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Administrivia

/
>

» Midterm Grading

" Grades posted sometime on Thursday
= Just waiting on a makeup exam

" No talking about it yet please!

+» HWOS8: Posted Yesterday

= Have everything you need after this lecture

+» Mid Semester Survey
" Due End-of-day Nov 15t (Saturday)

» Check-in posted tomorrow
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Lecture Outline

+~ Liveness & Deadlock
+ Parallel Algorithms
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Liveness

+ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

» When ( std: :mutex: :lock () ; ] is called, the calling thread blocks (stops

executing) until it can acquire the lock.
" What happens if the thread can never acquire the lock?




University of Pennsylvania L16: Deadlock & Parallel Algos CIS 3990, Fall 2025

Liveness Failure: Releasing locks

+ If locks are not released by a thread, then other threads cannot acquire that
lock

+ Seerelease locks.cpp

= Example where locks are not released once critical section is completed.
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Liveness Failure: Deadlocks

+ Consider the case where there are two threads and two locks
®" Thread 1 acquires lockl
" Thread 2 acquires lock2
" Thread 1 attempts to acquire lock2 and blocks
" Thread 2 attempts to acquire lock1 and blocks

Neither thread can make progress @
+ Seemilk deadlock.cpp

+ Note: there are many algorithms for detecting/preventing deadlocks
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Deadlock Definition

+» A computer has multiple threads, finite resources, and the threads want to
acquire those resources

= Some of these resources require exclusive access

+~ A threads typically accumulate resources over time

= |f it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

+ Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed

= Even if all unblocked threads release, deadlock will continue
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Circular Wait Example

+ A cycle can exist of more than just two threads:

Thread 2

“,

w@ Thread 3

Has R3

Thread 1

Wants R1
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How to avoid Deadlock

+ Acquire all locks in the same order, all at once.

" |f you do this, then there is no way for a cycle to form

+ std::scoped_lock can take in multiple locks and will acquire them in defined

order to avoid deadlock. The order you pass the locks to scoped lock doesn’t
matter.

+» Most of the time you know which locks you need all at once.

If you don’t, then you may not be able to acquire all locks in the same order.
Handling this gets complicated ® CIS 5480 dedicates 1.5-2 lectures on this

Put it simply: if you can’t acquire them all at once, then when you acquire locks later you
need to check to see if acquiring the lock would cause deadlock (by seeing if it would form
a cycle in a graph like on the previous slide).
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Liveness Failure: Mutex Recursion

+ What happens if a thread tries to re-acquire a lock that it has already
acquired?

» See recursive deadlock.cpp

» By default, a mutex is not re-entrant.

" The thread won’t recognize it already has the lock, and block until the lock is released

CIS 3990, Fall 2025
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Aside: Recursive Locks

» Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

+~ Acquiring a lock that is already held will succeed

+» To release a lock, it must be released the same number of times it was
acquired

» Has its uses, but generally discouraged.

11
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Lecture Outline

% Liveness & Deadlock
+~ Parallel Algorithms
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Parallel Algorithms

+» One interesting applications of threads is for faster algorithms

+» Common Example: Merge sort

13
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array 1
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array 1 2
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array 1 2 3
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array 1 2 3 4
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondIndex

Output array 1 2 3 4 5
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8

| I

firstindex secondIindex

Output array 1 2 3 4 5 6




University of Pennsylvania L16: Deadlock & Parallel Algos CIS 3990, Fall 2025

Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

1 3 5 6 2 4 7 8

I I

firstindex secondIndex

Output array 1 2 3 4 5 6 7
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Merge Sort: Core Ideas

% It is easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

| I

firstindex secondIindex

Output array 1 2 3 4 5 6 7 8
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example
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Merge Sort: High Level Example
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
20 \10 15 §4 55 1\1 78 14
— S P AW = ~ = ~
20 10 15 54 55 11 78 14

CIS 3990, Fall 2025
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
20 \10 15 §4 55 1\1 78 14
— S P AW = ~ = ~
20 10 15 54 55 11 78 14
N V4 N p4 N\ P4 N\ /
10 20 15 54 11 55 14 78

