
CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Deadlock & Parallel Algos
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Administrivia

❖ Midterm Grading

▪ Grades posted sometime on Thursday

▪ Just waiting on a makeup exam

▪ No talking about it yet please!

❖ HW08: Posted Yesterday

▪ Have everything you need after this lecture

❖ Mid Semester Survey

▪ Due End-of-day Nov 1st (Saturday)

❖ Check-in posted tomorrow
2

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Lecture Outline

❖ Liveness & Deadlock

❖ Parallel Algorithms

3

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

❖ When is called, the calling thread blocks (stops
executing) until it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

4

std::mutex::lock();

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that
lock

❖ See release_locks.cpp

▪ Example where locks are not released once critical section is completed.

5

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.cpp

❖ Note: there are many algorithms for detecting/preventing deadlocks

6

Neither thread can make progress 

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to
acquire those resources

▪ Some of these resources require exclusive access

❖ A threads typically accumulate resources over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed

▪ Even if all unblocked threads release, deadlock will continue

7

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

8

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

How to avoid Deadlock

❖ Acquire all locks in the same order, all at once.

▪ If you do this, then there is no way for a cycle to form

❖ std::scoped_lock can take in multiple locks and will acquire them in defined
order to avoid deadlock. The order you pass the locks to scoped_lock doesn’t
matter.

❖ Most of the time you know which locks you need all at once.

▪ If you don’t, then you may not be able to acquire all locks in the same order.

▪ Handling this gets complicated  CIS 5480 dedicates 1.5-2 lectures on this

▪ Put it simply: if you can’t acquire them all at once, then when you acquire locks later you
need to check to see if acquiring the lock would cause deadlock (by seeing if it would form
a cycle in a graph like on the previous slide). 9

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already
acquired?

❖ See recursive_deadlock.cpp

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

10

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was
acquired

❖ Has its uses, but generally discouraged.

11

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Lecture Outline

❖ Liveness & Deadlock

❖ Parallel Algorithms

12

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Algorithms

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

13

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work

30

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 merge_sort(arr, lo, mid); // sort the bottom half

 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

31

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 std::jthread thd(merge_sort,arr, lo, mid);

 merge_sort(arr, mid, hi); // sort the upper half

 thd.join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 32

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 std::jthread thd(merge_sort,arr, lo, mid);

 merge_sort(arr, mid, hi); // sort the upper half

 thd.join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

Discuss

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

33

Will not test you on this

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further optimizations that can be done to
reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a
sneak peek

34

Will not test you on this

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S) // (1-S) is the sequential part

35

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we
get

▪ TP = (1-S) +
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =

1

1−𝑆+
𝑆

𝑃

36

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

37

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware.

❖ Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

❖ Can see this information in with lscpu in bash or
std::thread::hardware_concurrency()

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads
38

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Limitations: Other Hardware

❖ This algorithm analysis assumes we are spending time purely in the CPU

❖ It doesn’t account for threads blocking on I/O or other hardware.

39

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Limitation: Threads, Locks & Synchronization Overhead

❖ It didn’t apply in this example, but creating threads, and acquiring locks
introduces overhead

❖ Can use a threadpool to minimize thread creation overhead

❖ Locks and synchronization is generally minimized as much as possible.

❖ Goal: Give each thread an independent piece of work to do and then look at
the results after it is done.

40

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Transform / Map

❖ Consider the map (called transform in C++) higher order function

▪ Given a sequence, returns the result of calling a function on each element in the input
sequence.

❖ How do we parallelize this?

41

Given a function "func" and an input vector:
 {a, b, c, d, e, f, ..., z}

Then the returned value is:
 {func(a), func(b), func(c), func(d), func(e), func(f), ..., func(z)}

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Embarrassingly Parallel

❖ Problems that take little to no effort to distribute the work across threads and
merge the results back in together.

❖ There is no dependency between threads (no communication or information
needs to be shared), except for the final step of combining the final results
together.

❖ Transform is embarrassingly parallel since we just split up the work across
threads. Each thread’s work is “pure”, and doesn’t depend on the state of
other thread’s work.

42

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Reduce

❖ Consider the reduce higher order function

▪ Given a sequence, reduce the elements into a single result.
Also given a function that takes two elements and combines them

❖ You can assume func is associative:

❖ How do we parallelize this?

▪ How can we split up the work?

43

Given a function "func" and an input vector:
 {a, b, c, z}

Then the returned value is equivalent to:
 func(func(func(a, b), c), z)

func(func(x, y), z) == func(x, func(y, z))

Example of a reduce:
given a vector<int>
find the sum of all elements.

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Reduce (Small Example)

❖ You can assume func is associative:

❖ Consider the input vector: {a, b, c, d}

❖ the result should be {func(func(func(a, b), c), d)}

❖ which is equal to {func(func(a, b), func(c, d))}

❖ We can divide up the work!

