
CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Socket Programming
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Administrivia

❖ Final Project Partner Sign-up

▪ If you want to work solo, let me know or you will be randomly assigned a partner

▪ Sign-ups posted tonight

❖ HW9 posted after class today or early tomorrow

▪ implementing (simplified) TCP

❖ Check-in posted same time as HW9

2

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses && SocketAddress

❖ UDPSocket

❖ TCPStream

❖ TCPListener

3

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

• And ipv6

▪ Is usable for getting something working. Doing things properly, error checking &
supporting both IPV4 and IPV6 sucks

4

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

The nixnet Sockets API

❖ Something I wrote in C++

▪ Same style as the Rust net module

▪ Uses C++/Rust idioms

❖ Less painful to handle IP Addresses and works well (I think, but I wrote it :P)

❖ In the nixnet namespace

❖ Posted attached to this lecture as “lecture code”

❖ Read the README.md about installing clang++-19

5

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 8-8.2 billion people in the world (Nov 2025)

6

(232 addresses)

How many internet connected devices do each of us have?

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand: 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache 

7

(2128 addresses ~about 3.4×1038)

2 rules for

human

readability

1

2

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Poll: how are you?

❖ Do you think we can have multiple connections on a computer to the same
port?

▪ Example Ports:

• 80 for HTTP (web traffic)

• 443 for HTTPS (Secure web traffic)

8

Quick Raise Hands

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Socket

❖ A socket is a network file descriptor

❖ Each socket is uniquely identified by:

▪ Protocol (either TCP or UDP)

▪ IP Address

▪ Port

❖ Socket Address is technically the combination of all three of these things
but often “Socket Address” just refers to the IP Address & Port pair

9

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Aside: std::expected

❖ Added in C++23, very similar to std::optional
▪ std::optional<T> can have the type T or be nullopt

▪ std::expected<T, U> can have the type T or the error (unexpected) type U

▪ Some member functions

• has_value()

• has_error()

• value()

• error()

❖ Example:

10

std::expected<int, std::string> sqrt(int n) {
 if (n < 0) {
 return std::unexpected("can't square root a negative number");
 }
 int res = math;
 return res;
}

auto res = sqrt(n);
if (!res) {
 std::cerr << res.error() << std::endl;
}
int x = res.value();

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Aside: nixnet::errno_t

❖ nixnet::errno_t

▪ Errors in posix are usually indicated by setting a global (thread local) int called errno

▪ posix errno is really easy to accidentally mess it up and overwrite the value:

▪ This type encapsulates it into a type that is harder to mess up.

❖ What’s the issue here?
▪ socket() returns -1 on error and sets errno to indicate what error occurred

11

int res = socket(AF_INET, SOCK_STREAM, 0);

if (res == -1) { // Error!
 std::cerr << "ERROR ENCOUNTERED CREATING A SOCKET" << std::endl;

 // use strerror to get the string explaining the error
 std::cerr << strerror(errno) << std::endl;
 exit(EXIT_FAILURE);
}

 This print will overwrite errno

You can do almost nothing
between when the error occurs
and evaluating errno.

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Aside: nixnet::result

❖ A std::expected that has the error type set to ninxnet::erno_t

❖ Has a expect() function

▪ If there is an error, the specified error message + the error held is printed and it throws an
exception.

▪ If there is a value, it is returned.

▪ Rust design pattern, std::expected doesn’t have this

12

nixnet::SocketAddr addr = nixnet::SocketAddr::v6_from_str(argv[1], argv[2])
 .expect("Invalid port or IPv6 address passed in");

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

nixnet::SocketAddr

❖ Struct that represents either an IPv4 or IPv6 address and a port number

❖ Follows rust pattern, instead of constructing, you call a “from” function that
can return either the thing or an error code.

13

static result<SocketAddr> SocketAddr::v6_from_str(std::string_view string_rep,
 std::string_view port_str);

static result<SocketAddr> SocketAddr::v6_from_str(std::string_view string_rep,
 uint16_t port_num);

SocketAddr home = nixnet::SocketAddr::v4_from_str("127.0.0.1", 3400).expect("this bad msg");

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses && SocketAddress

❖ UDPSocket

❖ TCPStream

❖ TCPListener

14

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Files and File Descriptors

❖ Remember open(), read(), write(), and close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and close()

▪ Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position

15

Parameters to

Can’t be a

pointer, don’t

want to give

address to

kernel

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O
▪ You use read() and write() to communicate with remote computers over the

network!

▪ A file descriptor use for network communications is called a socket

▪ A Socket is an endpoint for network communication

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the OS know which network
channel to use

16

In other words, we

specify the socket

to read/write on

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

17

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple

files and network

connections open
0,1,2 always start as

stdin, stdout & stderr.

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

18

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

19

host

host host

host

host

host host

host

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

UDPSocket

❖ Demo udp_send

❖ send_socket

▪ Ephemeral port allocated

❖ Send fails on message to big

❖ Send doesn’t fail if no one is there to receive it!

20

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Maximum Transmission Unit

❖ Sometimes called MTU

❖ Size of the largest unit of data that can be communicated in a single network
layer (IP Layer) transaction.

