University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Parallelism & Overhead Cost
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Administrivia

+» HWO6 posted before break
" Due by end of day Friday due to fall break

«» Midterm Details
® |n-class on Wed Oct 22nd
= Posted

= Review in lecture on Monday and recitation tomorrow

+ HWO7:
= posted by end of week.

= We don’t expect you to work on it till after midterm, but you can start whenever.
Shouldn’t be too long (hopefully). if you want to get started, you can.

University of Pennsylvania

L13: Parallelism & Overhead

Lecture Outline

<~ Ahmdal’s Law

+» Parallelism vs Concurrency
+» Sequential Consistency

% Overhead Cost

CIS 3990, Fall 2025

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Amdahl's Law

» For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns

= (even ignoring the overhead costs of creating & scheduling threads)

+» Consider we have some parallel algorithm T, =1
" The 1 subscript indicates this is run on 1 thread
= we define the work for the entire algorithm as 1

« We define S as being the part that can be parallelized
" T,=S+(1-5S) //(1-S) is the sequential part

L13: Parallelism & Overhead CIS 3990, Fall 2025

University of Pennsylvania

Amdahl's Law

% For running on one thread:
" T,=(1-S)+S

+ If we have P threads and perfect linear speedup on the parallelizable part, we
get

" Tp=(15)+

+ Speed up multiplier for P threads from sequential is:

T, 1

- - S
Tp 1—S+E

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Amdahl's Law

» Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

T 1 : :
= == szeee = 2.9999 times faster than sequential
Ty 1-0.6666+--——

+« What if it is 90% parallel? (S = 0.9):

T 1 . .
= == oo— = 9.99 times faster than sequential

T _
p 1=0.9+735000

+» What if it is 99% parallel? (S = 0.99):

T 1 . :
= == 55— = 99.99 times faster than sequential
Tp 1-0.99+ 5555

L13: Parallelism & Overhead CIS 3990, Fall 2025

University of Pennsylvania

Parallelism

% You can gain performance by running things in parallel

® Each thread can use another core
" This makes it so that we can execute multiple threads at the same instant in time

% | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Parallelism

%+ | have a 3800 x 3800 integer matrix, and | want to count the number of odd
integers in the matrix

+ | can speed this up by giving each thread a part of the matrix to check!
= Works with threads since they share memory, harder to do with processes

matrix thread shared —DWNWSVN‘/I@ Y’@"'(AY‘V]S
§ rooe After 4 threads, vo
5 S Qain in speed
S A why? Machive ruv on

MNumber of threads

only has 4 cores

w riatrix thread shared

University of Pennsylvania L13: Parallelism & Overhead

CIS 3990, Fall 2025

Limitation: Hardware Threads

+» These algorithms are limited by hardware.

%+ Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

+ We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

+» Can see this information in with 1scpu in bash

= A computer can have some number of CPU sockets
® Each CPU can have one or more cores
= Each Core can run 1 or more threads

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Limitations: Other Hardware

% This algorithm analysis assumes we are spending time purely in the CPU
+» |t doesn’t account for threads blocking on 1/0 or other hardware.

«+ More on this in a second

10

University of Pennsylvania

L13: Parallelism & Overhead

Lecture Outline

<+ Ahmdal’s Law

+» Parallelism vs Concurrency
+» Sequential Consistency

% Overhead Cost

CIS 3990, Fall 2025

11

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Parallelism vs Concurrency

+» Two commonly used terms (often mistakenly used interchangeably).

» Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).
" That these tasks are both running within the same period.

» Parallelism: when one or more “tasks” run at the same instant in time.

thread
A | —— —_—
» Consider the lifetime of these L
threads. Which are concurrent with A? ’ T
Which are parallel with A? X .

time 12

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Building a Web Search Engine

+» We have:
= A web index

« A map from <word> to <list of documents containing the word>
« This is probably sharded over multiple files

" A query processor
« Accepts a query composed of multiple words
« Looks up each word in the index
- Merges the result from each word into an overall result set

13

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Search Engine Architecture

index

file

index .

o —
file

index

file

14

University of Pennsylvania

X/
0‘0

This is pseudo code for
what our multi threaded
server does.