44

func(func(x, y), z) == func(x, func(y, z))

calling_thread

og_thread

y = func(c, d)

x = func(a, b)

join

result = func(x, y)

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Reduce (Extrapolating to larger examples)

❖ You can assume func is associative:

❖ Consider the input vector: {a, b, c, d, e, f, g, h}

❖ How do we split up work across more than 2 threads?

45

func(func(x, y), z) == func(x, func(y, z))

{a, b, c, d}

{e, f, g, h}

w = func(a, b)

x = func(c, d)

y = func(e, f)

z = func(g, h)

s= func(y, z)

r = func(y, z) result = func(r, s)

How many threads did this create?

If we have an input of size N, how many
threads would we benefit from using?

3

~log2(n)

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

❖ Prefix sum, given an input array of integers, calculate a new vector which is the
prefix sum. Each element at index i is the sum(input[0 ... i])

▪ Given: {2, 0, 8, 5, 5, 3, 2, 1}

▪ Result: {2, 2, 10, 15, 20, 23, 25, 26}

❖ How do we parallelize this? Values seem very dependent on each other…

▪ Sort of similar to merge sort, we split it up across ~n threads

▪ But we do it in two passes!

46

Credit to UW CSE 332 for teaching me this
and how to teach this

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

47

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

48

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 0
LeftNeighborSum 0

Range [4, 8)
Sum 0
LeftNeighborSum 0

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

49

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 0
LeftNeighborSum 0

Range [4, 8)
Sum 0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

50

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 0
LeftNeighborSum 0

Range [4, 8)
Sum 0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

51

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 0
LeftNeighborSum 0

Range [4, 8)
Sum 0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back up the
tree.
combining their
sums up

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

52

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 0
LeftNeighborSum 0

Range [4, 8)
Sum 0
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back up the
tree.
combining their
sums up

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

53

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 0
LeftNeighborSum 0

Range [0, 4)
Sum 15
LeftNeighborSum 0

Range [4, 8)
Sum 11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back up the
tree.
combining their
sums up

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

54

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 26
LeftNeighborSum 0

Range [0, 4)
Sum 15
LeftNeighborSum 0

Range [4, 8)
Sum 11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back up the
tree.
combining their
sums up

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

55

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 15
LeftNeighborSum 0

Range [4, 8)
Sum 11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back down

This time tell
each thread what
their left neighbor
had as a sum

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

56

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 15
LeftNeighborSum 0

Range [4, 8)
Sum 11
LeftNeighborSum 15

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back down

This time tell
each thread what
their left neighbor
had as a sum

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

57

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 2 +13 = 15
LeftNeighborSum 0

Range [4, 8)
Sum 8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 2

Range [4, 6)
Sum 8
Left 15

Range [6, 8)
Sum 3
Left 23

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 0

R [2, 3)
S 8
L 0

R [3, 4)
S 5
L 0

R [4, 5)
S 5
L 0

R [5, 6)
S 3
L 0

R [6, 7)
S 2
L 0

R [7, 8)
S 1
L 0

Go back down

This time tell
each thread what
their left neighbor
had as a sum

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

58

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 2 +13 = 15
LeftNeighborSum 0

Range [4, 8)
Sum 8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum 2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum 5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 2

R [2, 3)
S 8
L 2

R [3, 4)
S 5
L 10

R [4, 5)
S 5
L 15

R [5, 6)
S 3
L 20

R [6, 7)
S 2
L 23

R [7, 8)
S 1
L 25

Go back down

This time tell
each thread what
their left neighbor
had as a sum

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum

59

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26

input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 2 +13 = 15
LeftNeighborSum 0

Range [4, 8)
Sum 8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum 2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum 5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 2

R [2, 3)
S 8
L 2

R [3, 4)
S 5
L 10

R [4, 5)
S 5
L 15

R [5, 6)
S 3
L 20

R [6, 7)
S 2
L 23

R [7, 8)
S 1
L 25

Go back down

This time tell
each thread what
their left neighbor
had as a sum

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum Analysis

60

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26

input

output

Range [0, 8)
Sum 15+ 11 = 26
LeftNeighborSum 0

Range [0, 4)
Sum 2 +13 = 15
LeftNeighborSum 0

Range [4, 8)
Sum 8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum 2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum 5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R [0, 1)
S 2
L 0

R [1, 2)
S 0
L 2

R [2, 3)
S 8
L 2

R [3, 4)
S 5
L 10

R [4, 5)
S 5
L 15

R [6, 7)
S 2
L 23

R [7, 8)
S 1
L 25

BigO analysis:
How much work is done?

What is the runtime?

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Prefix Sum Analysis

❖ This algorithm can be tweaked to solve other prefix problems

❖ What is the minimum/maximum of all elements to the left?