CIS 3990, Fall 2025
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
20 \10 15 §4 55 1\1 78 14
— S P AW = ~ = ~
20 10 15 54 55 11 78 14
N V4 N p4 N\ P4 N\ /
10 20 15 54 11 55 14 78
10 15 20 54 11 14 55 78

CIS 3990, Fall 2025
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
20 \10 15 §4 55 1\1 78 14
— S P AW = ~ = ~
20 10 15 54 55 11 78 14
N V4 N p4 N\ P4 N\ /
10 20 15 54 11 55 14 78
10 15 20 54 11 14 55 78
10 11 14 15 20 54 55 78

CIS 3990, Fall 2025
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Merge Sort Algorithmic Analysis

+ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

rvoid merge sort(int[] arr, int lo, int hi) {
// lo high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

merge sort(arr, lo, mid); // sort the bottom half
merge sort(arr, mid, hi); // sort the upper half

// combine the upper and lower half into one sorted
// array containing all eles
merge (arr[lo : mid], arr[mid : hil]);

} J

\

+ We recurse log,(N) times, each recursive “layer” does O(N) work

30
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Merge Sort Algorithmic Analysis

« We can use threads to speed this up:

)

(void merge sort (int[] arr, int lo, int hi) {

// lo high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
std: :jthread thd (merge sort,arr, lo, mid);
merge sort(arr, mid, hi); // sort the upper half

thd.join(); // join the thread that did bottom half

// combine the upper and lower half into one sorted
// array containing all eles
merge (arr[lo : mid], arr[mid : hil]);

"= Now we are sorting both halves of the array in parallel!

31
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«+ We can use threads to speed this up:

)

(void merge sort (int[] arr, int lo, int hi) {

// lo high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
std: :jthread thd (merge sort,arr, lo, mid);
merge sort(arr, mid, hi); // sort the upper half

thd.join(); // join the thread that did bottom half
// combine the upper and lower half into one sorted

// array containing all eles
merge (arr[lo : mid], arr[mid : hi]);

"= Now we are sorting both halves of the array in parallel!

"= How long does this take to run?

®= How much work is being done?

Discuss

CIS 3990, Fall 2025
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Will not test you on this

Parallel Algos:

+» We can define T(n) to be the running time of our algorithm

+» We can split up our work between two parts, the part done sequentially, and
the part done in parallel
" T(n) = sequential_part + parallel_part
" T(n) = O(n) merging +T(n/2) sort half the array
- This is a recursive definition

+ |f we start recurring...
" T(n) =0(n) + O(n/2) + T(n/4)
" T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

33
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Will not test thi
Parallel Algos: T ROTTEST YOROn ThE

+ |f we start recurring...
= T(n) = O(n) + O(n/2) + T(n/4)
" T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

= Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

+ This approximates to T(n) =~2 * O(n) = O(n)

® This parallel merge sort is O(n), but there are further optimizations that can be done to
reach ~O(log(n))

« There is a lot more to parallel algo analysis than just this, | am just giving you a
sneak peek

34
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Amdahl's Law

» For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns

= (even ignoring the overhead costs of creating & scheduling threads)

+» Consider we have some parallel algorithm T, =1
" The 1 subscript indicates this is run on 1 thread
= we define the work for the entire algorithm as 1

« We define S as being the part that can be parallelized
" T,=S+(1-5S) //(1-S) is the sequential part

35
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Amdahl's Law

% For running on one thread:
" T,=(1-S)+S

+ If we have P threads and perfect linear speedup on the parallelizable part, we
get

" Tp=(15)+

+ Speed up multiplier for P threads from sequential is:

T, 1

- - S
Tp 1—S+E

36
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Amdahl's Law

» Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

T 1 : :
= == szeee = 2.9999 times faster than sequential
Ty 1-0.6666+--——

+« What if it is 90% parallel? (S = 0.9):

T 1 . .
= == oo— = 9.99 times faster than sequential

T _
p 1=0.9+735000

+» What if it is 99% parallel? (S = 0.99):

T 1 . :
= == 55— = 99.99 times faster than sequential
Tp  1-0.99+ 5555

37
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Limitation: Hardware Threads

+» These algorithms are limited by hardware.

» Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

» We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

» Can see this information in with 1scpu in bash or
std: :thread: :hardware concurrency ()
= A computer can have some number of CPU sockets
= Each CPU can have one or more cores
= Each Core can run 1 or more threads

CIS 3990, Fall 2025
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Limitations: Other Hardware

% This algorithm analysis assumes we are spending time purely in the CPU
+» |t doesn’t account for threads blocking on 1/0 or other hardware.

39
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Limitation: Threads, Locks & Synchronization Overhead

+ It didn’t apply in this example, but creating threads, and acquiring locks
introduces overhead

+» Can use a threadpool to minimize thread creation overhead

+ Locks and synchronization is generally minimized as much as possible.

+ Goal: Give each thread an independent piece of work to do and then look at
the results after it is done.

40
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Transform / Map

+» Consider the map (called transform in C++) higher order function

" Given a sequence, returns the result of calling a function on each element in the input
seguence.

Given a function "func" and an input vector:
{a, b, ¢, d, e, f, ..., 2z}

Then the returned value is:
{func(a), func(b), func(c), func(d), func(e), func(f), ..., func(z)}

+» How do we parallelize this?

41
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Embarrassingly Parallel

+» Problems that take little to no effort to distribute the work across threads and
merge the results back in together.

+ There is no dependency between threads (no communication or information

needs to be shared), except for the final step of combining the final results
together.

» Transform is embarrassingly parallel since we just split up the work across
threads. Each thread’s work is “pure”, and doesn’t depend on the state of
other thread’s work.

42
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Reduce

Example of a reduce:
given a vector<int>

+ Consider the reduce higher order function find the sum of all elements.

" Given a sequence, reduce the elements into a single result.
Also given a function that takes two elements and combines them

Given a function "func" and an input vector:
{a) b.’ C_, Z}

Then the returned value is equivalent to:
func(func(func(a, b), c), z)

<« You can assume func is associative:

func(func(x, y), z) == func(x, func(y, z))

+» How do we parallelize this?

" How can we split up the work?

43
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Reduce (Small Example)

«» You can assume func is associative: ERUUSGIUECIRDIRFINECIE e R ILTICArI)

« Consider the input vector: {a, b, ¢, d}

+ the result should be {func (func (func(a, b), c), d)}
» which is equal to { func (func(a, b), func(c, d))}

+~ We can divide up the work!

func(c, d)

calling thread = func(a, b) result = func(x, y)

og_thread " join

44
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Reduce (Extrapolating to larger examples)

«» You can assume func is associative: ERUUSGIUECIRDIRFINECIE e R ILTICArI)

+» Consider the input vector: {a, b, ¢, 4, e, £, g, h}
How do we split up work across more than 2 threads?

How many threads did this create?
z = func(g, h)

3
If we have an input of size N, how many
e, f, ) h /_ \ = !
e, fg hi _/_y=func(e,f) . 5= funcly, 2] . threads would we benefit from using?
~log,(n)

x = func(c, d

{a, b,c, d} w = func(a, b) r = func(y, z) result = func(r, s)

45
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Credit to UW CSE 332 for teaching me this

Para"el PrEfiX Sum and how to teach this

+~ Prefix sum, given an input array of integers, calculate a new vector which is the
prefix sum. Each element at index i is the sum (input[0 ... i])

" Given: {2, 0, 8, 5, 5, 3, 2, 1}
= Result: {2, 2, 10, 15, 20, 23, 25, 26}

+» How do we parallelize this? Values seem very dependent on each other...
= Sort of similar to merge sort, we split it up across ~n threads
" But we do it in two passes!