When do you think our
code reads from the
network?

When does it read from
a file?

Query size =2

each query “hits” once

L13: Parallelism & Overhead

CIS 3990, Fall 2025

Discuss & Raise Hands

doclist Lookup (string word) {
bucket = hash (word);
hitlist = file.read (bucket);
foreach hit in hitlist {
doclist.append(file.read (hit));
}
return doclist;

}

main () {

SetupServerToReceiveConnections () ;

while (1) {
string query words[] = GetNextRequest();
results = Lookup (query words[0]);
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}

send results(results);

15

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Discuss & Raise Hands

doclist Lookup (string word) {

% This is pseudo code for bucket = hash (word) :
What our mUItI threaded hitlist = file.read (bucket); «——Disk I/O
foreach hit in hitlist { o
server does. doclist.append (file.read (hit));

}

return doclist;

)
<+ When do you think our

main () {

code reads from the SetupServerToReceiveConnections () ;
p) while (1) {
nEtWOrk. string query words[] = GetNextRequest () ; —Network
results = Lookup (query words[0]); T/0
foreach word in query[l..n] {
* When dOeS It read from results = results.intersect (Lookup (word)) ;
’)
ad f||e? send results (results); —Network
- /0

16

CIS 3990, Fall 2025

L13: Parallelism & Overhead

(v}
o
[
o]
>
ﬂ.
>
w0
[=)
=
Q
Ay
S
>
+~
o=
w0
~
[¢D]
>
o=
[=
=
.
g

: @ Multi-Word Query

Execution Timeline

Avmumsmwmepmw

O/I Iomjsu

() Aetdsta

() 30®sa=L3uUuT - S]1TNsSaI

O/I STP

() dnyoor

() 30®sa=L3uUuT S]1TNsSaI

O/I STP

() dnyoor

O/I ¥STP

() dnyoor

O/I Iomisu

() Lxend3ixsN3I®o
() uteu

query

17

University of Pennsylvania L13: Parallelism & Overhead

What About I/O-caused Latency?

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

L1 cache reference (L s
Branch mispredict SHlinis
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory SN0
Round trip within same datacenter 5100 H0TON O ol
Disk seek 1L0) 5 (00O - OO0 @S
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 1LS)(0) 4 (000~ I0) | S +
Google -

CIS 3990, Fall 2025

18

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

-»>

Execution Timeline: To Scale
Model isw't perfect:
Techmically also some cpu usane to setup I/O.

Network output also (probably) won't block program ...

@) @)
>~ ~
@) O @)
= < NG NG i
v H H H v
g IV IV IV 8 °oo
2 0 0 0 2
5 — - — 5
0 i T S 0
— - <
o
o
(v}
&
______________________________ >
time

19

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Uh-Oh: Handling Multiple Clients

client

index

file

client
index . query
file processor

index ,///////’

file

client

client

20

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Uh-Oh: Handling Multiple Clients

Only one I/0O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

query 1

21

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Sequential Can Be Inefficient

+~ Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

+ Even while processing one query, the CPU is idle the vast majority of the time

" |t is blocked waiting for I/O to complete
- Disk I/O can be very, very slow (10 million times slower ...)

<+ At most one I/O operation is in flight at a time

= Missed opportunities to speed I/O up
- Separate devices in parallel, better scheduling of a single device, etc.

22

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Concurrency Still Has Benefits

+» Even if not running in parallel, there are still benefits to running code
concurrently

+ We focus on the CPU when we talk about programming, but there is a lot more
to our machine than the CPU. But there are many time our CPU is waiting for
something else
= Waiting on results of 1/0

- Files
« Pipes
- Network, etc

" Waiting on data to be loaded from memory
« L2 cache, L3 cache, main memory, etc.

