University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

IPC & Threads (Intro)

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?



CIS 3990, Fall 2025

University of Pennsylvania L12: IPC & Threads (intro)

Administrivia

+» HWO6 posted before break
" Due by end of day Friday due to fall break

+ Check-in 06 posted after class
" Due bye end of day today instead of before lecture (Due to fall break)

= |f you forgot it, do it now!

. Midterm Details
" |n-class on Wed Oct 22nd
= Posted soon

» HWO7: posted by end of week. We don’t expect you to work on it till after
midterm, but vou can start whenever. Shouldn’t be too long (hopefullv).



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Lecture Outline

« Threads
<« Data Races



University of Pennsylvania L12: IPC & Threads (intro)

IPC

+ Inter Process Communication

= Sharing data between processes on a computer

+ Communication is important to coordinate processes for some overall goal

+» Processes have independent memory, so how do they share data?
= Answer: need to do something outside of memory
= Files, pipes, network connection, and other things.

CIS 3990, Fall 2025



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Pipes

int pipe(int pipefd[2]):

«» Creates a unidirectional data channel for IPC
+» Communication through file descriptors! // POSIX ©

+ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

+» pipefd[0] isthereading end of the pipe
» pipefd[1] isthe writing end of the pipe

+ In addition to copying memory, fork copies the file
descriptor table of parent

+ Exec does NOT reset file descriptor table



University of Pennsylvania L12: IPC & Threads (intro)

CIS 3990, Fall 2025

Pipe Visualization

+~ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained

by the OS.
= Data written to the pipe is stored in a Terminal input
buffer until it is read from the pipe S
—
P—

— Terminal output

— | — .
ti-

Kernel
Pipe Buffer




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Pipe Visualization

« After fork:

Terminal input Child File Descriptor Table
Parent File Descriptor Table S
4// -
— Terminal output _

— | — . /
——_ ,

Kernel
Pipe Buffer

1 T — 8




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Pipes & EOF

» Many programs will read from a file until they hit EOF and will not terminate
until then

» Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

® EQF is not read in this case

» EOF is only read from a pipe when:
" There is nothing in the pipe
= All write ends of the pipe are closed

+~ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Pipe Visualization

+ |f the parent wanted to read the child’s stdout from a pipe, what are the
proper steps to set that up? (before child calls exec and parent calls wait)

Terminal input Child File Descriptor Table
Parent File Descriptor Table S
4// -
— Terminal output _

—_— 0
\
\ \
~
Kernel
Pipe Buffer

/ _ // 10




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025
Ed Discussion

+ What is the bug in this code (see ed to read it better)

int main(int argc, char* argv[]) {
array<int,2> pipe fds{};
pipe(pipe_fds.data());

pid t child = fork();

if (child == @) {
// child
dup2(pipe_fds.at(1l), STDOUT FILENO);
close(pipe fds.at(9));

// should print "hello" to the pipe
array<const char*, 3> args {"echo", "hello", nullptr};
execvp(args.at(@®), const cast<char**>(args.data()));

}

auto opt = wrapped read(pipe_fds.at(9));

if (opt) {
cout << opt.value() << endl;

}

int wstatus;
waitpid(child, &wstatus, 0);
return EXIT_SUCCESS;




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Pipes & EOF

» Many programs will read from a file until they hit EOF and will not terminate
until then

» Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.
" EQOF is not read in this case

» EOF is only read from a pipe when:
" There is nothing in the pipe
= All write ends of the pipe are closed

« This is true for other streams like network communication
« Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

12



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Lecture Outline

e |PC
+ Threads
+ Data Races

13



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Introducing Threads

+» Separate the concept of a process from the “thread of execution”
" Threads are contained within a process
= Usually called a thread, this is a sequential execution stream within a process

thread

+ In most modern OS’s:

" Threads are the unit of scheduling.

