Penn
Englneermg

IIIIIIIIIIIIIIIIIIIII

ol

CIS 3990 Recitation 05

Git and Processes
2025-10-02

Agenda Penn
Engineering
01 Log istics UNIVERSITY 0f PENNSYLVANIA

02 Processes

03 Locality

Engineerin
UNIVE§TY of PENNSYLVAI\%

Penn

&

Logistics

/ N\ //
LR\
\\/‘ X/ / \
/ \/\/JH,/ \ [\WJ \\v
\ //\ \ /f
 // //I\w/ /
\\ / N
/)7
\ \\ /

“""ﬁ Penn

Englneerlng

Logistics @ Logineering

HWOS5 out - due 11:59pm on Tues, Oct 7 - via Gradescope

* Check-In 04 is posted

« Don’t forget to use check-ins to reopen past homeworks
* Finish the unfinished
* Fix style (HW1 and HW2)

CIS 3990 >

Eenn
n 1neer1n
1VEI§TY of PENNSYLVAI\%

Processes

fork, exec

=F

Processes - the mental model oy b ointeri

Two ways of viewing a process (or multiple processes
in interleaved execution)

1. line(s) of execution 2. separate memory
environments
P1 - P1 P2 P3

Sp Stillck Sp = Stick Sp = 1 k

Shared Libraries Shared Libraries Shared Libraries

P2 :——y: — r ! !

t t t
Heap (malloc/free) Heap (malloc/free) Heap (malloc/free)
Read/Write Segments Read/Write Segments Read/Write Segments
.data, .bss .data, .bss .data, .bss

= [
P ; ._-—>' [P = Read-Only Segments [P = Read-Only Segments [P = Read-Only Segments

.text, .rodata .text, .rodata .text, .rodata

Process that calls fork() has its entire
memory copied by OS

SP

Penn

“main memory” aka stack, heap

read-only and read-write memory
readonly contains our code, which our IP points to

not seen:

Shared Libraries

registers (including instruction pointer)

1

Heap (malloc/free)

file descriptors
and more!

Read/Write Segments
.data, .bss

returns child’s pid to the parent, and 0 =

Read-Only Segments
text, .rodata

to the child

Debate oy b ointeri

Would you say that fork is the only function that
“returns twice?”

Why or why not?

Exercise 1 B2y ke

Which of the following can the child modify, such that the
can parent observe these changes? Assume the parent
had access to these before calling fork().

local variables
static variables
global variables
read-write memory
file descriptors
files

Exercise 2 PN Eointering

UNIVERSITY 0 f PENNSYLVANIA

How many different combinations int main(void){

. int level_1 = fork();
are possible? if (level 1 == @) {
int level 2a = fork();
if (level_2a == 0) {
cout << "A" << endl;
} else {
cout << "B" << endl;
}
} else {
int level 2b = fork();
if (level_2b != 0) {
cout << "C" << endl;
exit(0);
}
cout << "D" << endl;
}
cout << "@" << endl;
return (0);

Exercise 3

@ Perm
noimecerin
UNIVEI%TY of PENNSYL\"AI\%

What does this print?

#include <iostream>
#include <unistd.h>

#include <cstdlib>

int main() {
int res = fork();
if (res == 0) {
write (1, "hello", 5);
}
res = fork();

if (res == 0) {

write(l, "hello", 5);

}
return EXIT SUCCESS;

Penn

Exercise 4 B

UNIVERSITY 0f PENNSYLVANIA

What does this print? #include <iostream>

#include <unistd.h>
#include <ecstdlib>

using namespace std;

int main() {
int res = fork();
if (res == 0) {
cout << "hello";

}

res = fork():

if (res == 0) {

cout << "hello";

}
return EXIT SUCCESS;

s Penn
Engineering

UNIVERSITY 0f PENNSYLVANIA

What's the difference?

#include <iostream> #include <iostream>
#include <unistd.h> #include <unistd.h>

#include <cstdlib> #include <cstdlib>
using namespace std;

int main() { int main() {
int res = fork(); int res = fork();
if (res == 0) { if (res == 0) {
write(l, "hello", 5); cout << "hello";
} }

res = fork() ; res = fork();

if (res == 0) { if (res == 0) {
write(l, "hello", 5); cout << "hello";

} }
return EXIT_SUCCESS; return EXIT_SUCCESS;

write() versus cout Yy

write() and cout are both writing to the same file
descriptor

cout is line buffered - flushes when it encounters a

newline or endl
exiting a program will flush all buffers too

write is unbuffered - even if we are writing to stdout!

It sees stdout as just another file, doesn’t know to treat it
differently

How does this relate to fork()? B¥imme

fork() will copy all memory of the parent when it is
creating the child

buffers exist in memory, and any contents of the buffer
will be copied on fork()

Tip: ensure all buffers are flushed before calling fork()

@ Penn
noimecerin
mgn of PENNSYL\"AI\%

replace current process/program with another
process/program

resets all memory

maintains open file descriptors*

fork/exec pair is useful when you want to start a new
program, but don’t want to kill the currently running one

Exercise 5

@ Perm
noimecerin
UNIVEI%TY of PENNSYL\"AI\%

What does this print?

#include <iostream>
#include <unistd.h>

int main() {
char *args[] = {(char *)"1s", (char *)"-1", (char

*) }s
std::cout << "Before execvp()" << std::endl;

// replaces process w/ 1ls -1
execvp("1ls", args);

// executes only if execvp() fails
std::cerr << "Exec failed!" << std::endl;
return 1;

