University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Socket Programming
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Administrivia
% Final Project Partner Sign-up

" |f you want to work solo, let me know or you will be randomly assigned a partner
= Sign-ups posted tonight

+» HWO9 posted after class today or early tomorrow
= implementing (simplified) TCP

+» Check-in posted same time as HW9

CIS 3990, Fall 2025

L18: Socket Programming

University of Pennsylvania

Lecture Outline

+~ IP Addresses && SocketAddress
+» UDPSocket
+» TCPStream
+» TCPListener

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

The Sockets API

+~ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming
 Available on most OSs

M Written in C Can <4l use +hese n G+ code
You'll see some C-idioms and desion practices.

«» POSIX Socket API

= A slight update of the Berkeley sockets API
- A few functions were deprecated or replaced

- Better support for multi-threading was added
« And ipv6

" |s usable for getting something working. Doing things properly, error checking &
supporting both IPV4 and IPV6 sucks

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

The nixnet Sockets API

+» Something | wrote in C++
= Same style as the Rust net module
= Uses C++/Rust idioms

» Less painful to handle IP Addresses and works well (I think, but | wrote it :P)
» In the nixnet namespace
» Posted attached to this lecture as “lecture code”

» Read the README.md about installing clang++-19

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

IPv4 Network Addresses

% An IPv4 address is a 4-byte tuple (222 addresses)

® For humans, written in “dotted-decimal notation”
" e.9.128.95.4.1 (80:5£:04:01 in hex)

« |IPv4 address exhaustion
" There are 232 = 4.3 billion IPv4 addresses
" There are = 8-8.2 billion people in the world (Nov 2025)

How mawny nternet connected devices do each of us have?

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

IPv6 Network Addresses

+» An IPv6 address is a 16-byte tuple (212% addresses ~about 3.4x1038)
= Typically written in “hextets” (groups of 4 hex digits)

2 rules for o1 Can omit leading zeros in hextets

human

readabiity « 7 Double-colon replaces consecutive sections of zeros

" e.g.2d01:0db8:£188:0000:0000:0000:0000>%1£33
- Shorthand: 2d01:db8:£f188::1£f33

® Transition is still ongoing

 IPv4-mapped IPv6 addresses
— 128.95.4. 1 mappedto : : ££££:128.954.1or : : ££££:805£:401

- This unfortunately makes network programming more of a headache ®

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Quick Raise Hands

+» Do you think we can have multiple connections on a computer to the same
port?
= Example Ports:

80 for HTTP (web traffic)
« 443 for HTTPS (Secure web traffic)

University of Pennsylvania

L18: Socket Programming

Socket

+» A socket is a network file descriptor

+» Each socket is uniquely identified by:
= Protocol (either TCP or UDP)
= |P Address
" Port

+ Socket Address is technically the combination of all three of these things
but often “Socket Address” just refers to the IP Address & Port pair

CIS 3990, Fall 2025

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Aside: std::expected

+~ Added in C++23, very similar to std::optional
" std: :optional<T> can have the type T or be nullopt
" std: :expected<T, U> can have the type T or the error (unexpected) type U

= Some member functions

- has_value() std: :expected<int, std::string> sqrt(int n) {
- has_error() if (n < 0) {
return std::unexpected("can't square root a negative number");
- value() }
- error() int res =

return res;

+» Example:)

auto res = sqrt(n);
if (lres) {
std::cerr << res.error() << std::endl;

}

int x = res.value();

University of Pennsylvania

L18: Socket Programming CIS 3990, Fall 2025

Aside: nixnet::errno _t

% nixnet::errno _t

® Errors in posix are usually indicated by setting a global (thread local) int called errno
" posix errno is really easy to accidentally mess it up and overwrite the value:
" This type encapsulates it into a type that is harder to mess up.

«» What’s the issue here?

" socket () returns-1on error and sets errno to indicate what error occurred

int res = socket(AF_INET, SOCK _STREAM, ©);

if (res == -1) { // Error!

std::cerr << "ERROR ENCOUNTERED CREATING A SOCKET" << std::endl; & This print will overwrite errno

// use strerror to get the string explaining the error

std::cerr << strerror(errno) << std::endl; between when the error occurs
exit(EXIT_FAILURE);

) and evaluating errno.

You can do almost nothing

11

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Aside: nixnet::result

+ A std::expected that has the error type setto ninxnet::erno t

+» Has a expect () function

" |f there is an error, the specified error message + the error held is printed and it throws an
exception.