23

University of Pennsylvania L13: Parallelism & Overhead

CIS 3990, Fall 2025

A Concurrent Implementation

% Use multiple threads

= As a query arrives, create a new threads to handle it

- The thread reads the query from the network, issues read requests against files, assembles
results and writes to the network

- The thread uses blocking 1/O; the thread alternates between consuming CPU cycles and blocking
onl/O

® The OS context switches between threads
« While one is blocked on 1/0O, another can use the CPU
- Multiple threads I/O requests can be issued at once

24

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server

server

25

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server

1 pthread create ()
7’

m % ~xf)thread_detach ()

server

26

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server

server

27

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server

N
/\ pthread create ()

server

28

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server

shared

data
structures

server

29

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multi-threaded Search Engine (Execution)
The CPU is the Central Processing Unit "Runing with 1 CPU

Other pieces of hardware have their
own small processors to do specialized
work.

query 3

query 2

The OS schedules all of
this for us ©

query 1 Note how ouly one thread
uses any specific resource

at a time

30

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code
" Threads can run in parallel on CPU if you have multiple CPUs/cores
" Threads can run in “parallel” on different pieces of hardware

+» Disadvantages:

@ If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
® Threads can introduce overhead

« Thread Creation / Destruction, Lock contention, context switch overhead, and other issues

" Need programming language support for threads
« As long as you have a shell, you can fork a process

31

University of Pennsylvania

L13: Parallelism & Overhead

Lecture Outline

<+ Ahmdal’s Law

+» Parallelism vs Concurrency
+» Sequential Consistency

% Overhead Cost

CIS 3990, Fall 2025

32

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Discuss & Raise Hands

% Can this code ever print
“AAAAAAA”?

% Assume that thd_mainl

and thd_main2 are run

by two separate
void* thd _main2(void* arg) {

if (y ==4) {

if (x == 3) {
cout << "We good :)\n";

« Assume no other } else {

threads use x ory cout << "AAAAAAAAAAA\N";

threads.

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Sequential Consistency

+~ Do we know that t is set before g is set?

(bool g = false;)
int £t =0
volid some func(int arg) {
L = &rg;
g = true;
}
_ J

34

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Instruction & Memory Ordering

+~ Do we know that t is set before g is set?

(bool g = false;)
int £t =0
volid some func(int arg) {
L = &rg;
g = true;
}
_ J

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some func returns 35

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Aside: Instruction & Memory Ordering

%+ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

" Since|g = ; is not affectedby | T = arg;
then either one could execute first.

+ The Processor may also execute these in a different order than what the
compiler says

« Why? Optimizations on program performance

" |f you want to know more, look into “Out-of-Order Execution” and “Memory Order”

36

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Aside: Memory Barriers

«» How do we fix this?

+» We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

= “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

= A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

" This is done for us when we use a lock or use other methods of synchronizing threads.

37

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Revisitng Sequential Consistency

+» Here is the real definition of sequential consistency (from Wikipedia)
" |tis the property that:

“... the result of any execution is the same dS If the operations of all the processors were

executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.”

« The processor and compiler are allowed to “lie” to you.
This is true for compiler optimizations outside of threads as well, but this is the
place where they are most easily noticed.

38

University of Pennsylvania

L13: Parallelism & Overhead

Lecture Outline

<+ Ahmdal’s Law

+» Parallelism vs Concurrency
+» Sequential Consistency

+» Overhead Cost

CIS 3990, Fall 2025

39

University of Pennsylvania L13: Parallelism & Overhead

Process Isolation

% Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.
" Processes have separate address spaces
" Processes have privilege levels to restrict access to resources
" |f one process crashes, others will keep running

+ Inter-Process Communication (IPC) is limited, but possible
" Pipes via pipe()
= Sockets via socketpair()
= Shared Memory via shm_open()

CIS 3990, Fall 2025

40

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Processes vs Threads

+ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

+» Advantages:
" No shared memory between processes
" Processes are isolated. If one crashes, other processes keep going
= Exec works without consuming other processes

+ Disadvantages:

" More overhead than threads during creation and context switching
« Creation: creating new address space

- Context switching: loading/unloading a new address space

= Cannot easily share memory between processes — typically communicate through the file
system

41

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

How fast is fork()?

