
Threads
2025-10-28

CIS 3990 Recitation 07

Agenda
Course logistics

2

01

Threads02

Locks03

Open Q&A04

Logistics

Logistics

• HW08 out - due 11:59pm on Tuesday, November 4 - via
Gradescope

• Re-opens for the last check-in are processed, let us know if forgot
anything / selected the wrong date/assignment

• We’re still working on midterm and hw style (re)grading

• Check-in08 due Mon, November 3

CIS 3990 44

Threads

Threads

• By now, I hope the statement “threads share memory” is
thoroughly imprinted in your brain

• We’ve worked with 3 “types”
• pthreads
• std::thread
• std::jthread

Threads

• C (POSIX): pthreads
• create a thread with pthread_create() function

• output parameter, address of thread
• attributes (usually NULL)
• function to be executed
• pointer to function arguments

• thread function is void* return type

• C++: threads and jthreads
• create a thread using a constructor

• function to be executed
• function arguments (if they exist)

• thread function is void return type
• need to pass in refs using std::ref(), not &

Threads

• C (POSIX): pthreads
• create a thread with pthread_create() function

• output parameter, address of thread
• attributes (usually NULL)
• function to be executed
• pointer to function arguments

• thread function is void* return type

• C++: threads and jthreads
• create a thread using a constructor

• function to be executed
• function arguments (if they exist)

• thread function is void return type
• need to pass in refs using std::ref(), not &

much less going on!

C++ Threads

• std::thread
• C++11
• parent thread needs to manually call join()

• std::jthread
• C++20 - implemented off std::thread
• automatically joins using jthread’s destructor

Locks

Locks

• The locks we’ve seen so far:
• pthread_mutex
• std::mutex
• std::scoped_lock
• std::unique_lock

• other stuff:
• std::condition_variable

• wait(unique_lock& lock)
• notify_one()
• notify_all()

• std::atomic

• C (pthread) mutex versus std::mutex
• very similar: lock(), trylock(), unlock()
• std::mutex is a wrapper around pthread_mutex*
• generally std::mutex is more preferred to use, unless you’re

working with pthreads

• std::scoped_lock and std::unique_lock
• used to surround critical section in a “local scope”
• lock is acquired at construction, released on destruction

(when program leaves the local scope)
• unique_lock can call lock() and unlock()
• need unique_lock for condition variables

Locks

When do we use what?

Most generally, resources introduced in this unit are introduced
to prevent data races.
Circle all that apply:
1. we would use a mutex to:

a. prevent race conditions
b. prevent data races
c. ensure exclusive access to a shared resource
d. synchronize two or more threads

2. we would use a condition variable to:
a. prevent race conditions
b. prevent data races
c. ensure exclusive access to a shared resource
d. synchronize two or more threads

1. identify your critical sections
a. lock at the start of critical section
b. unlock at end of critical section

2. identify branches in control flow
a. error-checking conditionals
b. exception handling
c. if a program can exit a critical section in different locations,

you need to call unlock() at all of them!
3. consider dependencies on another thread’s work

a. can one thread acquire a lock and then get stuck waiting for
another thread? -> introduce a condition variable

b. eg. producer consumer problem

Using Locks

Example: Image Processing

I went on a trip to New York recently, and took many
photos. I want to process them by blurring and then
making them greyscale before I post them to my
photography account on Twitter.
I’ve written two functions so far (implementation not
included) using an Image object:

void blur(Image img);
void grey(Image img);

images start in
unprocessed queue.
blur() : blur image in the
unprocessed queue, then
move into blurred queue

grey() : convert image in
blurred queue to
greyscale, the move to
the last queue.

Image Processing: Data Structures

unprocessed blurred blurred and
greyscale

void grey_img() {

while(true) {

counterLock.lock();

if (remainingImages == 0) {

break;

}

grey(unprocessed[remainingImages]);

remainingImages -= 1;

counterLock.unlock();

}

}

Notes:
- grey() converts image in blurred queue to

greyscale, the move to the last queue.
- 2 threads process blurring, and 2 threads

process greyscale

Does this work? Is this optimal?

unprocessed blurred blurred and
greyscale

18

