Penn
Englneermg

IIIIIIIIIIIIIIIIIIIII

ol

CIS 3990 Recitation 07/

Threads
2025-10-28

Agenda Penn

Engineering
01 Course Iog istics UNIVERSITY 0f PENNSYLVANIA
02 Threads
03 Locks

04 Open Q&A

Engineerin
UNIVE§TY of PENNSYLVAI\%

Penn

&

Logistics

/ N\ //
LR\
\\/‘ X/ / \
/ \/\/JH,/ \ [\WJ \\v
\ //\ \ /f
 // //I\w/ /
\\ / N
/)7
\ \\ /

“""ﬁ Penn

Engmeerlng

Logistics @ Logineering

HWOS8 out - due 11:59pm on Tuesday, November 4 - via
Gradescope

« Re-opens for the last check-in are processed, let us know if forgot
anything / selected the wrong date/assignment

« We're still working on midterm and hw style (re)grading

* Check-in08 due Mon, November 3

| CIS 3990 4

1neer1ng
UNIVERSITY 0f PENNSYLVANIA

Penn
Eng

&

Threads

Threads Eegnn—g

IVERSITY 0 f PENNSYLVANIA

By now, I hope the statement “threads share memory” is
thoroughly imprinted in your brain

We've worked with 3 “types”
pthreads
std::thread
std::jthread

Threads N Eointeri

UNIVERSITY 0 f PENNSYLVANIA

C (POSIX): pthreads

create a thread with pthread_create() function
output parameter, address of thread
attributes (usually NULL)
function to be executed
pointer to function arguments

thread function is void* return type

C++: threads and jthreads

create a thread using a constructor
function to be executed
function arguments (if they exist)

thread function is void return type
need to pass in refs using std::ref(), not &

Threads N Eointeri

UNIVERSITY 0 f PENNSYLVANIA

C (POSIX): pthreads

create a thread with pthread_create() function
output parameter, address of thread
attributes (usually NULL)
function to be executed
pointer to function arguments

thread function is void* return type

C++: threads and jthreads

create a thread using a constructor
function to be executed much less going on!
function arguments (if they exist)

thread function is void return type
need to pass in refs using std::ref(), not &

C++ Threads o [

11111111111 f PENNSYLVANIA

std::thread
C++11
parent thread needs to manually call join()

std::jthread
C++20 - implemented off std::thread
automatically joins using jthread’s destructor

Penn
Engmeermg

IIIIIIIIIIIIIIIIIIIII

Locks

@ Penn
noimecerin
mgn of PENNSYL\"AI\%

The locks we've seen so far:
pthread__mutex
std::mutex
std::scoped_lock
std::unique_lock

other stuff:

std::condition_variable
wait(unique_lock& lock)
notify_one()
notify_all()

std::atomic

@ Penn
noimecerin
mgn of PENNSYL\"AI\%

C (pthread) mutex versus std::mutex
very similar: lock(), trylock(), unlock()
std::mutex is a wrapper around pthread_mutex*
generally std::mutex is more preferred to use, unless you're
working with pthreads

std::scoped_lock and std::unique_lock
used to surround critical section in a “local scope”
lock is acquired at construction, released on destruction
(when program leaves the local scope)
unique_lock can call lock() and unlock()
need unigue lock for condition variables

When do we use what? oy b ointeri

Most generally, resources introduced in this unit are introduced
to prevent data races.

Circle all that apply:

we would use a mutex to:
prevent race conditions
prevent data races
ensure exclusive access to a shared resource
synchronize two or more threads

we would use a condition variable to:
prevent race conditions
prevent data races
ensure exclusive access to a shared resource
synchronize two or more threads

Using Locks W Eritcrng

UNIVERSITY 0, f PENNSYLVANIA

identify your critical sections
lock at the start of critical section
unlock at end of critical section

identify branches in control flow
error-checking conditionals
exception handling
if @ program can exit a critical section in different locations,
you need to call unlock() at all of them!
consider dependencies on another thread’s work
can one thread acquire a lock and then get stuck waiting for
another thread? -> introduce a condition variable
eg. producer consumer problem

Example: Image Processing oy b ointeri

I went on a trip to New York recently, and took many
photos. I want to process them by blurring and then
making them greyscale before I post them to my
photography account on Twitter.

I've written two functions so far (implementation not
included) using an Image object:

void blur(Image img);
void grey(Image img);

Image Processing: Data Structures¥%3

Penn

unprocessed

blurred

blurred and
greyscale

Images start in
unprocessed queue.

blur() : blur image in the
unprocessed queue, then
move into blurred queue

grey() : convert image in
blurred queue to
greyscale, the move to
the last queue.

Does this work? Is this optimal? %¥iiiain.

UNIVERSITY 0f PENNSYLVANIA

void grey_img() {
while(true) {
counterLock.lock();

if (remainingIlmages == 0) {

break;

¥

grey(unprocessed[remainingIlmages]);

remaininglmages -= 1;
counterLock.unlock();

)
Notes:

grey() converts image in blurred queue to
greyscale, the move to the last queue.
blurred and 2 threads process blurring, and 2 threads

greyscale process greyscale

unprocessed blurred

