University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

C++ Threads, std::atomic, Condition Variables
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L15: C++ threads, atomic, condition variables

Administrivia
+» HWO7: Due end of day Tuesdeay

+» Midterm Grading

" Grades posted sometime on Thursday
= Just waiting on a makeup exam
" No talking about it yet please!

« HWOS8: Posted tomorrow.

= Can finish half of it after this lecture.
Other half will benefit from Wednesday’s Lecture (Parallel Algorithms)

+» Mid Semester Survey
" Due End-of-day Nov 15t (Saturday)

CIS 3990, Fall 2025

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Lecture Outline

%+ C++ Threads

= std::jthread

= std::mutex

= std::scoped_lock
+ std::atomic
+ Condition variable

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Remember Threads?

+» Separate the concept of a process from the “thread of execution”
" Threads are contained within a process
= Usually called a thread, this is a sequential execution stream within a process

thread

+ In most modern OS’s:

" Threads are the unit of scheduling.

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

University of Pennsylvania

Stack

!

parent

I

Shared Libraries

L15: C++ threads, atomic, condition variables

Threads vs. Processes

fork ()

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

\ 4

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 3990, Fall 2025

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Threads vs. Processes

pthread create()

or
std: : jthread()

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Introducing C++ Threads

/7
0’0

simple jthread.cpp

] void thread funcl(std::string to print) {
C++ has the jthread class to std::cout << to_print;

represent a thread.)

Constructing an instead of jthread |REECERGISELIRIT oGNS TNET DN}

td:: t << << std::endl;
creates a thread } Stas-cou X B Y ec stdseen

No void*, just pass in the
int main() {

args you want to pass in std::string hello("Hello!\n");
std::jthread thdl(thread funcl, hello);

When a jthread destructs, it will join EERCISSIIQF
the thread that it represents.
Remember that join() blocks until the B
thread is joined in.

std::jthread thd2(thread_func2, 3, 4);

How many possible outputs are there? (demo) 8

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Passing refs to std::jthread

%~ To pass a ref to a jthread, you

must wrap the argument void thread_func(std::string& input) {

with a callto std: :ref (). } nput += 7 residue’;

int main() {
std::string str("system");
std::jthread thdl(thread_func, std::ref(str));

thdl.join();

+» Why? short version:
jthread is a template object std::cout << str << endl;
and std: :ref helpsitdeduce

that the parameter is a ref and not a value.

University of Pennsylvania L15: C++ threads, atomic, condition variables

std::mutex

+ Similar to mutex, from ,
int total = 0;
pthread.h but cleaner to use: std: :mutex total mutex;

void thrd fn() {

total mutex.lock();
total += 1;
total mutex.unlock();

+ Has methods)
= Jock()
= try lock()
= unlock()

+ Rarely do we use the above functions, in C++ (and rust) we do (next slide)

CIS 3990, Fall 2025

10

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

std::scoped_lock int total = o;

std: :mutex total mutex;

std: :scoped lockisan object REECERLICRITORE
N // constructor: acquire the lock

" Constuctor: acquires locks std::scoped lock total lock(total mutex);

= Destructor: releases locks

total += 1;

Takes advantage of RAII // scoped lock destructor
to manage “locks” as a resource // automatically releases the lock
like how vector’s manage memory

Forgetting to release a lock would prevent any other thread from acquiring
said lock. Could halt your program ®

Since it is a destructor, it will also automatically unlock if an exception is
thrown. (whereas using lock() and unlock() would not)

Constructor can take multiple locks, and will acquire all of them. 1

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Ed Practice!

13

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Lecture outline

14

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Instructions Instructions

+ How many instructions does it take to set a bool to true?

bool x = false; Do we need a lock for this?
What if multiple threads run thrd_fn?

void thrd fn() { o _ o
X = true; - Is still “undefined behaviour

} by the standard.
- Multiple actions can be re-ordered still ®

% Just one! (sorta, any setup is not really important)

X86 arm
. Calculate | X8, X
mov BYTE PTR x[rip], 1 address w9, #1
Set bool - w9, [x8, :1l0l2:x]
Caleul " risc-v
alculate address a1, %pcrel hi(x)
Load “true” into a2 ' a2, 1

set X a2, %pcrel lo(.Lpcrel hi@)(al) s

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Discuss & Raise Hands

Remember this?

