
CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Parallelism & Overhead Cost
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Administrivia

❖ HW06 posted before break

▪ Due by end of day Friday due to fall break

❖ Midterm Details

▪ In-class on Wed Oct 22nd

▪ Posted

▪ Review in lecture on Monday and recitation tomorrow

❖ HW07:

▪ posted by end of week.

▪ We don’t expect you to work on it till after midterm, but you can start whenever.
Shouldn’t be too long (hopefully). if you want to get started, you can.

2

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Lecture Outline

❖ Ahmdal’s Law

❖ Parallelism vs Concurrency

❖ Sequential Consistency

❖ Overhead Cost

3

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S) // (1-S) is the sequential part

4

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we
get

▪ TP = (1-S) +
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =

1

1−𝑆+
𝑆

𝑃

5

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

6

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

▪ This makes it so that we can execute multiple threads at the same instant in time

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

7

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

❖ I can speed this up by giving each thread a part of the matrix to check!

▪ Works with threads since they share memory, harder to do with processes

8

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware.

❖ Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

9

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Limitations: Other Hardware

❖ This algorithm analysis assumes we are spending time purely in the CPU

❖ It doesn’t account for threads blocking on I/O or other hardware.

❖ More on this in a second

10

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Lecture Outline

❖ Ahmdal’s Law

❖ Parallelism vs Concurrency

❖ Sequential Consistency

❖ Overhead Cost

11

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Parallelism vs Concurrency

❖ Two commonly used terms (often mistakenly used interchangeably).

❖ Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).

▪ That these tasks are both running within the same period.

❖ Parallelism: when one or more “tasks” run at the same instant in time.

❖ Consider the lifetime of these
threads. Which are concurrent with A?
Which are parallel with A?

12

A

B

C

D

thread

time

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

13

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Search Engine Architecture

14

query
processor

client
index

file

index
file

index
file

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Search Engine (Pseudocode)

15

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextRequest();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 send_results(results);

 }

}

Discuss & Raise Hands

❖ This is pseudo code for
what our multi threaded
server does.

❖ When do you think our
code reads from the
network?

❖ When does it read from
a file?

❖ Query size = 2
each query “hits” once

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Search Engine (Pseudocode)

16

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextRequest();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 send_results(results);

 }

}

Disk I/O

Network

I/O

Network

I/O

❖ This is pseudo code for
what our multi threaded
server does.

❖ When do you think our
code reads from the
network?

❖ When does it read from
a file?

Discuss & Raise Hands

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Execution Timeline: a Multi-Word Query

17

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query
C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

18

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Execution Timeline: To Scale

19

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Uh-Oh: Handling Multiple Clients

20

query
processor

client

client

client

client

client

index
file

index
file

index
file

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Uh-Oh: Handling Multiple Clients

21

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

22

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Concurrency Still Has Benefits

❖ Even if not running in parallel, there are still benefits to running code
concurrently

❖ We focus on the CPU when we talk about programming, but there is a lot more
to our machine than the CPU. But there are many time our CPU is waiting for
something else

▪ Waiting on results of I/O

• Files

• Pipes

• Network, etc

▪ Waiting on data to be loaded from memory

• L2 cache, L3 cache, main memory, etc.

23

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

A Concurrent Implementation

❖ Use multiple threads

▪ As a query arrives, create a new threads to handle it

• The thread reads the query from the network, issues read requests against files, assembles
results and writes to the network

• The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking
on I/O

▪ The OS context switches between threads

• While one is blocked on I/O, another can use the CPU

• Multiple threads I/O requests can be issued at once

24

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server

25

client

server

accept()

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server

26

client

server

pthread_create()

pthread_detach()

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server

27

client

server

accept()

client

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server

28

client

client

server

pthread_create()

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server

29

client

client

client

client

client

client
server

shared
data

structures

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

30

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

The CPU is the Central Processing Unit

Other pieces of hardware have their

own small processors to do specialized

work.

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel on CPU if you have multiple CPUs/cores

▪ Threads can run in “parallel” on different pieces of hardware

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Thread Creation / Destruction, Lock contention, context switch overhead, and other issues

▪ Need programming language support for threads

• As long as you have a shell, you can fork a process

31

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Lecture Outline

❖ Ahmdal’s Law

❖ Parallelism vs Concurrency

❖ Sequential Consistency

❖ Overhead Cost

32

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Search Engine (Pseudocode)

33

Discuss & Raise Hands

❖ Can this code ever print
“AAAAAAA”?

❖ Assume that thd_main1
and thd_main2 are run
by two separate
threads.

❖ Assume no other
threads use x or y

int x = 0;
int y = 0;

void* thd_main1(void* arg) {
 x = 3;
 y = 4;
}

void* thd_main2(void* arg) {
 if (y == 4) {
 if (x == 3) {
 cout << "We good :)\n";
 } else {
 cout << "AAAAAAAAAAA\n";
 }
 }
}

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Sequential Consistency

❖ Do we know that t is set before g is set?

34

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

35

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

36

g = true; t = arg;

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

▪ This is done for us when we use a lock or use other methods of synchronizing threads.

37

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Revisitng Sequential Consistency

❖ Here is the real definition of sequential consistency (from Wikipedia)

▪ It is the property that:

“… the result of any execution is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.”

❖ The processor and compiler are allowed to “lie” to you.
This is true for compiler optimizations outside of threads as well, but this is the
place where they are most easily noticed.