46
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Credit to UW CSE 332 for teaching me this

Para"el PrEfiX Sum and how to teach this

Range [0, 8)
Sum 0
LeftNeighborSum 0

input 2 0 8 5 5 3 2 1

output

47
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Credit to UW CSE 332 for teaching me this

Pa ra"el PrEfIX Sum and how to teach this
Range [0, 8)
Sum 0
LeftNeighborSum 0 \
Range [0, 4) Range [4, 8)
Sum 0 Sum 0
LeftNeighborSum O LeftNeighborSum 0
input 2 0 8 5 5 3 2 1
output

48
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Credit to UW CSE 332 for teaching me this
and how to teach this

Parallel Prefix Sum

Range
Sum

[0, 8)

/

Range
Sum

0
LeftNeighborSum O \

[0, 4)

0
LeftNeighborSum 0 \

/

Range
Sum

LeftNeighborSum 0

[4, 8)
0

Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)

Sum 0 Sum 0 Sum 0 Sum 0

Left 0 Left 0 Left 0 Left 0
input 2 0 8 5 5 3 2 1

output

49
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Credit to UW CSE 332 for teaching me this
and how to teach this

AN

Range

Parallel Prefix Sum

Range [0, 8)
Sum 0
LeftNeighborSum O

Range [0, 4) [4, 8)

input

output

Sum 0
/ LeftNeighborSum 0 \

Sum 0
/ LeftNeighborSum 0

Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)
Sum 0 Sum 0 Sum 0 Sum 0
left 0 Left 0 Left 0 Left 0

rd ~ — — rad ~ — T~
R [0, 1) [1, 2) R[2,3)||R[3,4)||R[4,5||R[56)||RI[67)]||RI[738)
S 2 S 8 S5 S5 S 3 S 2 S1
L O LO L O LO L O L O L O LO

2 0 8 5 5 3 2 1

50
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Parallel Prefix Sum

input

output

Credit to UW CSE 332 for teaching me this
and how to teach this

Range

Sum

[0, 8)

0

LeftNeighborSum O

AN

Range [0, 4) Range [4, 8)
Sum 0 Sum 0
/ LeftNeighborSum O \ / LeftNeighborSum 0
Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)
Sum 0 Sum 0 Sum 0 Sum 0
left 0 Left 0 Left 0 Left 0
— —~ = — X g
R [0, 1) [1,2)| |[R[2,3)||R[3,4)||R[4,5)||R[56)||R[6,7)]|R [738)
S 2 S 8 S5 S5 S 3 S 2 S1
LO LO LO LO LO LO LO LO
2 0 8 5 5 3 2 1

Go back up the
tree.

combining their
sums up

51
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Credit to UW CSE 332 for teaching me this
and how to teach this

Parallel Prefix Sum

Range [0, 8)
Sum 0
LeftNeighborSum 0 \
Range [0, 4) Range [4, 8)
Sum 0 Sum 0
/ LeftNeighborSum 0 \ / LeftNeighborSum 0 Go back up the
tree.
Range [0, 2) Range [2,4) Range [4,6) Range [6, 8) combining their
Sum 2 Sum 13 Sum 8 Sum 3 sums up
Left 0 Left 0 Left 0 Left 0
“ ~ — — o ~ — T~
R [0, 1) [1,2) | |[R[2,3)||R[3,4)||R[4,5)||R[56)| RI67) | RI738)
S 2 S 8 S5 S5 S 3 S 2 S1
L O LO L O L O L O L O L O L O
input 2 0 8 5 5 3 2 1
output

52
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Credit to UW CSE 332 for teaching me this

Para"el PrEfIX Sum and how to teach this
Range [0, 8)
Sum 0
LeftNeighborSum 0 \
Range [0, 4) Range [4, 8)
Sum 15 Sum 11
/ LeftNeighborSum 0 \ /LeftNeighborSum 0 \ Go back up the
tree.
Range [0, 2) Range [2, 4) Range [4, 6) Range [6, 8) combining their
Ssum 2 Sum 13 Sum 8 Sum 3 sums up
Left 0 Left 0 Left 0 Left 0
“ ~ — — Z ~ —
R [0, 1) [1,2) | |[R[2,3)||R[3,4)||R[4,5)||R[56)||RI[67)]| RI[7S8)
S 2 SO S 8 S5 S5 S3 S 2 S1
L O LO L O L O L O L O L O L O
input 2 0 8 5 5 3 2 1
output

