University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Midterm Review
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Administrivia

«» Midterm Details Posted: In-class on Wed Oct 22nd

® You can bring a 1 sheet (double sided) 8.5 x 11 sheet of paper of notes.

You can type it or handwrite it, but it must be your own (no two students should have the
same sheet)

= Clobber Policy
= |FYOU CAN'T MAKE THE EXAM LET ME KNOW AS SOON AS YOU ARE AWARE

« HWO7: Posted!

= We don’t expect you to work on it till after midterm, but you can start whenever.
= Shouldn’t be too long (hopefully). You are doing an “Embarrassingly Parallel” problem

+» Mid-sem Survey & Check-in posted after the exam, due on Mon after exam
= (checkin will just be reopens and survey)

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Administrivia: TEST

< TEST THE UBUNTU COLOR CONTRAST

+» Do these themes work better going forward for you to read the code
projected?

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Midterm Philosophy / Advice (pt. 1)

+ | do not like midterms that ask you to memorize things
= You will still have to memorize some critical things.

= | will hint at some things, provide documentation or a summary of some things. (for
example: | will list some of the functions that may be useful and a brief summary of what
the function does)

% | am more interested in questions that ask you to:
= Apply concepts to solve new problems
" Analyze situations to see how concepts from lecture apply

« Will there be multiple choice?

= |f there is, you will still have to justify your choices

L14: Midterm Review CIS 3990, Fall 2025

University of Pennsylvania

Midterm Philosophy / Advice (pt. 1.5)

+ | do not like midterms that ask you to memorize things
= You will still have to memorize some critical things.

= | will hint at some things, provide documentation or a summary of some things. (for
example: | will list some of the functions that may be useful and a brief summary of what
the function does)

+» Example of some documentation | may provide:
pthread join

SYNOPSIS

map<K, V> / unordered map<K, V>

Quick description

Function signature

bool contains (const RE key);

Iff the map contains the specified key

V& operator[] (const R& kevy);

Returns associated value. If key not
present then default inserts it.

V& at(const K& key);

~ but throws std:-out_of range if the key
is hot present

iterator find(const ER& key);

Returns an itertor to the key-value pair of
specified key, or end() 1f not found.

iterator begin();

Tterator to the first key-value pair in the
container

iterator endl();

Tterator to the end of the container. Not
valid to be de-referenced.

size t sizel();

Number of elements in the container

int pthread join(pthread t thread, wvoid **retwval);
DESCRIPTION

The pthread join() function waits for the thread speci-
fied by thread to terminate. If that thread has already
terminated, then pthread join() returns immediately.

If retval is not NULL, then pthread join() copies the
return value of the target thread into the location pointed
to by retwval.

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Midterm Philosophy / Advice (pt. 2)

+ | am still trying to keep the exam fair to you, you must remember some things

" High level concepts or fundamentals. | do not expect you to remember every minute
detail.

- E.g. how a multi level page table works should be know, but not the exact details of what is in
each page table entry

(I know this boundary is blurry, but hopefully this statement helps)

+ |am NOT trying to “trick” you (like | sometimes do in poll everywhere
guestions)

L14: Midterm Review CIS 3990, Fall 2025

University of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

+» | am trying to make sure you have adequate time to stop and think about the

guestions.
" You should still be wary of how much time you have
= But also, remember that sometimes you can stop and take a deep breath.

» Remember that you can move on to another problem.

» Remember that you can still move on to the next part even if you haven’t
finished the current part

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Midterm Philosophy / Advice (pt. 4)

%~ On the midterm you will have to explain things
% Your explanations should be more than just stating a topic name.

» Don't just say something like (for example) "because of threads" or just state
some facts like "threads are parallel and lightweight processes".

+ State how the topic(s) relate to the exam problem and answer the question
being asked.

Disclaimer

+THIS REVIEW IS NOT
EXHAUSTIVE

»Topics not in this review are still
testable

=" We recommend going through the course material. Lecture polls,
recitation worksheets, and the previous homeworks.

L14: Midterm Review

CIS 3990, Fall 2025

University of Pennsylvania

Review Topics

% C++ Programming
+» C++ Memory

< git

+» Caches & Locality
+» Processes

% Threads

10

University of Pennsylvania L14: Midterm Review

C++ Programming (pt 1)

CIS 3990, Fall 2025

+ Implement the function filter() which takes in a vector of integers and a set of
integers. The function returns a new vector that contains all of the integers of

the input vector, except for any elements that were in the set.