% ~ 0.5 milliseconds per fork*

%+ ~0.05 milliseconds per thread creation*
= ~10x faster than fork()

+» Processes have more overhead since you must create a new™** address space
for the new process.

*Past measurements are not indicative of future performance — depends on hardware, OS, software versions, ...

® Processes are known to be even slower on Windows

**There are optimizations to minimize amount of copies made

42

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Thread Overhead

+» Threads are sometimes called “Lightweight Processes”.

" Processes came first, threads later. Threads were a lot cheaper to use than processes!

+ Quicker to create and quicker to context switch between

+» Communication can also be quicker. We don’t have to go through the file
system, instead we can share memory!*

43

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Lock Overhead

+ Acquiring a lock is much slower 2012 numbers

g Y Nun (N0
2020 numbers Bl e

L1l cache reference 0.5 ns

n ins Branch mispredict 5 ns
12 cache reference 7 ns

] L1 cache reference: ins Mutex lock/unlock 100 ns
Main memory reference 100 ns

mmmi Branch mispredict: 3ns Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns

— L2 cache reference: 4ns Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns

CTTTTTT I .

Mutex | lock: 17

WENRm utex lock/unloc ns Read 1 MB sequentially from network 10,000,000 ns

Read 1 MB sequentially from disk 30,000,000 ns
100ns = ™ Send packet CA->Netherlands->CA 150,000,000 ns
+
Google -
ENEEEEEEEE
EEEEEEEEEE

% *exact numbers here will vary, approximate ratio/order of magnitude is more
useful. .

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

What is the Critical Section?

+» Generally, want to lock as little as possible

= |f we have a lock, other threads cannot for (int 1 = @; i < LOOP_NUM; ++i) {

hold it, so that makes parallelization worse! [EEGUNLEEIEEC SR CESCEEEIF
sum_total += 1;

" Must be careful to lock all steps that pthread mutex_unlock(&lock);
must run uninterrupted (i.e. must run }
as an atomic unit), otherwise we get
the wrong behaviour

+ Also need to balance this with pthread_mutex_lock(&lock); .
for (int i = @; 1 < LOOP_NUM; ++i) {

not acquiring and releasing the lock to0 |EESNEESES NI

often to avoid lock overhead ® }
pthread mutex unlock(&lock);

+» Complex problem to balance!

45

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Limiting Overhead w/ Thread Pools

% Creation and destruction of threads can be expensive.
+» What if we maintained a collection (a “pool”) of threads we could then reuse?

= Often called a “worker-crew” model or “replicated workers” model

«» Threads would wait for some task to be PRODUCED and then a thread would
then go perform that task.

+ You will have to implement one of these for the final project

= More details next week on this

46

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

47

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

% accept () P

-
-

shared
data
structures

server

48

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

49

Multithreaded Server: Thread Pool

shared
data
structures

server

50

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Multithreaded Server: Thread Pool

shared
data
structures

server

51

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Ed Discussion

pthread _mutex_t g_lock, k_lock;
intg=0,k=0;

« There are at least 4 bad |
void funl() {

practices/mistakes done with pthread_mutex_lock(&g_lock);
. . g+=3;
IOCkS 18] the fO”OW|ng COde. pthread_mutex_unlock(&g_lock);
: k++;
Find them. |
" Assumeg lockandk lock void fun2(int a, int b) {
have been initialized and will be Pt:‘fead—m”te"—'“"(&g—'“k)i
g+=2a;
cleaned up. pthread_mutex_unlock(&g_lock);
. . pthread_mutex_lock(&k_lock);
= Assume that these functions will 2t oy
be called by multi-threaded pthread_mutex_unlock(&k_lock);
}
code.
void fun3() {
int c;

pthread_mutex_lock(&g lock);

cin >>c; // have the user enter an int
k+=c;
pthread_mutex_unlock(&g_lock);