53
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Credit to UW CSE 332 for teaching me this

Para"el PrEfIX Sum and how to teach this
Range [0, 8)
Sum 26
LeftNeighborSum 0 \
Range [0, 4) Range [4, 8)
Sum 15 Sum 11
/ LeftNeighborSum 0 \ /LeftNeighborSum 0 \ Go back up the
tree.
Range [0, 2) Range [2, 4) Range [4, 6) Range [6, 8) combining their
Ssum 2 Sum 13 Sum 8 Sum 3 sums up
Left 0 Left 0 Left 0 Left 0
“ ~ — — Z ~ —
R [0, 1) [1,2) | |[R[2,3)||R[3,4)||R[4,5)||R[56)||RI[67)]| RI[7S8)
S 2 SO S 8 S5 S5 S3 S 2 S1
L O LO L O L O L O L O L O L O
input 2 0 8 5 5 3 2 1
output
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Credit to UW CSE 332 for teaching me this
and how to teach this

Parallel Prefix Sum

Range [0, 8)
sum @ 11=26
LeftNeighborSum~~0 \
Range 0,4 Ran e\\\ 4, 8
& 10, 4) & s 14, 8) Go back down

~

input

output

Sum 15
/ LeftNeighborSum 0 \

Sum e 1
/LeftNeighborSum\‘O

Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)
Sum 2 Sum 13 Sum 8 Sum 3
left 0 Left 0 Left 0 Left 0

rd ~ — — rad ~ — T~
R [0, 1) [1, 2) R[2,3)||R[3,4)||R[4,5||R[56)||RI[67)]||RI[738)
S 2 S 8 S5 S5 S 3 S 2 S1
L O LO L O LO L O L O L O LO

2 0 8 5 5 3 2 1

This time tell
each thread what
their left neighbor
had as a sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

Parallel Prefix Sum

Range [0, 8)
Sum @ 11=26
/ LeftNeighborStim_ @ \
Range 0,4) | .- Range™~. . 48
& [ ),/’ & DN 14,8) Go back down
Sum e Sum NN 11
LeftNeighborSum LeftNeighborSums o
This time tell
Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8) each thread.what
Sum 2 Sum 13 Sum 3 Sum 3 their left neighbor
Left 0 Left 0 Left 0 Left 0 had as a sum
Z ~— — — Z g — T~
R[0,1)| |[R[1,2)||R[2,3)||RI[3,4)||R[45)||RI[56)|/RI[67)]|RI[7S8)
S 2 SO S8 S5 S5 S 3 S 2 S1
L O LO L O L O L O L O L O LO
input 2 0 8 5 5 3 2 1
output

56
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Parallel Prefix Sum

input

output
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Credit to UW CSE 332 for teaching me this
and how to teach this

Range
Sum

[0, 8)
15+ 11 =26

LeftNeighborSum O

AN

Range [0, 4) Range [4, 8)
Sum @1 =15 Sum 3=11
/ LeftNeighbor ung@ \ /LeftNeighborSuhQ ’@ \
PN N /,\‘ N
Range  [0,2) | ~"| Range, \[2, 4) Range [4,6) | .| Range, [6,8)
Sum 2 Sum %\ 43 Sum 8 ,/', Sum\\:\ 3
Left (: ; Left é} Left (:;; Left ‘@
— — = Y~y
R [0, 1) R [1, 2) R[2,3)||R[3,4)||R[4,5||R[56)||RI[67)]||RI[738)
S 2 SO S 8 S5 S5 S 3 S 2 S1
L O LO L O L O L O L O L O L O
2 0 8 5 5 3 2 1

Go back down

This time tell
each thread what
their left neighbor
had as a sum

57



University of Pennsylvania L16: Deadlock & Parallel Algos CIS 3990, Fall 2025

Credit to UW CSE 332 for teaching me this

Pa ra"el PrEfIX Sum and how to teach this
Range [0, 8)
Sum 15+ 11 =26
LeftNeighborSum 0 \
Range [0, 4) Range [4, 8) Go back d
Sum 2+13 =15 Sum 8+3=11 O back down
LeftNeighborSum O LeftNeighborSum 15 o
This time tell
Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8) each thread.what
Sum =2 Sy 5 =13 Sum 3-8 Sun@l -3 their left neighbot
Left Left - @ Left % @ Left \,® had as a sum
\Y) \
jlijﬁ‘q == —— ‘ﬁy\ =
R0, %) [NRVL2)| [RI2,3)[MRI34) (R 14,5 |}\R 15,6) || R [6,7) R [7 8)
s2/ |Is S8,/ ||lSs5 ss5 / [183 s2 /7 [|s\h
L@ L@ L10) |3y |[Lpo) |[1@3) ||Les)
input 2 0 8 5 5 3 2 1 |
output
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Parallel Prefix Sum

input

output

Credit to UW CSE 332 for teaching me this
and how to teach this

Range
Sum

LeftNeighborSum O

[0, 8)

Range

[0, 4)

Sum 2+13 =15
/ LeftNeighborSum 0 \

15+ 11 =26 \

Range

4, 8)

Sum 8+3=11
/ LeftNeighborSum 15 \

Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)
Sum 2+0=2 Sum8+5=13 Sum 5+3=38 Sum2+1=3
Left 0 Left 2 Left 15 Left 23
R[0,1)| |[R[1,2)||R[2,3)||R[3,4)||R[45)||RI[56)| I RI[67)]|RI[7S8)
sn‘i’ S S S S S
L L A L L L L L

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum Analysis

input

output

Credit to UW CSE 332 for teaching me this
and how to teach this

Range
Sum

LeftNeighborSum O

[0, 8)
15+ 11 =26

Range

[0, 4)

Sum 2+13 =15
/ LeftNeighborSum 0 \

AN

BigO analysis:
How much work is done?

What is the runtime?

Range

4, 8)

Sum 8+3=11
/ LeftNeighborSum 15 \

Range [0, 2) Range [2, 4) Range [4,6) Range [6, 8)
Sum 2+0=2 Sum8+5=13 Sum 5+3=38 Sum2+1=3
Left 0 Left 2 Left 15 Left 23
R[O,1)] |R[1,2)||R[2,3)||RI[3,4)]||R [45) R[6,7)||R [78)
S 2 SO S 8 S5 S5 S 2 S1
L O L 2 L 2 L 10 L 15 L 23 L 25

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26
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Parallel Prefix Sum Analysis

% This algorithm can be tweaked to solve other prefix problems

+» What is the minimum/maximum of all elements to the left?

+» What is the count of elements to the left that satisfy some property?
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Parallel Filter

+ Filter higher order function

" Given a sequence, returns a subsequence containing only elements that meet a certain
criteria

+» Example:

" |nput vector: REFEPEE:FEEVIE-FIE PRI Y

LIRSV eladfe]sMl auto is even = [](int n) -> bool { return n % 2 == 0; }

" Qutput vector:

+ How do we parallelize this (what about with no loops?)

" Hint: this is made of two parts. Finding elements that belong in output and putting them in
the right index in the result.

= How do we in_OUtPUt = {11 1, 1, 0, 0, 0, 1, 0}

derive indexes =4{0, 1, 2, -, -, -, 3, -} // - means value doesn’t matter
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Parallel Filter

+ Filter higher order function

" Given a sequence, returns a subsequence containing only elements that meet a certain
criteria

+» Example:

" |nput vector: REFEPEE:FEEVIE-FIE PRI Y

LIRSV eladfe]sMl auto is even = [](int n) -> bool { return n % 2 == 0; }

" Qutput vector:

« Two™ steps:
= Parallel map/transform to get [ERRTRE 51k TR & WA Wb WPUN - JORN - TR - O WP - )

" Parallel prefix sum on previous ET IS T EEERCHRE NN

. Righ-t after each thread calculates if (in_output[i] == 1)
prefix-sum, have them do --->

output[indexes[i]] = input[i]
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That’s all for now!

«» Next Week:

" |ntro to the Network & Socket programming

+ Hopefully you are doing well ©
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