Can this code ever print thd_mainl() {

“AAAAAAA”? -3

Assume that thd _mainl thd main2() {

and thd_main2 are run if (y(== 4) § {
if (x == 3
by two separate cout << "We good :)\n";

threads. } else {
cout << "AAAAAAAAAAA\N";

Assume no other
threads use x ory

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Sequential Consistency

+~ Do we know that t is set before g is set?

(bool g = false;)
int £t =0
volid some func(int arg) {
L = &rg;
g = true;
}
_ J

17

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Instruction & Memory Ordering

+~ Do we know that t is set before g is set?

(bool g = false;)
int £t =0
volid some func(int arg) {
L = &rg;
g = true;
}
_ J

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some func returns 18

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

std::atomic

/
*

Enforces memory order
Guaranteed to not be a data race / undefined behavior

Can be used for any “trivially copyable” type std::atomic<bool> x = false;

= Copy constructor does nothing other than copy bytes. | S

void thrd fn() {

= true;
May not use a lock! ++counter;

" Usefunctionis always lock free() or]
is lock free () todetermine if it uses alock

19

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

std::atomic

+ How does it work?

= Takes advantages of architecture specific instructions
that are known to be atomic when available
std::atomic<bool> x = false;
std::atomic<int> counter =
® |f no such instruction is available, then a lock .
is used. void thrd fn() {
X = true;
++counter;

¥

20

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Lecture Outline

21

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Aside: std::unique_lock

+ std::unique_lock
® Does things very similar to std::scoped_lock
®= Has more functionality! Including ability to release lock manually

" |s easier to mess up in some cases int total = o;
. std: :mutex total mutex;
= Prefer std::scoped lock when possible

void thrd fn() {
std::unique_lock total lock(total mutex);
// constructor: acquire the lock

+» Why are we introducing?
) total lock.unlock();
std::condition_varaible

. o] total += 1;
® (introduce condition variable later)

// destructor automatically
// releases the lock

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Discuss

std: :mutex m;

string data; « Does this code have a data race?

, = Assume that there is one thread running produce()
void produce() { g h hread :

std::ifstream infile("hello.txt"); and another thread running consume()

string line; ® Can this program enter an “invalid” (unexpected or

getline(infile, data); error) state from having concurrent memory accesses?

std: :scoped_lock(m); = Assume funcs don’t fail

data = line; +» Any issues with this code?

void consume() {
std::unique_lock(m);
if (!data.empty()) {
std: :cout << data << std::endl;

¥
¥

23

L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

University of Pennsylvania

Race Condition vs Data Race

+» Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or

“unexpected” state.

+» Race-Condition: Where the program has different behaviour depending on the
ordering of concurrent threads. This can happen even if all accesses to shared

resources are “atomic” or “locked”

+» The previous example has no data-race, but it does have a race condition

24

University of Pennsylvania

L15: C++ threads, atomic, condition variables

CIS 3990, Fall 2025

Thread Communication

+» Sometimes threads may need to communicate with each other to know when
they can perform operations

+» Example: Producer and consumer threads
® One thread creates tasks/data

L)

" One thread consumes the produced tasks/data to perform some operation

" The consumer thread can only consume things once the producer has produced them

+ Need to make sure this communication has no data race or race condition

25

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Producer & Consumer Problem

+» Common design pattern in concurrent programming.
" There are at least two threads, at least one producer and at least one consumer.
" The producer threads create some data that is then added to a shared data structure
" Consumers will process and remove data from the shared data structure

+» We need to make sure that the threads play nice

26

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Aside: C++ deque

+ | am using a c++ deque for this example so that we don’t have to write our
own data structure.

+» Deque is a double ended queue, you can push to the front or back and pop
from the front or back

(// global deque of integers
// will be initialized to be empty
deque<int> dg {};

int main() {
dg.push back(3); // adds 3
int val = dg.at(0); // access index 0
dg.pop_ front () // delete first element

cout << val << endl; // should print 3

L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

University of Pennsylvania

Producer Consumer Example

(deque<int> dg {1} A

« Does this work?

vold producer thread() ({
while (true) |
«» Assume that two threads are dg.push_back (long_computation()) ;
created, one assigned to each : j
function
volid consumer thread() ({
while (true) {
while (dg.size() == 0) {

// do nothing

}
int val = dg.at(0);

dg.pop_front () ;
do something (val) ;

28

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Ed Discussion

+» Std::atomic question

+ Followed by producer consumer

29

University of Pennsylvania

«» How do we use mutex to fix
this? To make sure that the
threads access dq safely.