52

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

Concurrency

(pthread_mutex_t g lock, k_lock; A
intg=0,k=0;
+ k++ could have a data race on

] void funl() {

It pthread_mutex_lock(&g_lock);
g+=3;
pthread_mutex_unlock(&g lock);

s k++;
+ k_lock is uncessarily used }
— void fun2(int a, int b) {

around a+ b pthread_mutex_lock(&g lock);
g+=3;
pthread_mutex_unlock(&g lock);

. pthread_mutex_lock(&k_lock);
+» g lock is used when k_lock 2 += b;
pthread_mutex_unlock(&k_lock);
should be used }
void fun3() {
] int c;
s Ccin >> cdoes not need to be pthread_mutex_lock(&g_lock);
. . cin >>c; // have the user enter an int
locked, could cause S|gn|f|cany k4=
pthread_mutex_unlock(&g lock);
delays. €)

53

University of Pennsylvania L13: Parallelism & Overhead CIS 3990, Fall 2025

That’s all for now!

+ Next time:

® Exam Review

s After midterm
® C++ threads, condition variables, atomics
= Parallel Algorithms

+ Hopefully you are doing well ©

54

	Default Section
	Slide 1: Parallelism & Overhead Cost Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Amdahl's Law
	Slide 5: Amdahl's Law
	Slide 6: Amdahl's Law
	Slide 7: Parallelism
	Slide 8: Parallelism
	Slide 9: Limitation: Hardware Threads
	Slide 10: Limitations: Other Hardware
	Slide 11: Lecture Outline
	Slide 12: Parallelism vs Concurrency
	Slide 13: Building a Web Search Engine
	Slide 14: Search Engine Architecture
	Slide 15: Search Engine (Pseudocode)
	Slide 16: Search Engine (Pseudocode)
	Slide 17: Execution Timeline: a Multi-Word Query
	Slide 18: What About I/O-caused Latency?
	Slide 19: Execution Timeline: To Scale
	Slide 20: Uh-Oh: Handling Multiple Clients
	Slide 21: Uh-Oh: Handling Multiple Clients
	Slide 22: Sequential Can Be Inefficient
	Slide 23: Concurrency Still Has Benefits
	Slide 24: A Concurrent Implementation
	Slide 25: Multithreaded Server
	Slide 26: Multithreaded Server
	Slide 27: Multithreaded Server
	Slide 28: Multithreaded Server
	Slide 29: Multithreaded Server
	Slide 30: Multi-threaded Search Engine (Execution)
	Slide 31: Why Threads?
	Slide 32: Lecture Outline
	Slide 33: Search Engine (Pseudocode)
	Slide 34: Sequential Consistency
	Slide 35: Instruction & Memory Ordering
	Slide 36: Aside: Instruction & Memory Ordering
	Slide 37: Aside: Memory Barriers
	Slide 38: Revisitng Sequential Consistency
	Slide 39: Lecture Outline
	Slide 40: Process Isolation
	Slide 41: Processes vs Threads
	Slide 42: How fast is fork()?
	Slide 43: Thread Overhead
	Slide 44: Lock Overhead
	Slide 45: What is the Critical Section?
	Slide 46: Limiting Overhead w/ Thread Pools
	Slide 47: Multithreaded Server: Thread Pool
	Slide 48: Multithreaded Server: Thread Pool
	Slide 49: Multithreaded Server: Thread Pool
	Slide 50: Multithreaded Server: Thread Pool
	Slide 51: Multithreaded Server: Thread Pool
	Slide 52: Concurrency
	Slide 53: Concurrency
	Slide 54: That’s all for now!