+» For example, the following

code should print (

= 4
= 5

vector<int> v {3, 4, 5};

set<int> s {3, 6};

auto res = filter (v, s);

for (auto& num : res)
cout << num << endl;

}

N

{

11

University of Pennsylvania

L14: Midterm Review

C++ Programming (pt 2)

CIS 3990, Fall 2025

+ Implement the function invert() which takes in a map that maps strings to
other strings. The function returns a map of strings to vectors of strings that
represents the “reverse mapping” of the input map. In other words, the keys in
the result map should be all the values in the input map. The values in the
output map should be all keys that mapped to that value in the input map.

For example,
consider:

map<string, string> map;

map["radar"] = "tacoma";
map["rain"] = "tacoma";
map["transit"] = "philly";

map<string, vector<string>> res
// res should be:

/]|

// "tacoma" -> ["radar", "rain"],
// "philly" -> ["transit"],

//)

invert (map) ;

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

C++ Programming (pt 3)

\/
0’0

Implement the function lookup() which takes in a map that maps “words” to
another map. The inner map contains document names and how many times
the word shows up in the specified document. Your function also takes in a
vector of words called "query". Your code returns a vector of all documents
that contains every word in the query. Each document returned also has the

total count of words

map<string, map<string, int>> index;
index["bye"]["the wall.txt"] = 2; // bye shows up twice in the wall.txt
For examp|e’ index["bye"]["lyrics.txt"] = 1;
i index["hi"]["lyrics.txt"] = 3;
consider: index["hi"]J["blank.txt"] = 50;

vector<pair<string, int>> res = lookup(index, {"bye", "hi"});
// res should be:
// { ("lyrics.txt", 4) }

You can make
helper functions or structs if you want. 15

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

C++ Programming (pt 3)

vector<pair<string, int>> lookup(const map<string, map<string, int>>& index,
const vector<string>& query) {

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

struct coord {
C++ Memory Diagram & Allocati gl
int y;
}
Consider the following code

that uses std::list (linked list)

list<coord> scale(list<coord> to_norm) {
int total x = 0;

How many memory allocations int total_y = 6;
for (coord r : to_norm) {

occur in this code? total X += r.x;

total y += r.y;

What is the state of memory)

when we reach HERE?
int main() { for (coord& r : to_norm) {

list<coord> 1; r.x *= total_x;

coord rn = {1, 1}; r.y *= total y;

1.push_back(rn); }

rn = {2, 2};

1.push_back(rn); return to_norm; // result is moved
rn = {3, 3};

1.push_back(rn);

list<coord> result = std::move(scale(l));

// HERE

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

git (pt. 1)

+ What steps are needed to go from the git tree on the left to the tree
on the right? You don’t need to list the exact command, but you should be able
to explain the command “close enough”.

« Assume HEAD starts on main

main

feature

debug

21

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

git (pt. 2)

+» Describe a scenario where someone may want to rebase a branch

23

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Locality

» For each scenario choose whether reading a file using posix read or via a
std::ifstream would be faster. Briefly explain your answer.

%+ You need to read the first 32 bytes of the file which contains some metadata
about it. Once you have finished reading the metadata, you are done with the
file.

» You have a binary file containing machine code (binary encoding of assembly
instructions). You read the file 64-bytes at a time so that you can read one
instruction at a time.

25

L14: Midterm Review

CIS 3990, Fall 2025

University of Pennsylvania

Caches Q1

Let's say we are making a program that simulates various particles interacting
with each other. To do this we have the following structs to represent a color

and a point

struct color {
int red, green,

b g

blue;

\.

¥

rstruct point {

double x, vy;
struct color c;

J

If we were to store 100 point structs in an array, and iterate over all of them,
accessing them in order, roughly how many cache hits and cache misses would

we have?

" Assume:
« acache line is 64 bytes
 the cache starts empty

. (point) is 32 bytes,

(color) is 16 bytes

28

CIS 3990, Fall 2025

University of Pennsylvania L14: Midterm Review

Caches Q2

+» Consider the previous problem with point and color structs.

» In our simulator, it turns out a VERY common operation is to iterate over all
points and do calculations with their X and Y values.

» How else can we store/represent the point objects to make this operation
faster while still maintaining the same data? Roughly how many cache hits

would we get from this updated code?

30

University of Pennsylvania

L14: Midterm Review

CIS 3990, Fall 2025

Cache Q3

+ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

= 1 bit

» C++ goes against the standard implementation of a vector for the bool type,

and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

" Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

32

University of Pennsylvania L14: Midterm Review

CIS 3990, Fall 2025

Cache Q3

« |If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:
" You can assume a cache line is 64 bytes.

