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Administrivia

❖ Midterm Grading

▪ Grades posted sometime on Thursday

▪ Just waiting on a makeup exam

▪ No talking about it yet please!

❖ HW08: Posted Yesterday

▪ Have everything you need after this lecture

❖ Mid Semester Survey

▪ Due End-of-day Nov 1st (Saturday)

❖ Check-in posted tomorrow
2
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Lecture Outline

❖ Liveness & Deadlock

❖ Parallel Algorithms

3
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Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely 
manner, despite any contention on shared resources.

❖ When              is called, the calling thread blocks (stops 
executing) until  it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

4

std::mutex::lock();
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Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that 
lock

❖ See release_locks.cpp

▪ Example where locks are not released once critical section is completed.

5
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Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.cpp

❖ Note: there are many algorithms for detecting/preventing deadlocks

6

Neither thread can make progress 
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Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to 
acquire those resources

▪ Some of these resources require exclusive access

❖ A threads typically accumulate resources over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing 
anything 

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them 
can proceed

▪ Even if all unblocked threads release, deadlock will continue

7
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Circular Wait Example

❖ A cycle can exist of more than just two threads:

8

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3
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How to avoid Deadlock

❖ Acquire all locks in the same order, all at once.

▪ If you do this, then there is no way for a cycle to form

❖ std::scoped_lock can take in multiple locks and will acquire them in defined 
order to avoid deadlock. The order you pass the locks to scoped_lock doesn’t 
matter.

❖ Most of the time you know which locks you need all at once.

▪ If you don’t, then you may not be able to acquire all locks in the same order.

▪ Handling this gets complicated  CIS 5480 dedicates 1.5-2 lectures on this

▪ Put it simply: if you can’t acquire them all at once, then when you acquire locks later you
need to check to see if acquiring the lock would cause deadlock (by seeing if it would form
a cycle in a graph like on the previous slide). 9
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Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already 
acquired?

❖ See recursive_deadlock.cpp

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

10
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Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already 
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was 
acquired

❖ Has its uses, but generally discouraged.

11
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Lecture Outline

❖ Liveness & Deadlock

❖ Parallel Algorithms

12
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Parallel Algorithms 

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

13
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work 

30

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

31

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  std::jthread thd(merge_sort,arr, lo, mid); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  thd.join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 32

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  std::jthread thd(merge_sort,arr, lo, mid);

  merge_sort(arr, mid, hi);  // sort the upper half

  

  thd.join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}

Discuss
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Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and 
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

33

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further optimizations that can be done to 
reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a 
sneak peek

34

Will not test you on this
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Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t. 
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S)  // (1-S) is the sequential part

35
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Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we 
get

▪ TP = (1-S) + 
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =  

1

1−𝑆+
𝑆

𝑃

36
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Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only 
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =  

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

37
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Limitation: Hardware Threads

❖ These algorithms are limited by hardware. 

❖ Number of Hardware Threads: The number of threads can genuinely run in 
parallel on hardware 

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4) 
in parallel at a time.

❖ Can see this information in with lscpu in bash or 
std::thread::hardware_concurrency()

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads
38
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Limitations: Other Hardware

❖ This algorithm analysis assumes we are spending time purely in the CPU

❖ It doesn’t account for threads blocking on I/O or other hardware.

39
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Limitation: Threads, Locks & Synchronization Overhead

❖ It didn’t apply in this example, but creating threads, and acquiring locks 
introduces overhead

❖ Can use a threadpool to minimize thread creation overhead

❖ Locks and synchronization is generally minimized as much as possible.

❖ Goal: Give each thread an independent piece of work to do and then look at 
the results after it is done.

40
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Transform / Map

❖ Consider the map (called transform in C++) higher order function

▪ Given a sequence, returns the result of calling a function on each element in the input 
sequence.

❖ How do we parallelize this?

41

Given a function "func" and an input vector:
 {a, b, c, d, e, f, ..., z}

Then the returned value is:
 {func(a), func(b), func(c), func(d), func(e), func(f), ..., func(z)}
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Embarrassingly Parallel

❖ Problems that take little to no effort to distribute the work across threads and 
merge the results back in together.

❖ There is no dependency between threads (no communication or information 
needs to be shared), except for the final step of combining the final results 
together.

❖ Transform is embarrassingly parallel since we just split up the work across 
threads. Each thread’s work is “pure”, and doesn’t depend on the state of 
other thread’s work.

42
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Reduce

❖ Consider the reduce higher order function

▪ Given a sequence, reduce the elements into a single result.
Also given a function that takes two elements and combines them

❖ You can assume func is associative:

❖ How do we parallelize this?

▪ How can we split up the work?

43

Given a function "func" and an input vector:
 {a, b, c, z}

Then the returned value is equivalent to:
 func(func(func(a, b), c), z)

func(func(x, y), z) == func(x, func(y, z))

Example of a reduce:
given a vector<int>
find the sum of all elements.
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Reduce (Small Example)

❖ You can assume func is associative:

❖ Consider the input vector: {a, b, c, d}

❖ the result should be {func(func(func(a, b), c), d)}

❖ which is equal to {func(func(a, b), func(c, d))}

❖ We can divide up the work!

44

func(func(x, y), z) == func(x, func(y, z))

calling_thread

og_thread

y = func(c, d)

x = func(a, b)

join

result = func(x, y)
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Reduce (Extrapolating to larger examples)

❖ You can assume func is associative:

❖ Consider the input vector: {a, b, c, d, e, f, g, h}

❖ How do we split up work across more than 2 threads?

45

func(func(x, y), z) == func(x, func(y, z))

{a, b, c, d}

{e, f, g, h}

w = func(a, b)

x = func(c, d)

y = func(e, f)

z = func(g, h)

s= func(y, z)

r = func(y, z) result = func(r, s)

How many threads did this create?

If we have an input of size N, how many
threads would we benefit from using?

3

~log2(n)
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Parallel Prefix Sum

❖ Prefix sum, given an input array of integers, calculate a new vector which is the 
prefix sum. Each element at index i is the sum(input[0 ... i]) 

▪ Given: {2, 0, 8, 5, 5, 3, 2, 1}

▪ Result: {2, 2, 10, 15, 20, 23, 25, 26}

❖ How do we parallelize this? Values seem very dependent on each other…

▪ Sort of similar to merge sort, we split it up across ~n threads

▪ But we do it in two passes!

46

Credit to UW CSE 332 for teaching me this
and how to teach this
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Parallel Prefix Sum

47

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0
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Parallel Prefix Sum

48

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  0
LeftNeighborSum 0

Range  [4, 8)
Sum  0
LeftNeighborSum 0
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Parallel Prefix Sum

49

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  0
LeftNeighborSum 0

Range  [4, 8)
Sum  0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0
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Parallel Prefix Sum

50

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  0
LeftNeighborSum 0

Range  [4, 8)
Sum  0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0
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Parallel Prefix Sum

51

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  0
LeftNeighborSum 0

Range  [4, 8)
Sum  0
LeftNeighborSum 0

Range [0, 2)
Sum 0
Left 0

Range [2, 4)
Sum 0
Left 0

Range [4, 6)
Sum 0
Left 0

Range [6, 8)
Sum 0
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back up the
tree. 
combining their
sums up
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Parallel Prefix Sum

52

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  0
LeftNeighborSum 0

Range  [4, 8)
Sum  0
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back up the
tree. 
combining their
sums up
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Parallel Prefix Sum

53

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  0
LeftNeighborSum 0

Range  [0, 4)
Sum  15
LeftNeighborSum 0

Range  [4, 8)
Sum  11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back up the
tree. 
combining their
sums up
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Parallel Prefix Sum

54

Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum  26
LeftNeighborSum 0

Range  [0, 4)
Sum  15
LeftNeighborSum 0

Range  [4, 8)
Sum  11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back up the
tree. 
combining their
sums up
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Parallel Prefix Sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum  15
LeftNeighborSum 0

Range  [4, 8)
Sum  11
LeftNeighborSum 0

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum  15
LeftNeighborSum 0

Range  [4, 8)
Sum  11
LeftNeighborSum 15

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 0

Range [4, 6)
Sum 8
Left 0

Range [6, 8)
Sum 3
Left 0

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum         2 +13 = 15
LeftNeighborSum 0

Range  [4, 8)
Sum          8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum 2
Left 0

Range [2, 4)
Sum 13
Left 2

Range [4, 6)
Sum 8
Left 15

Range [6, 8)
Sum 3
Left 23

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  0

R  [2, 3)
S  8
L  0

R  [3, 4)
S  5
L  0

R  [4, 5)
S  5
L  0

R  [5, 6)
S  3
L  0

R  [6, 7)
S  2
L  0

R  [7, 8)
S  1
L  0

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum         2 +13 = 15
LeftNeighborSum 0

Range  [4, 8)
Sum          8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum   2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum  5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  2

R  [2, 3)
S  8
L  2

R  [3, 4)
S  5
L  10

R  [4, 5)
S  5
L  15

R  [5, 6)
S  3
L  20

R  [6, 7)
S  2
L  23

R  [7, 8)
S  1
L  25

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26

input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum         2 +13 = 15
LeftNeighborSum 0

Range  [4, 8)
Sum          8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum   2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum  5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  2

R  [2, 3)
S  8
L  2

R  [3, 4)
S  5
L  10

R  [4, 5)
S  5
L  15

R  [5, 6)
S  3
L  20

R  [6, 7)
S  2
L  23

R  [7, 8)
S  1
L  25

Go back down

This time tell
each thread what
their left neighbor
had as a sum
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Parallel Prefix Sum Analysis
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Credit to UW CSE 332 for teaching me this
and how to teach this

2 0 8 5 5 3 2 1

2 2 10 15 20 23 25 26

input

output

Range  [0, 8)
Sum       15+ 11 = 26
LeftNeighborSum 0

Range  [0, 4)
Sum         2 +13 = 15
LeftNeighborSum 0

Range  [4, 8)
Sum          8 + 3 = 11
LeftNeighborSum 15

Range [0, 2)
Sum   2 + 0 = 2
Left 0

Range [2, 4)
Sum 8 + 5 = 13
Left 2

Range [4, 6)
Sum  5 + 3 = 8
Left 15

Range [6, 8)
Sum 2 + 1 = 3
Left 23

R  [0, 1)
S  2
L  0

R  [1, 2)
S  0
L  2

R  [2, 3)
S  8
L  2

R  [3, 4)
S  5
L  10

R  [4, 5)
S  5
L  15

R  [6, 7)
S  2
L  23

R  [7, 8)
S  1
L  25

BigO analysis:
How much work is done?

What is the runtime?
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Parallel Prefix Sum Analysis

❖ This algorithm can be tweaked to solve other prefix problems

❖ What is the minimum/maximum of all elements to the left?

❖ What is the count of elements to the left that satisfy some property?

61
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Parallel Filter

❖ Filter higher order function

▪ Given a sequence, returns a subsequence containing only elements that meet a certain 
criteria

❖ Example:

▪ Input vector:

▪ Function:

▪ Output vector:

❖ How do we parallelize this (what about with no loops?)

▪ Hint: this is made of two parts. Finding elements that belong in output and putting them in 
the right index in the result.

▪ How do we
derive

62

{2, 0, 8, 5, 5, 3, 2, 1}

auto is_even = [](int n) -> bool { return n % 2 == 0; }

{2, 0, 8, 2}

in_output = {1, 1, 1, 0, 0, 0, 1, 0}

indexes   = {0, 1, 2, -, -, -, 3, -}  // - means value doesn’t matter
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Parallel Filter

❖ Filter higher order function

▪ Given a sequence, returns a subsequence containing only elements that meet a certain 
criteria

❖ Example:

▪ Input vector:

▪ Function:

▪ Output vector:

❖ Two* steps:

▪ Parallel map/transform to get

▪ Parallel prefix sum on previous

• Right after each thread calculates
prefix-sum, have them do --->

63

{2, 0, 8, 5, 5, 3, 2, 1}

auto is_even = [](int n) -> bool { return n % 2 == 0; }

{2, 0, 8, 2}

in_output = {1, 1, 1, 0, 0, 0, 1, 0}

indexes   = {0, 1, 2, 2, 2, 2, 3, 3}

if (in_output[i] == 1)
   output[indexes[i]] = input[i]
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That’s all for now!

❖ Next Week:

▪ Intro to the Network & Socket programming

❖ Hopefully you are doing well ☺

64
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