38

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Lecture Outline

❖ Ahmdal’s Law

❖ Parallelism vs Concurrency

❖ Sequential Consistency

❖ Overhead Cost

39

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

40

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Processes vs Threads

❖ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

▪ Exec works without consuming other processes

❖ Disadvantages:

▪ More overhead than threads during creation and context switching

• Creation: creating new address space

• Context switching: loading/unloading a new address space

▪ Cannot easily share memory between processes – typically communicate through the file
system

41

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ ~10x faster than fork()

❖ Processes have more overhead since you must create a new** address space
for the new process.

❖ *Past measurements are not indicative of future performance – depends on hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

❖ **There are optimizations to minimize amount of copies made

42

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Thread Overhead

❖ Threads are sometimes called “Lightweight Processes”.

▪ Processes came first, threads later. Threads were a lot cheaper to use than processes!

❖ Quicker to create and quicker to context switch between

❖ Communication can also be quicker. We don’t have to go through the file
system, instead we can share memory!*

43

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Lock Overhead

❖ Acquiring a lock is much slower
than accessing memory

❖ *exact numbers here will vary, approximate ratio/order of magnitude is more
useful. 44

2012 numbers

2020 numbers

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

What is the Critical Section?

❖ Generally, want to lock as little as possible

▪ If we have a lock, other threads cannot
hold it, so that makes parallelization worse!

▪ Must be careful to lock all steps that
must run uninterrupted (i.e. must run
as an atomic unit), otherwise we get
the wrong behaviour

❖ Also need to balance this with
not acquiring and releasing the lock too
often to avoid lock overhead 

❖ Complex problem to balance!
45

pthread_mutex_lock(&lock);
for (int i = 0; i < LOOP_NUM; ++i) {
 sum_total += 1;
}
pthread_mutex_unlock(&lock);

for (int i = 0; i < LOOP_NUM; ++i) {
 pthread_mutex_lock(&lock);
 sum_total += 1;
 pthread_mutex_unlock(&lock);
}

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Limiting Overhead w/ Thread Pools

❖ Creation and destruction of threads can be expensive.

❖ What if we maintained a collection (a “pool”) of threads we could then reuse?

▪ Often called a “worker-crew” model or “replicated workers” model

❖ Threads would wait for some task to be PRODUCED and then a thread would
then go perform that task.

❖ You will have to implement one of these for the final project

▪ More details next week on this

46

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server: Thread Pool

47

client

server

accept()

shared
data

structures

pool

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server: Thread Pool

48

server

accept()

shared
data

structures

pool

enqueue_job()client

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server: Thread Pool

49

server

shared
data

structures

pool

client

do_job()

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server: Thread Pool

50

server

shared
data

structures

pool

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Multithreaded Server: Thread Pool

51

server

shared
data

structures

pool

client

client

client

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Concurrency

❖ There are at least 4 bad
practices/mistakes done with
locks in the following code.
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be
cleaned up.

▪ Assume that these functions will
be called by multi-threaded
code.

52

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

Ed Discussion

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

Concurrency

❖ k++ could have a data race on
it

❖ k_lock is uncessarily used
around a+=b

❖ g_lock is used when k_lock
should be used

❖ cin >> c does not need to be
locked, could cause significant
delays.

53

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIS 3990, Fall 2025L13: Parallelism & OverheadUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Exam Review

❖ After midterm

▪ C++ threads, condition variables, atomics

▪ Parallel Algorithms

❖ Hopefully you are doing well ☺

54

	Default Section
	Slide 1: Parallelism & Overhead Cost Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Amdahl's Law
	Slide 5: Amdahl's Law
	Slide 6: Amdahl's Law
	Slide 7: Parallelism
	Slide 8: Parallelism
	Slide 9: Limitation: Hardware Threads
	Slide 10: Limitations: Other Hardware
	Slide 11: Lecture Outline
	Slide 12: Parallelism vs Concurrency
	Slide 13: Building a Web Search Engine
	Slide 14: Search Engine Architecture
	Slide 15: Search Engine (Pseudocode)
	Slide 16: Search Engine (Pseudocode)
	Slide 17: Execution Timeline: a Multi-Word Query
	Slide 18: What About I/O-caused Latency?
	Slide 19: Execution Timeline: To Scale
	Slide 20: Uh-Oh: Handling Multiple Clients
	Slide 21: Uh-Oh: Handling Multiple Clients
	Slide 22: Sequential Can Be Inefficient
	Slide 23: Concurrency Still Has Benefits
	Slide 24: A Concurrent Implementation
	Slide 25: Multithreaded Server
	Slide 26: Multithreaded Server
	Slide 27: Multithreaded Server
	Slide 28: Multithreaded Server
	Slide 29: Multithreaded Server
	Slide 30: Multi-threaded Search Engine (Execution)
	Slide 31: Why Threads?
	Slide 32: Lecture Outline
	Slide 33: Search Engine (Pseudocode)
	Slide 34: Sequential Consistency
	Slide 35: Instruction & Memory Ordering
	Slide 36: Aside: Instruction & Memory Ordering
	Slide 37: Aside: Memory Barriers
	Slide 38: Revisitng Sequential Consistency
	Slide 39: Lecture Outline
	Slide 40: Process Isolation
	Slide 41: Processes vs Threads
	Slide 42: How fast is fork()?
	Slide 43: Thread Overhead
	Slide 44: Lock Overhead
	Slide 45: What is the Critical Section?
	Slide 46: Limiting Overhead w/ Thread Pools
	Slide 47: Multithreaded Server: Thread Pool
	Slide 48: Multithreaded Server: Thread Pool
	Slide 49: Multithreaded Server: Thread Pool
	Slide 50: Multithreaded Server: Thread Pool
	Slide 51: Multithreaded Server: Thread Pool
	Slide 52: Concurrency
	Slide 53: Concurrency
	Slide 54: That’s all for now!

