-0.81

0.91
0.88
0.99

-0.56
-0.56
-0.56
-0.50

1.00
0.85

-0.85
-0.85
-0.85
-0.81

0.81
-0.88
-0.88
-0.88
-0.84

-0.45
-0.44
-0.44
-0.37

1.00
1.00
1.00

1.00
1.00 1.00

B. Correlations in first-two principal component space.

means c(l-5) m(l-4)
c(l-5) 0.92

1.00
0.92

-0.72

Figure A5. Intercorrelations (re) among vectors standing for titles in
the raw data (A) and the dimension-reduced reconstruction (B). The
nine titles are about human computer interaction (cl-c5) and mathemat-
ical graph theory (ml-m4). Note how the two conceptually distinct
groups have been separated. LSA = latent semantic analysis.

tween human and minors is -.29. However, in the reconstructed two-
dimensional (2-D) approximation, because of their indirect relations,
both have been greatly altered, and in opposite directions: the human-
user correlation has gone up to .94, die human-minors correlation down
to -.83.

To examine what the dimension reduction has done to relations be-
tween titles, we computed the intercorrelations between each title and
all the others, first based on the raw co-occurrence data, then on the
corresponding vectors representing titles in the 2-D reconstruction. See
Figure A5. In the raw co-occurrence data, correlations among the five
human-computer interaction titles were generally low, even though all
the articles- were ostensibly about quite similar topics, half the rs were
zero, three were negative, two were moderately positive, and the average
was only .02. Correlations among the four graph theory articles were
mixed, and those between the HCI and graph theory articles averaged
only a modest —.30 despite the minimal conceptual overlap of the two
topics.

In the 2-D reconstruction, the topical groupings are much clearer.
Most dramatically, the average r between HCI titles increases from .02
to .92, This happened, not because the HCI titles were generally similar
to each other in the raw data, which they were not, but because they
contrasted with the non-HCI titles in the same ways. Similarly, the
correlations among the graph theory titles were reestimated to be all
1.00, and those between the two contrasting classes of topic were now
strongly negative, mean r = -.72.

Thus, SVD has performed a number of reasonable inductions; it has
inferred what the true pattern of occurrences and relations must be for
the words in titles if all the original data are to be accommodated in
two dimensions. Of course, this is just a tiny selected example. Why
and under what circumstances should reducing the dimensionality of
representation be beneficial? When, in general, are such inferences better
than the original first-order data? We hypothesize that one importanl
case, represented by human word meanings, is when the original data
are generated from a source of the same dimensionality and general
structure as the reconstruction.

sionally reconstructed matrices (Figures A2 and A4). In the original,
human never appears in the same context with either user or minors:
they have no co-occurrences, contiguities, or associations as usually
construed. The correlation between human and user is -.38; that be-
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