= |f there is a value, it is returned.

= Rust design pattern, std::expected doesn’t have this

nixnet::SocketAddr addr = nixnet::SocketAddr::v6 from str(argv[1l], argv[2])

.expect("Invalid port or IPv6 address passed in");

12

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

nixnet::SocketAddr

+ Struct that represents either an IPv4 or IPv6 address and a port number

+~ Follows rust pattern, instead of constructing, you call a “from” function that
can return either the thing or an error code.

static result<SocketAddr> SocketAddr::v6 from str(std::string view string rep,
std::string view port str);

static result<SocketAddr> SocketAddr::v6 from str(std::string view string rep,
uintlé t port_num);

SocketAddr home = nixnet::SocketAddr::v4 from str("127.0.0.1", 3400).expect("this bad

13

L18: Socket Programming CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

« |IP Addresses && SocketAddress

+» UDPSocket
+ TCPStream
« TCPListener

14

L18: Socket Programming CIS 3990, Fall 2025

University of Pennsylvania

Files and File Descriptors

+~ Remember open (), read(),write (),and close()?

= POSIX system calls for interacting with files

=" open () returns a file descriptor

Can't be a . _ .
sointer, dow't . An integer that represents an open file

Xjﬂ:gvc - This file descriptor is then passed to read (), write (), and close ()

cemel m Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position

Parameters to

15

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Networks and Sockets

+» UNIX likes to make all I/0O look like file /O

" Youuse read () andwrite () to communicate with remote computers over the
network!

= A file descriptor use for network communications is called

= A Socket is an endpoint for network communication
= Just like with files:

« Your program can have multiple network channels open at once

« You need to pass a file descriptor to read () and write () to let the OS know which network
channel to use

Tu other words, we
specify the socket
+to read/write on

16

University of Pennsylvania L18: Socket Programming

File Descriptor Table

CIS 3990, Fall 2025

OS’s File Descriptor Table for the Process

128.95.4.33 File
Descriptor

Type

Connection

Web Server _ _

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP local: 128.95.4.33:80
= socket | remote: 44.1.19.32:7113
. 5 file index.html
Q
ks 8 file pic.png
r/ 9 TCP local: 128.95.4.33:80

Con have multiple socket | remote: 102.12.3.4:5544

files and network RIS [Nel=)

conections open __ —

01,2 always start as
stdin, stdont & stderr.

17

CIS 3990, Fall 2025

University of Pennsylvania L18: Socket Programming

Types of Sockets

« Stream sockets

" For connection-oriented, point-to-point, reliable byte streams
» Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
« Using UDP or other packet transports

+» Raw sockets
" For layer-3 communication (raw IP packet manipulation)

18

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Datagram Sockets

+ Often used as a building block
= No flow control, ordering, or reliability, so used less frequently
" e.g. streaming media applications or DNS lookups

* host

* host

1) Create sockets:

host

2) Communicate:

lél III

19

CIS 3990, Fall 2025

University of Pennsylvania L18: Socket Programming

UDPSocket

+» Demo udp_send

+» send_socket

= Ephemeral port allocated
» Send fails on message to big

« Send doesn’t fail if no one is there to receive it!

20

University of Pennsylvania L18: Socket Programming

CIS 3990, Fall 2025

Maximum Transmission Unit

«» Sometimes called MTU

+ Size of the largest unit of data that can be communicated in a single network
layer (IP Layer) transaction.

» Size is dynamic and depends on the underlying infrastructure
+» Trying to send a UDP message larger than the MTU size will cause an error

» In this class we artificially set the MTU for udp sockets to their minimum value
= |Pv4: 68 bytes
= |Pv6: 1280 bytes

21

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

UDPSocket

+» Demo udp_send.cpp

+» send_socket
= Ephemeral port allocated
" Ephemeral ports are “temporary” ports.

" For the socket “reaching out”, then an exact port number doesn’t matter since the
protocol & application will be found out by the port number of who we are connecting to

+ Send fails on message to big ®

« Send doesn’t fail if no one is there to receive it!