❖ What is the count of elements to the left that satisfy some property?

61

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Filter

❖ Filter higher order function

▪ Given a sequence, returns a subsequence containing only elements that meet a certain
criteria

❖ Example:

▪ Input vector:

▪ Function:

▪ Output vector:

❖ How do we parallelize this (what about with no loops?)

▪ Hint: this is made of two parts. Finding elements that belong in output and putting them in
the right index in the result.

▪ How do we
derive

62

{2, 0, 8, 5, 5, 3, 2, 1}

auto is_even = [](int n) -> bool { return n % 2 == 0; }

{2, 0, 8, 2}

in_output = {1, 1, 1, 0, 0, 0, 1, 0}

indexes = {0, 1, 2, -, -, -, 3, -} // - means value doesn’t matter

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

Parallel Filter

❖ Filter higher order function

▪ Given a sequence, returns a subsequence containing only elements that meet a certain
criteria

❖ Example:

▪ Input vector:

▪ Function:

▪ Output vector:

❖ Two* steps:

▪ Parallel map/transform to get

▪ Parallel prefix sum on previous

• Right after each thread calculates
prefix-sum, have them do --->

63

{2, 0, 8, 5, 5, 3, 2, 1}

auto is_even = [](int n) -> bool { return n % 2 == 0; }

{2, 0, 8, 2}

in_output = {1, 1, 1, 0, 0, 0, 1, 0}

indexes = {0, 1, 2, 2, 2, 2, 3, 3}

if (in_output[i] == 1)
 output[indexes[i]] = input[i]

CIS 3990, Fall 2025L16: Deadlock & Parallel AlgosUniversity of Pennsylvania

That’s all for now!

❖ Next Week:

▪ Intro to the Network & Socket programming

❖ Hopefully you are doing well ☺

64

	Default Section
	Slide 1: Deadlock & Parallel Algos Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Liveness
	Slide 5: Liveness Failure: Releasing locks
	Slide 6: Liveness Failure: Deadlocks
	Slide 7: Deadlock Definition
	Slide 8: Circular Wait Example
	Slide 9: How to avoid Deadlock
	Slide 10: Liveness Failure: Mutex Recursion
	Slide 11: Aside: Recursive Locks
	Slide 12: Lecture Outline
	Slide 13: Parallel Algorithms
	Slide 14: Merge Sort: Core Ideas
	Slide 15: Merge Sort: Core Ideas
	Slide 16: Merge Sort: Core Ideas
	Slide 17: Merge Sort: Core Ideas
	Slide 18: Merge Sort: Core Ideas
	Slide 19: Merge Sort: Core Ideas
	Slide 20: Merge Sort: Core Ideas
	Slide 21: Merge Sort: Core Ideas
	Slide 22: Merge Sort: Core Ideas
	Slide 23: Merge Sort: High Level Example
	Slide 24: Merge Sort: High Level Example
	Slide 25: Merge Sort: High Level Example
	Slide 26: Merge Sort: High Level Example
	Slide 27: Merge Sort: High Level Example
	Slide 28: Merge Sort: High Level Example
	Slide 29: Merge Sort: High Level Example
	Slide 30: Merge Sort Algorithmic Analysis
	Slide 31: Merge Sort Algorithmic Analysis
	Slide 32: Merge Sort Algorithmic Analysis
	Slide 33: Parallel Algos:
	Slide 34: Parallel Algos:
	Slide 35: Amdahl's Law
	Slide 36: Amdahl's Law
	Slide 37: Amdahl's Law
	Slide 38: Limitation: Hardware Threads
	Slide 39: Limitations: Other Hardware
	Slide 40: Limitation: Threads, Locks & Synchronization Overhead
	Slide 41: Transform / Map
	Slide 42: Embarrassingly Parallel
	Slide 43: Reduce
	Slide 44: Reduce (Small Example)
	Slide 45: Reduce (Extrapolating to larger examples)
	Slide 46: Parallel Prefix Sum
	Slide 47: Parallel Prefix Sum
	Slide 48: Parallel Prefix Sum
	Slide 49: Parallel Prefix Sum
	Slide 50: Parallel Prefix Sum
	Slide 51: Parallel Prefix Sum
	Slide 52: Parallel Prefix Sum
	Slide 53: Parallel Prefix Sum
	Slide 54: Parallel Prefix Sum
	Slide 55: Parallel Prefix Sum
	Slide 56: Parallel Prefix Sum
	Slide 57: Parallel Prefix Sum
	Slide 58: Parallel Prefix Sum
	Slide 59: Parallel Prefix Sum
	Slide 60: Parallel Prefix Sum Analysis
	Slide 61: Parallel Prefix Sum Analysis
	Slide 62: Parallel Filter
	Slide 63: Parallel Filter
	Slide 64: That’s all for now!