" You are only allowed to add calls
to the following:
mutex: :lock
mutex: :unlock
scoped lock
unique lock
unique lock::unlock ()
unique lock::lock ()

= Can add other mutexes if needed

+ Similar code: no sync.cpp

L15: C++ threads, atomic, condition variables

CIS 3990, Fall 2025

Ed Discussion

deque<int> dg {};
std::mutex dg lock;

void producer thread() ({
while (true) {
dg.push back (long computation());
}
}

vold consumer thread() ({
while (true) ({

while (dg.size() == 0) {
// do nothing

}

int val = dg.at(0);

dg.pop_front () ;

do something(val) ;

30

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Any issue?

+» The code is correct, but do we notice anything wrong with this code?

+» The consumer code “busy waits” when there is nothing for it to consume.

" |t is particularly bad if we have multiple consumers, the locks make the busy waiting of the
consumers sequential and use more CPU resources.

33

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Thread Communication: Naive Solution

+» Consider the example where a thread must wait to be notified before it can
print something out and terminate

+ Possible solution: “Spinning”

" |nfinitely loop until the producer thread notifies that the consumer thread can print

» See splnning.cpp
" The thread in the loop uses A LOT of cpu just checking until the value is safe
= Use top to see CPU util

« Alternative: Condition variables

34

University of Pennsylvania

L15: C++ threads, atomic, condition variables

Condition Variables

% Variables that allow for a thread to wait until they are notified to resume
+ Avoids waiting clock cycles “spinning”

« Done in the context of mutual exclusion

= athread must already have a lock, which it will temporarily release while waiting
" Once notified, the thread will re-acquire a lock and resume execution

CIS 3990, Fall 2025

35

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

std::condition_yariable

» Atype defined in <condition variable>

XM void condition variable::wait(unique lock& ul);

= Atomically releases the mutex and blocks on the condition variable. Once unblocked (by

one of the functions below), function will return and calling thread will have the mutex
locked

XM void condition variable::notify one();

" Unblock one of the threads waiting on this

void condition variable::notify all();

" Unblock all threads waiting on this

36

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

condition variable Internal Pseudo-Code

+» Here is some pseudo code to help understand condition variables
void condition_variable::wait(unique_lock& ul) {
ul.unlock();
sleep on cond(calling thd); // sleep till woken up
ul.lock();

¥

void condition variable::notify one() {
wakeup(this->asleep.front());
this->asleep.pop front();

}

void condition variable::notify all() {
for (thd : this->asleep) {
wakeup(thd);
}

this->asleep.clear();

}

University of Pennsylvania L15: C++ threads, atomic, condition variables CIS 3990, Fall 2025

Demo: cond. cpp

+» See cond.cpp

® Changes our spinning code to use a condition variable properly
= No issues with cpu utilization!

38

University of Pennsylvania L15: C++ threads, atomic, condition variables

That’s all for now!

+» Next time:
" Deadlock && Parallel Algorithms

«» Next Week:

" |ntro to the Network & Socket programming

+ Hopefully you are doing well ©

CIS 3990, Fall 2025

39

	Default Section
	Slide 1: C++ Threads, std::atomic, Condition Variables Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Remember Threads?
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Introducing C++ Threads
	Slide 9: Passing refs to std::jthread
	Slide 10: std::mutex
	Slide 11: std::scoped_lock
	Slide 13: Ed Practice!
	Slide 14: Lecture outline
	Slide 15: Instructions Instructions
	Slide 16: Search Engine (Pseudocode)
	Slide 17: Sequential Consistency
	Slide 18: Instruction & Memory Ordering
	Slide 19: std::atomic
	Slide 20: std::atomic
	Slide 21: Lecture Outline
	Slide 22: Aside: std::unique_lock
	Slide 23
	Slide 24: Race Condition vs Data Race
	Slide 25: Thread Communication
	Slide 26: Producer & Consumer Problem
	Slide 27: Aside: C++ deque
	Slide 28: Producer Consumer Example
	Slide 29: Producer Consumer Example
	Slide 30: Producer Consumer Example
	Slide 33: Any issue?
	Slide 34: Thread Communication: Naïve Solution
	Slide 35: Condition Variables
	Slide 36: std::condition_variable
	Slide 37: condition_variable Internal Pseudo-Code
	Slide 38: Demo: cond.cpp
	Slide 39: That’s all for now!

