
Midterm review
2025-10-16

CIS 3990 Recitation 06

Agenda
Course logistics

2

01

Midterm logistics02

Content review & practice03

Open Q&A04

Logistics

Logistics

• HW06 out - due 11:59pm on Fri, Oct 17 - via Gradescope

• Re-opens for the last check-in are processed, let me know if
forgot anything/ selected the wrong date/assignment

• Remember HW06 is graded for style!

• Check-in due Mon, Oct 20 is posted

CIS 3990 44

• Every past hw graded as of last night, including resubmissions

Logistics

CIS 3990 55

Midterm Logistics

Midterm details

• Wed, October 22nd 2025, during lecture, 12:00pm -
1:30pm in AGH 203, our usual room

• You are allowed one double-sided sheet of notes

• Topics are: everything taught up until the exam
• C concepts, C++ additions, STL, git, System Calls, Locality,

Processes, Threads

• https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/exams
/midterm

Study resources

• Couse & Recitation slides, Ed questions, HW assignments

• Instructor & Staff OH

• CIT 5950 practice questions & past midterms
• Note your exam will be a bit harder, CIT 5950 assumes only one

semester of prior programming experience. Also, there is significant,
but not complete overlap between the 2 courses.

Content review

C stuff 󰘩
• Almost all legal C is legal

C++
• Most relevant C-specific

stuff:
• Pointers
• Memory layout and

allocation - Stack frames,
where stuff goes

C stuff 󰘩- Practice

• Draw the abstract memory
diagram for this program,
executed until line 13.
• Where are x, y, arr, i_msg,

o_msg, ans?
• Where does ans point once

my_gen returns?
• Can I modify the string in

i_msg? What about o_msg?
• What are the bugs and bad

practices in the program?

©➕➕
• Pass by reference - the

reference is the object
itself

• Nicer syntax than
pointers

• Prevents unnecessary
copies of objects -
especially important for
function calls and
iterations

• Works like type * const

©➕➕
Classes, i.e. fancy structs
• RAII - Resource Acquisition Is Initialization
• Rule of 5:

• Destructor:
• ~ClassName()

• Copy Constructor:
• ClassName(const ClassName&)

• Copy Assignment Operator:
• ClassName& operator=(const ClassName&)

• Move Constructor:
• ClassName(ClassName&&)

• Move Assignment Operator:
• ClassName& operator=(ClassName&&)

©➕➕ - Sample Rule of 5

©➕➕ - Practice

• Out of calls on lines
15-17 which are
allowed?

• What will the
compiler complain
about regarding lines
19-23?

©➕➕ - Practice

©➕➕ - Practice - Bad_Str

STL

• You should be aware of existing member functions
and their operation

• More than comprehensive list here:
• https://en.cppreference.com/w/cpp/container.html#M

ember_function_table

https://en.cppreference.com/w/cpp/container.html#Member_function_table
https://en.cppreference.com/w/cpp/container.html#Member_function_table

STL - map pitfall demo

• NEVER search through a map via [] operator!
• RAM goes brrr

• add
• Stages modifications for

commit
• commit

• Creates a commit including
all the staged changes

• restore
• Reverts a file to some other

state/ unstages changes
• merge

• Generate a new commit with
2 parens, reconverging the
tree

• remote
• Some “remote” location

holding a copy of your repo -
likely GitHub

Git 🐱🐙
• push

• Update the remote to
match the local

• pull
• Update the local to match

the remote
• branch, checkout

• Make your tree diverge in a
controlled way

• pull requests
• Reconverge the tree (on

GitHub) by making a
branch “pull changes” from
another branch

Git 🐱🐙 - Practice at home

• learngitbranching.js.org/
• Sample questions for the exam are:

• What will the tree look like after these commands?
• What commands should I run to obtain this tree?

http://learngitbranching.js.org/

System calls📞
• Defined in POSIX
• C-based “API” for most basic operations on computers

• File I/O
• read, write
• open, close
• lseek, pipe

• Process creation and management
• fork
• exec
• waitpid

• Threads creation and management
• create, join, etc.

• Mutex acquisition and management

System calls📞
• What should we keep in mind when using system level

functions?

System calls📞
• What should we keep in mind when using system level

functions?
• When it comes to I/O, what are the performance

implications?

System calls📞
• What should we keep in mind when using system level

functions?
• When it comes to I/O, what are the performance

implications?
• How can higher-level functions make our lives harder

as programmers?

Processes⏳
• Every process thinks it has its own

memory, registers, everything
• fork() -> duplicate perfectly the

calling process, except for the pid.
the fork() returns
• 0 in child process
• the pid of the child in the parent process
• -1 on error

• wait() -> tell the kernel to not
schedule the calling process until
something happens with the
process(es) being waited for
• dying, receiving a signal, etc. depending

on the exact wait call

 P1 P2

Processes⏳
• Copy of everything includes copy of file descriptors -

whatever the parent had access to, the child does as
well

• After fork, processes can independently open and
close their fds, without influencing the other processes

• However, if no close and reopen happen, the
processes still share the same file cursor - one calling
lseek, read, write will influence the other

• Exec asks the system to clear stack, heap,
instructions of the calling process, and load up the
instructions and data of another process to be run

Processes⏳- shared fd demo

Threads🧵
• Creating more than 1 thread = telling the kernel that,

if hardware permits, the current process would like to
execute multiple things in parallel

• Threads share memory - we can have data races,
non-deterministic outputs, etc. - at the mercy of the
scheduler once again

• We can avoid data issues via locks i.e. mutexes

Threads Or Process

For the following, state whether it would be better to use
multiple threads or processes:
1. You want to process a big image by calculating the average of

all pixels.

2. You have a system of receiving and logging lots of
transactions, each action needs data integrity.

3. You have a word processor that constantly checks for spelling
mistakes, grammar issues, and syntax errors.

4. You want to enforce security or privacy when performing
concurrent transactions.

Threads Or Process

For the following, state whether it would be better to use
multiple threads or processes:
1. You want to process a big image by calculating the average of

all pixels. Threads

2. You have a system of receiving and logging lots of
transactions, each action needs data integrity. Processes

3. You have a word processor that constantly checks for spelling
mistakes, grammar issues, and syntax errors. Threads

4. You want to enforce security or privacy when performing
concurrent actions. Processes

Open Q&A

Ask and we shall answer.

33

