
CIS 3990 Recitation 01
References
2025-09-04



Agenda
Logistics

2

01

C & C++ don’t lie02

Pointers vs Refs03

Const04

Valgrind demo05

Ed time06



Logistics



Logistics

• HW00 past-due - extended to 11:59pm on Tues, Sep 09 - via 
Gradescope

• HW01 out - due 11:59pm on Tues, Sep 09 - via Gradescope
• Survey00 out - due 11:59pm on Fri, Sep 12 - via Canvas
• If you haven’t, set up github and docker!!
• Github setup - automatic via Gradescope
• Oct 22 - Exam 0 - Please let us know ASAP if you have conflicts
• OH Tomorrow: will be from 4pm to 6:30pm. Waiting on 
confirmation for permanent reschedule to 2:30pm - 6:30pm

CIS 3990 55



C and C++ don’t lie
i.e. Value Semantics



• Primitive data type - 
store the actual data 
we care about

• Referential data types 
- store information 
about how to get to 
the data we care 
about

Data types from OOP pov



Python & Java lie

• Higher-level object-oriented 
languages often give you the 
impression that you’re working with 
a primitive, when you’re actually 
passing around references

• It is your duty to know what data 
types are passed by value and what 
data types are passed by reference



• In C and C++, even when we 
make our own data types via 
structs they are still primitives

• You specifically have to declare 
something as a pointer or 
reference

• A struct may have referential 
types within it, but those fields 
are passed by value

In C/C++ you have to ask



Structs are (like) primitives!



Structs are (like) primitives!



Pointers & References



References
• Referential type that 

aliases the data we are 
interested in

• Data can be read and 
modified via “normal 
access”

• The reference cannot be 
reassigned to alias 
another piece of data

Pointers
• Referential type that 

stores the address of 
the data we are 
interested in

• Data can be read and 
modified via 
dereferencing

• The pointer variable 
itself can be reassigned 
to point to something 
else, including null

Comparison 



• “A reference is the object, just with another name. It 
is neither a pointer to the object, nor a copy of the 
object. It is the object. There is no C++ syntax that 
lets you operate on the reference itself separate from 
the object to which it refers.”

• Source: https://isocpp.org/wiki/faq/references

Okay but like what?

https://isocpp.org/wiki/faq/references


• You are technically correct, since a reference is often 
implemented using an address in the underlying 
assembly language, but please do not think of a 
reference as a funny looking pointer to an object.

• Think of it as the object, the variable, the thing itself, 
because functionally, in every sense, it is that thing.

What if I have C brain rot



• One of the most 
convenient ways to 
understand references is 
to implement a swap 
function

• How you would have 
done this in C?

Short demo



How do I draw this thing



How do I draw this thing



How do I draw this thing



How do I draw this thing



How do I draw this thing



How do I draw this thing



How do I draw this thing



How do I draw this thing

out:
x: 40 y: 30 z: 40



How do I draw this thing

out:
x: 40 y: 30 z: 40
x: 50 y: 30 z: 50



• We cannot use a pointer 
to make it “look 
somewhere else”

It’s really not a pointer



• We cannot use a pointer 
to make it “look 
somewhere else”

It’s really not a pointer

• Normal pointers allow 
that



References
• Whenever you can. They 

solve the problem of 
having to copy around 
data without introducing 
pointer syntax

• It is EXTREMELY hard to 
shoot yourself in the foot

• Most often in function 
definitions and operator 
overloads

When do I use one or the other?

Pointers
• When there is no way to 

use references (or smarter 
C++ stuff). A common case 
is when you need to point 
to different things during 
the lifetime of the program, 
like in a linked list

• When you need nullability, 
which is not supported by 
references



Const



Remember from class

• When we want to tell the 
compiler to not let us 
modify something, we 
use const

• It will cause compilation 
errors IF the compiler 
detects it

• The keyword can be 
placed in many spots



Remember from class

• When we want to tell the 
compiler to not let us 
modify something, we 
use const

• It will cause compilation 
errors IF the compiler 
detects it

• The keyword can be 
placed in many spots

you cannot change a
you cannot change b



Remember from class

you cannot change what 
address p is storing and 
you cannot change the 
data at that address

you can change what 
address ptr is storing but 
you cannot change the 
data at that address



Remember from class

you cannot change what 
address pc is storing

you can change the data at 
that address



I feel like I’ve heard this before

• You can change the data at 
the address but not the 
address you’re looking at? 
Isn’t that like a reference?

• Yes, it is, but please have 
them separate in your head

• Also, if you use a constant 
pointer, you still have to use 
pointer syntax 🤮 



Hw Question



Valgrind demo!

• valgrind --leak-check=full 
./errors

• valgrind --leak-check=full 
--track-origins=yes ./errors



Ed practice



38