❖ Size is dynamic and depends on the underlying infrastructure

❖ Trying to send a UDP message larger than the MTU size will cause an error

❖ In this class we artificially set the MTU for udp sockets to their minimum value

▪ IPv4: 68 bytes

▪ IPv6: 1280 bytes

21

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

UDPSocket

❖ Demo udp_send.cpp

❖ send_socket

▪ Ephemeral port allocated

▪ Ephemeral ports are “temporary” ports.

▪ For the socket “reaching out”, then an exact port number doesn’t matter since the
protocol & application will be found out by the port number of who we are connecting to

❖ Send fails on message to big 

❖ Send doesn’t fail if no one is there to receive it!

22

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

UDP connect

❖ Connect doesn’t really do much for UDP sockets

▪ IT DOES NOT SETUP A “CONNECTION” LIKE TCP DOES

❖ When you send() data and don’t specify an address, it will go to the connected
address as a default

❖ Data that is recv()’d is only recv’d from the connected address, data from other
addresses are ignored

❖ Other very small things

❖ Packets still follow UDP, can be dropped, or received out of order
23

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

UDPSocket

❖ Demo udp_recv.cpp

❖ recv vs recv_from

❖ Structured binding to get the results nicely

24

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses && SocketAddress

❖ UDPSocket

❖ TCPStream

❖ TCPListener

25

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-peer

1) Establish connection:

2) Communicate:

3) Close connection:

26

client server

client server

client server

Client reaches out
Server is “passive” &

listens for clients

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

TCP Connection

❖ TCP Connections are identified by 4 things

▪ Local address

▪ Local port

▪ Peer address

▪ Peer port

27

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

TCPStream

❖ tcp_send.cpp demo / walk through

❖ TcpStream::connect

❖ send / recv

▪ Can send huge number of bytes fine

28

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses && SocketAddress

❖ UDPSocket

❖ TCPStream

❖ TCPListener

29

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Server Pattern

❖ Create a listener socket bound to a local addr & port

❖ Waits for incoming connections

❖ On new connection, creates a new TCPStream socket to handle that
connection

30

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Server Listener Model

31

server

TcpListener::bind()

- socket()

- bind()

- listen()

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Server Listener Model

32

server

client

accept()

Accept maintains a queue of pending
connection requests. It is ok if accept is called
before or after the client tries to connect.

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Server Listener Model

33

server

accept()

client

accept creates a

new socket for

the connection

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

TCPListener

❖ tcp_echo_server.cpp demo / walk through

❖ bind()

❖ accept()

❖ The TcpListener does not read/write to the client itself!!!!

❖ Demo: how are sockets different than files? Maybe more similar to pipes?

▪ What if client is changed to read first before sending?

34

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are stuck waiting for it 

35

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

36

server

shared
data

structures

pool

client

accept()

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

37

server

shared
data

structures

pool

accept()

client

accept creates a

new socket for

the connection

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

38

server

shared
data

structures

pool

accept()

client

enqueue_job()

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

39

server

shared
data

structures

pool

client

do_job()

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

40

server

shared
data

structures

pool

client

close

connection

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

41

server

shared
data

structures

pool

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Multithreaded Server: Thread Pool

42

server

shared
data

structures

pool

client

client

client

Later…

CIS 3990, Fall 2025L18: Socket ProgrammingUniversity of Pennsylvania

Next Lecture

❖ HTTP & RESTful!

43

	Default Section
	Slide 1: Socket Programming Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: The Sockets API
	Slide 5: The nixnet Sockets API
	Slide 6: IPv4 Network Addresses
	Slide 7: IPv6 Network Addresses
	Slide 8: Poll: how are you?
	Slide 9: Socket
	Slide 10: Aside: std::expected
	Slide 11: Aside: nixnet::errno_t
	Slide 12: Aside: nixnet::result
	Slide 13: nixnet::SocketAddr
	Slide 14: Lecture Outline
	Slide 15: Files and File Descriptors
	Slide 16: Networks and Sockets
	Slide 17: File Descriptor Table
	Slide 18: Types of Sockets
	Slide 19: Datagram Sockets
	Slide 20: UDPSocket
	Slide 21: Maximum Transmission Unit
	Slide 22: UDPSocket
	Slide 23: UDP connect
	Slide 24: UDPSocket
	Slide 25: Lecture Outline
	Slide 26: Stream Sockets
	Slide 27: TCP Connection
	Slide 28: TCPStream
	Slide 29: Lecture Outline
	Slide 30: Server Pattern
	Slide 31: Server Listener Model
	Slide 32: Server Listener Model
	Slide 33: Server Listener Model
	Slide 34: TCPListener
	Slide 35: Something to Note
	Slide 36: Multithreaded Server: Thread Pool
	Slide 37: Multithreaded Server: Thread Pool
	Slide 38: Multithreaded Server: Thread Pool
	Slide 39: Multithreaded Server: Thread Pool
	Slide 40: Multithreaded Server: Thread Pool
	Slide 41: Multithreaded Server: Thread Pool
	Slide 42: Multithreaded Server: Thread Pool
	Slide 43: Next Lecture