14



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

15



University of Pennsylvania

Stack

!

parent

I

Shared Libraries

Threads vs. Processes

fork ()

L12: IPC & Threads (intro)

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 3990, Fall 2025

16



% University of Pennsylvania

Threads vs. Processes

L12: IPC & Threads (intro)

pthread create()

CIS 3990, Fall 2025

17



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

We’ve been dealing with threads this whole time!

+ When we fork() to create a new process, we are cloning the process and the
calling thread.

= After the fork there are two processes, each with their own thread inside of them!

+» Similar ideas about ordering and scheduling we learned with processes still
apply here!

18



University of Pennsylvania

L12: IPC & Threads (intro) CIS 3990, Fall 2025

Single-Threaded Address Spaces

SP

pakent

pakent

Stack

parent

|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Before creating a thread

" One thread of execution running
in the address space
- One PC, stack, SP

" That main thread invokes a
function to create a new thread
- Typically pthread create ()

19



University of Pennsylvania

L12: IPC & Threads (intro)

CIS 3990, Fall 2025

Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

SP

pakent

'

Stack ;4

Py =

!
|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Pl =

pakent

Read-Only Segments
.text, .rodata

" Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

- New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

20



L12: IPC & Threads (intro) CIS 3990, Fall 2025

University of Pennsylvania

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h

« Not part of the C/C++ language

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command
« g+t+ —g -Wall —-std=c++23 —-pthread —-o main main.c

" Implemented in C
- Must deal with C programming practices and style

21



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

e [int pthread create ( / |
pthread t* thread, Fumction pointert

const pthread attr t* attr, Takes & returus vold*
volid* (*start routine) (void*) / to allow “geverics” in €

vold* arg) ;e Argument for the thread functioy

\.

= Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns 0 on success and an error number on error (can check
' Oy Start_routi
against error constants) & start_routive

" The new thread runs start routine (arg)

covrtinunes

»

»

pthread_create parent

22



University of Pennsylvania L12: IPC & Threads (intro)

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placed in * *r+et+va1%
Parent thread waits for child sTart_roatine

. | U N
thread +o exit, gets the child’s U / continues

return value, and child +hread is > >" -
; create parent joiv
cleaned np

CIS 3990, Fall 2025

23



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Thread Example

+» See cthreads.cpp

" How do you properly handle memory management?
« Who allocates and deallocates memory?
« How long do you want memory to stick around?

24



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

constexpr int NUM_PROCESSES = 50; Ed D .
constexpr int LOOP_NUM = 10000; ISCUssION

static int sum_total = ©;

+» What does this print? EESeseasin

for (int i = @; i < LOOP_NUM; ++i) {
sum_total++;
}
}

int main(int argc, char** argv) {
array<pid t, NUM_PROCESSES> pids{}; // array of process ids

// create processes to run loop_incr()
for (int i = @; i < NUM_PROCESSES; ++i) {
pids.at(i) = fork();
if (pids[i] == 0) {
// child
loop incr();
exit (EXIT_SUCCESS);
}

// parent loops and forks more children

}

// wait for all child processes to finish

for (int i = @; i < NUM_PROCESSES; ++i) {
waitpid(pids.at(i), NULL, ©);

}

// print out the final sum (expecting NUM_PROCESSES * LOOP_NUM)
cout << "Total: " << sum_total << endl;

return EXIT_SUCCESS;



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Fd Discussion
constexpr int NUM_THREADS = 50;

constexpr int LOOP_NUM = 10000;

& What does thls pnnt? static int sum_total =

void* thread_main(void* arg) {
for (int i = @; i < LOOP_NUM;
sum_total++;

}

return nullptr;

}

int main(int argc, char** argv) {
array<pthread t, NUM_THREADS> thds{};

for (int i = @; i < NUM_THREADS; i++) {
pthread_create(&thds.at(i), nullptr, &thread_main, nullptr);
}

for (int 1 = ©; i < NUM_THREADS; i++) {
pthread_join(thds.at(i), nullptr);
}

cout << "Total: " << sum_total << endl;

return EXIT_SUCCESS;