" |f we used a vector<bool> that allocates the bools normally (1 byte per bool)

" |f we use a vector<bool> that represents each bool with a single bit

34

L14: Midterm Review

CIS 3990, Fall 2025

University of Pennsylvania

IPC

/
0‘0

The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

Briefly describe two reasons
why this program won’t work.
You can assume it compiles.

-
string message;

void child () ;
void parent() ;

int main () {

if (pid == 0) {
child();

} else {
parent () ;

}

}
void child () {

cin >> message;

}

void parent () {
cout << message;

}

\

pid t pid = fork();

36

L14: Midterm Review

CIS 3990, Fall 2025

University of Pennsylvania

IPC

/
0‘0

Describe how we would have
to rewrite the code if we
wanted it to work. Keeping the
multiple processes and calls to
fork(). Be specific about where
you would add the new lines
of code.

-
string message;

void child () ;
void parent() ;

parent () ;

}

}
void child () {

cin >> message;
}
void parent () {
cout << message;

}

int main () {
pid t pid = fork();
if (pid == 0) f{
child () ;
} else {

38

CIS 3990, Fall 2025

University of Pennsylvania L14: Midterm Review

Process Synchronization

Which of the following outputs are possible? How?

= 1213
= 3112
= 2312
= 1123

+» If we wanted to change the code to guarantee
that 1312 is printed. How could we do that?

" There must still be 4 processes forked in a similar way
(The initial process can’t fork 3 direct children)

® Each process must print out the same number as
before.

int main() {

}

pid t pid = fork();
bool flag = false
if (pid == 0) {

flag = true;

cout << "1" << endl;

}
pid = fork();

if (pid == 0) {
if (flag) {
cout << "3" << endl;
} else {
cout << "1" << endl;
}
} else if (!flag) {
cout << "2" << endl;

}

40

University of Pennsylvania

Threads & Data Races

L14: Midterm Review

CIS 3990, Fall 2025

+» Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing the contents of a book. Assume that

there is a main() that creates one
thread running first_thread)
and one thread for
second_thread()

+» There is a data race.
How do we fix it using just a mutex?
(where do we add calls to lock
and unlock?)

[string data = ""; // global

void* first thread (void* arg)
while (!'f.eof()) {

data = data read;

}
}

void* second thread (void* arg)
while (true) {
if (data.size() != 0) {
print (data) ;
}

data = "";

}

L

{

f = open("file.txt", O RDONLY);

string data read = f.read (10 chars);

{

43

University of Pennsylvania

L14: Midterm Review

Threads & Data Races

%~ Thereis a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

rstring data = ""; // global

void* first thread (void* arg) {
f = open("file.txt", O RDONLY) ;
while (!f.eof()) {
string data read = f.read (10 chars);
data = data read;
}
}

void* second thread (void* arg)
while (true) {
if (data.size () != 0) {
print (data) ;
}

data = "";

}

U

CIS 3990, Fall 2025

44

University of Pennsylvania

L14: Midterm Review

Threads & Data Races

CIS 3990, Fall 2025

+~ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

.

r

string data = ""; // global
void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;
while (!f.eof()) {
string data read = f.read (10 chars);
data = data read;
}
}

void* second thread (void* arg) {
while (true) {
1f (data.size ()
print (data) ;
}
data = "";
}
}

= 0) {

47

University of Pennsylvania L14: Midterm Review CIS 3990, Fall 2025

Threads & Data Races

+~ There is an issue of inefficient CPU utilization going on in this code. What is it?

string data = ""; // global

void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;
while (!f.eof()) {
string data read = f.read (10 chars);
data = data read;

}

void* second thread (void* arg) {
while (true) {
1f (data.size() != 0) {
print (data) ;
}

data = "";

}

	Default Section
	Slide 1: Midterm Review Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Administrivia: TEST
	Slide 4: Midterm Philosophy / Advice (pt. 1)
	Slide 5: Midterm Philosophy / Advice (pt. 1.5)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Review Topics
	Slide 11: C++ Programming (pt 1)
	Slide 13: C++ Programming (pt 2)
	Slide 15: C++ Programming (pt 3)
	Slide 16: C++ Programming (pt 3)
	Slide 18: C++ Memory Diagram & Allocations
	Slide 21: git (pt. 1)
	Slide 23: git (pt. 2)
	Slide 25: Locality
	Slide 28: Caches Q1
	Slide 30: Caches Q2
	Slide 32: Cache Q3
	Slide 34: Cache Q3
	Slide 36: IPC
	Slide 38: IPC
	Slide 40: Process Synchronization
	Slide 43: Threads & Data Races
	Slide 44: Threads & Data Races
	Slide 47: Threads & Data Races
	Slide 49: Threads & Data Races