22

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

UDP connect

+» Connect doesn’t really do much for UDP sockets
= |T DOES NOT SETUP A “CONNECTION” LIKE TCP DOES

+ When you send() data and don’t specify an address, it will go to the connected
address as a default

» Data that is recv()’d is only recv’d from the connected address, data from other
addresses are ignored

+» Other very small things

» Packets still follow UDP, can be dropped, or received out of order

23

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

UDPSocket

+» Demo udp_recv.cpp
% recv vs recv_from

% Structured binding to get the results nicely

24

CIS 3990, Fall 2025

L18: Socket Programming

University of Pennsylvania

Lecture Outline

« |IP Addresses && SocketAddress

«» UDPSocket
+ TCPStream
« TCPListener

25

University of Pennsylvania L18: Socket Programming

Stream Sockets

+» Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients
® Can also be used for other forms of communication like peer-to-peer

Server is “passive” &

1) Establish connection: Cliewt reaches out listeus for cliewts

client = * server

2) Communicate:
client = - server

3) Close connection:

client = * server

[
pod

CIS 3990, Fall 2025

26

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

TCP Connection

% TCP Connections are identified by 4 things
= |ocal address
" |Local port
= Peer address
" Peer port

27

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

TCPStream

+» tcp_send.cpp demo / walk through

+» TcpStream::connect

% send / recv

= Can send huge number of bytes fine

28

CIS 3990, Fall 2025

L18: Socket Programming

University of Pennsylvania

Lecture Outline

« |IP Addresses && SocketAddress

«» UDPSocket
+ TCPStream
«+ TCPListener

29

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Server Pattern

% Create a listener socket bound to a local addr & port

+» Waits for incoming connections

% On new connection, creates a new TCPStream socket to handle that
connection

30

% University of Pennsylvania

) L18: Socket Programming CIS 3990, Fall 2025

Server Listener Model

TcpListener: :bind()

- socket ()
- bind ()
- listen ()

server

31

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Server Listener Model

Accept maintains a queue of pending
connection requests. It is ok if accept is called
before or after the client tries to connect.

server

32

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Server Listener Model

accept creates a
new socket for

m the connection

accept ()

server

33

University of Pennsylvania L18: Socket Programming

TCPListener

+» tcp_echo _server.cpp demo / walk through

- bind()
% accept()

% The Tcplistener does not read/write to the client itself!!!!

- Demo: how are sockets different than files? Maybe more similar to pipes?
" What if client is changed to read first before sending?

CIS 3990, Fall 2025

34

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Something to Note

+» Our server code is not concurrent
= Single thread of execution
" The thread blocks while waiting for the next connection
" The thread blocks waiting for the next message from the connection

% A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are stuck waiting for it ®

35

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

36

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

accept creates a
new socket for

m the connection

accept ()

shared
data
structures

server

37

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

38

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

39

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

close
connection

client =

shared
data
structures

server

40

Multithreaded Server: Thread Pool

shared
data
structures

server

41

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

Later...

shared
data
structures

server

42

University of Pennsylvania L18: Socket Programming CIS 3990, Fall 2025

Next Lecture

+» HTTP & RESTful!

43

	Default Section
	Slide 1: Socket Programming Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: The Sockets API
	Slide 5: The nixnet Sockets API
	Slide 6: IPv4 Network Addresses
	Slide 7: IPv6 Network Addresses
	Slide 8: Poll: how are you?
	Slide 9: Socket
	Slide 10: Aside: std::expected
	Slide 11: Aside: nixnet::errno_t
	Slide 12: Aside: nixnet::result
	Slide 13: nixnet::SocketAddr
	Slide 14: Lecture Outline
	Slide 15: Files and File Descriptors
	Slide 16: Networks and Sockets
	Slide 17: File Descriptor Table
	Slide 18: Types of Sockets
	Slide 19: Datagram Sockets
	Slide 20: UDPSocket
	Slide 21: Maximum Transmission Unit
	Slide 22: UDPSocket
	Slide 23: UDP connect
	Slide 24: UDPSocket
	Slide 25: Lecture Outline
	Slide 26: Stream Sockets
	Slide 27: TCP Connection
	Slide 28: TCPStream
	Slide 29: Lecture Outline
	Slide 30: Server Pattern
	Slide 31: Server Listener Model
	Slide 32: Server Listener Model
	Slide 33: Server Listener Model
	Slide 34: TCPListener
	Slide 35: Something to Note
	Slide 36: Multithreaded Server: Thread Pool
	Slide 37: Multithreaded Server: Thread Pool
	Slide 38: Multithreaded Server: Thread Pool
	Slide 39: Multithreaded Server: Thread Pool
	Slide 40: Multithreaded Server: Thread Pool
	Slide 41: Multithreaded Server: Thread Pool
	Slide 42: Multithreaded Server: Thread Pool
	Slide 43: Next Lecture