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Ed Discussion

+» How many timesis ":)" printed?

void* thread fn(void* arg) {
cout << ":)\n";

}

int main() {
vector<pthread t> pthds;

for (int 1 = 0; i < 4; ++i) {
pthread t thd;
pthread create(&thd, nullptr, thread fn, nullptr);
pthds.push back(thd);

}

for (auto& pthd : pthds) {
pthread join(pthd, nullptr);

}
}




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Ed Discussion

+» What are all possible outputs of this program?

rvoid* thrd fn (void* arg) { )
int* ptr = reinterpret cast<int*>(arg); Are these outputs
cout << *ptr << endl; possible?
}
int main () { 1
pthread t thdl{};
pthread t thd2{}; 2
int x =1; . TTTTTTTEmmTEETmTT T
pthread create (&thdl, nullptr, thrd fn, &x); 2
X = 2; 2
pthread create (&thd2, nullptr, thrd fn, &x); | = ccmmemmmmee
1
pthread join(thdl, nullptr); 1
pthread join(thd2, nullptr);
} 2
1
. J

28



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization

int main() { (thrd fn() { ) [ thrd £n() ¢{ )
int x = 1; cout << *ptr ...; cout << *ptr ...;
pthread create(...); return nullptr; return nullptr;
x = 2; } }
pthread create(...); N 7N g

pthread join(...);
pthread join(...);

29



CIS 3990, Fall 2025

University of Pennsylvania L12: IPC & Threads (intro)

Visualization: Memory

« The variable x is shared across all threads.

main ()

int x |1

int main () {

» int x = 1;
pthread create (thdl);
X = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

30



L12: IPC & Threads (intro) CIS 3990, Fall 2025

University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

malin () thdl
int x |1 int* ptr [~
int main() {
int x = 1;
___a»pthread_create(thdl);
X = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

31



L12: IPC & Threads (intro) CIS 3990, Fall 2025

University of Pennsylvania

Visualization: Memory

« The variable x is shared across all threads.

main () thdl
int x |2 int* ptr [—
int main() {
int x = 1;
pthread create (thdl);
—_ x = 2;

pthread create (thd2);

pthread join (thdl);
pthread join (thd2);
}

32



University of Pennsylvania

Visualization: Memory

L12: IPC & Threads (intro)

« The variable x is shared across all threads.

malin () thdl
e - intm
int main() { thd?
int x = 1;
pthread create(thdl); int* Fﬂ:r
X = 23

—1}+ pthread create (thd2);

pthread join (thdl);
pthread join (thd2);

CIS 3990, Fall 2025

33



CIS 3990, Fall 2025

University of Pennsylvania L12: IPC & Threads (intro)

Sequential Consistency

% Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the

program order. main ()

int x = 1
create thdl

X = 2

create thd?2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created

then x is set to 2

then thread 2 is created

34



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

35




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

36




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1 /

create thdl /

X = 2

37




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x = 1

create thdl /
X = 2

create thd2

38




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Visualization: Ordering

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

39




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

This is also why total.cpp allocated individual

Visualization: Ordering integers for each thread.

Though it could have also just made an array on the stack

+» Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main () thdl thd?

int x =1 print x print x

create thdl /
X = 2

create thd2

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running. 40



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

This is also why total.cpp allocated individual

Visualization: Ordering integers for each thread.

Though it could have also just made an array on the stack

+» Threads run concurrently; we can’t be sure of the ordering of things across

threads.
main () thdl thd?
int x =1 print x print x

create thdl /
X = 2

create thd2

Technically this diagram is missing something that makes 2 1 possible.
Hint: basic_ostream& operator<<( int value );

(cout is an ostream)

Anyone see how? 41




University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Lecture Outline

e |PC
« