
CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

C++ Threads, std::atomic, Condition Variables
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Administrivia

❖ HW07: Due end of day Tuesdeay

❖ Midterm Grading

▪ Grades posted sometime on Thursday

▪ Just waiting on a makeup exam

▪ No talking about it yet please!

❖ HW08: Posted tomorrow.

▪ Can finish half of it after this lecture.
Other half will benefit from Wednesday’s Lecture (Parallel Algorithms)

❖ Mid Semester Survey

▪ Due End-of-day Nov 1st (Saturday) 2

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Lecture Outline

❖ C++ Threads

▪ std::jthread

▪ std::mutex

▪ std::scoped_lock

❖ std::atomic

❖ Condition variable

3

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Remember Threads?

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

4

thread

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

5

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Threads vs. Processes

6

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

or

std::jthread()

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Introducing C++ Threads

❖ C++ has the jthread class to
represent a thread.

❖ Constructing an instead of jthread
creates a thread

❖ No void*, just pass in the
args you want to pass in

❖ When a jthread destructs, it will join
the thread that it represents.
Remember that join() blocks until the
thread is joined in.

❖ How many possible outputs are there? (demo) 8

void thread_func1(std::string to_print) {
 std::cout << to_print;
}

void thread_func2(int x, int y) {
 std::cout << x + y << std::endl;
}

int main() {
 std::string hello("Hello!\n");
 std::jthread thd1(thread_func1, hello);

 thd1.join();

 std::jthread thd2(thread_func2, 3, 4);
}

simple_jthread.cpp

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Passing refs to std::jthread

❖ To pass a ref to a jthread, you
must wrap the argument
with a call to std::ref().

❖ Why? short version:
jthread is a template object
and std::ref helps it deduce
that the parameter is a ref and not a value.

9

void thread_func(std::string& input) {
 input += " residue";
}

int main() {
 std::string str("system");
 std::jthread thd1(thread_func, std::ref(str));

 thd1.join();

 std::cout << str << endl;
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

std::mutex

❖ Similar to mutex, from
pthread.h but cleaner to use:

❖ Has methods

▪ lock()

▪ try_lock()

▪ unlock()

❖ Rarely do we use the above functions, in C++ (and rust) we do (next slide)

10

int total = 0;
std::mutex total_mutex;

void thrd_fn() {
 total_mutex.lock();
 total += 1;
 total_mutex.unlock();
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

std::scoped_lock

❖ std::scoped_lock is an object

▪ Constuctor: acquires locks

▪ Destructor: releases locks

❖ Takes advantage of RAII
to manage “locks” as a resource
like how vector’s manage memory

❖ Forgetting to release a lock would prevent any other thread from acquiring
said lock. Could halt your program 

❖ Since it is a destructor, it will also automatically unlock if an exception is
thrown. (whereas using lock() and unlock() would not)

❖ Constructor can take multiple locks, and will acquire all of them. 11

int total = 0;
std::mutex total_mutex;

void thrd_fn() {
 // constructor: acquire the lock
 std::scoped_lock total_lock(total_mutex);

 total += 1;

 // scoped lock destructor
 // automatically releases the lock
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Ed Practice!

13

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Lecture outline

14

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Instructions Instructions

❖ How many instructions does it take to set a bool to true?

❖ Just one! (sorta, any setup is not really important)

15

bool x = false;

void thrd_fn() {
 x = true;
}

mov BYTE PTR x[rip], 1

x86

adrp x8, x
mov w9, #1
strb w9, [x8, :lo12:x]

arm

auipc a1, %pcrel_hi(x)
li a2, 1
sb a2, %pcrel_lo(.Lpcrel_hi0)(a1)

risc-v

Calculate
address

Set bool

Calculate address

Load “true” into a2

set x

Do we need a lock for this?
What if multiple threads run thrd_fn?

- Is still “undefined behaviour”
by the standard.
- Multiple actions can be re-ordered still 

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Search Engine (Pseudocode)

16

Discuss & Raise Hands

❖ Remember this?

❖ Can this code ever print
“AAAAAAA”?

❖ Assume that thd_main1
and thd_main2 are run
by two separate
threads.

❖ Assume no other
threads use x or y

int x = 0;
int y = 0;

void thd_main1() {
 x = 3;
 y = 4;
}

void thd_main2() {
 if (y == 4) {
 if (x == 3) {
 cout << "We good :)\n";
 } else {
 cout << "AAAAAAAAAAA\n";
 }
 }
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Sequential Consistency

❖ Do we know that t is set before g is set?

17

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

18

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

std::atomic

❖ Enforces memory order

❖ Guaranteed to not be a data race / undefined behavior

❖ Can be used for any “trivially copyable” type

▪ Copy constructor does nothing other than copy bytes.

❖ May not use a lock!
▪ Use function is_always_lock_free() or
is_lock_free() to determine if it uses a lock

19

std::atomic<bool> x = false;
std::atomic<int> counter = 0;

void thrd_fn() {
 x = true;
 ++counter;
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

std::atomic

❖ How does it work?

▪ Takes advantages of architecture specific instructions
that are known to be atomic when available

▪ If no such instruction is available, then a lock
is used.

20

std::atomic<bool> x = false;
std::atomic<int> counter = 0;

void thrd_fn() {
 x = true;
 ++counter;
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Lecture Outline

21

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Aside: std::unique_lock

❖ std::unique_lock

▪ Does things very similar to std::scoped_lock

▪ Has more functionality! Including ability to release lock manually

▪ Is easier to mess up in some cases

▪ Prefer std::scoped_lock when possible

❖ Why are we introducing?
Must be used with
std::condition_varaible

▪ (introduce condition variable later)

22

int total = 0;
std::mutex total_mutex;

void thrd_fn() {
 std::unique_lock total_lock(total_mutex);
 // constructor: acquire the lock

 total_lock.unlock();
 total_lock.lock();

 total += 1;

 // destructor automatically
 // releases the lock
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

23

Discuss

❖ Does this code have a data race?

▪ Assume that there is one thread running produce()
and another thread running consume()

▪ Can this program enter an “invalid” (unexpected or
error) state from having concurrent memory accesses?

▪ Assume funcs don’t fail

❖ Any issues with this code?

std::mutex m;
string data;

void produce() {
 std::ifstream infile("hello.txt");
 string line;
 getline(infile, data);

 std::scoped_lock(m);
 data = line;
}

void consume() {
 std::unique_lock(m);
 if (!data.empty()) {
 std::cout << data << std::endl;
 }
}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition

24

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each other to know when
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only consume things once the producer has produced them

❖ Need to make sure this communication has no data race or race condition

25

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will process and remove data from the shared data structure

❖ We need to make sure that the threads play nice

26

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t have to write our
own data structure.

❖ Deque is a double ended queue, you can push to the front or back and pop
from the front or back

27

// global deque of integers

// will be initialized to be empty

deque<int> dq {};

int main() {

 dq.push_back(3); // adds 3

 int val = dq.at(0); // access index 0

 dq.pop_front() // delete first element

 cout << val << endl; // should print 3

}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Producer Consumer Example

❖ Does this work?

❖ Assume that two threads are
created, one assigned to each
function

28

deque<int> dq {};

void producer_thread() {

 while (true) {

 dq.push_back(long_computation());

 }

}

void consumer_thread() {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Producer Consumer Example

❖ Std::atomic question

❖ Followed by producer consumer

29

Ed Discussion

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Producer Consumer Example

❖ How do we use mutex to fix
this? To make sure that the
threads access dq safely.

▪ You are only allowed to add calls
to the following:
mutex::lock

mutex::unlock

scoped_lock

unique_lock

unique_lock::unlock()

unique_lock::lock()

▪ Can add other mutexes if needed

❖ Similar code: no_sync.cpp
30

deque<int> dq {};

std::mutex dq_lock;

void producer_thread() {

 while (true) {

 dq.push_back(long_computation());

 }

}

void consumer_thread() {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

Ed Discussion

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Any issue?

❖ The code is correct, but do we notice anything wrong with this code?

❖ The consumer code “busy waits” when there is nothing for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks make the busy waiting of the
consumers sequential and use more CPU resources.

33

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Thread Communication: Naïve Solution

❖ Consider the example where a thread must wait to be notified before it can
print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the consumer thread can print

❖ See spinning.cpp

▪ The thread in the loop uses A LOT of cpu just checking until the value is safe

▪ Use top to see CPU util

❖ Alternative: Condition variables

34

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

35

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

std::condition_variable

❖ A type defined in <condition_variable>

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

❖ pthread_mutex_lock()

▪ Unblock one of the threads waiting on this

❖ pthread_mutex_unlock()

▪ Unblock all threads waiting on this

36

void condition_variable::wait(unique_lock& ul);

void condition_variable::notify_one();

void condition_variable::notify_all();

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

condition_variable Internal Pseudo-Code

❖ Here is some pseudo code to help understand condition variables

37

void condition_variable::wait(unique_lock& ul) {
 ul.unlock();
 sleep_on_cond(calling_thd); // sleep till woken up
 ul.lock();

}

void condition_variable::notify_one() {
 wakeup(this->asleep.front());
 this->asleep.pop_front();

}

void condition_variable::notify_all() {
 for (thd : this->asleep) {
 wakeup(thd);
 }
 this->asleep.clear();

}

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

Demo: cond.cpp

❖ See cond.cpp

▪ Changes our spinning code to use a condition variable properly

▪ No issues with cpu utilization!

38

CIS 3990, Fall 2025L15: C++ threads, atomic, condition variablesUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Deadlock && Parallel Algorithms

❖ Next Week:

▪ Intro to the Network & Socket programming

❖ Hopefully you are doing well ☺

39

	Default Section
	Slide 1: C++ Threads, std::atomic, Condition Variables Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Remember Threads?
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Introducing C++ Threads
	Slide 9: Passing refs to std::jthread
	Slide 10: std::mutex
	Slide 11: std::scoped_lock
	Slide 13: Ed Practice!
	Slide 14: Lecture outline
	Slide 15: Instructions Instructions
	Slide 16: Search Engine (Pseudocode)
	Slide 17: Sequential Consistency
	Slide 18: Instruction & Memory Ordering
	Slide 19: std::atomic
	Slide 20: std::atomic
	Slide 21: Lecture Outline
	Slide 22: Aside: std::unique_lock
	Slide 23
	Slide 24: Race Condition vs Data Race
	Slide 25: Thread Communication
	Slide 26: Producer & Consumer Problem
	Slide 27: Aside: C++ deque
	Slide 28: Producer Consumer Example
	Slide 29: Producer Consumer Example
	Slide 30: Producer Consumer Example
	Slide 33: Any issue?
	Slide 34: Thread Communication: Naïve Solution
	Slide 35: Condition Variables
	Slide 36: std::condition_variable
	Slide 37: condition_variable Internal Pseudo-Code
	Slide 38: Demo: cond.cpp
	Slide 39: That’s all for now!

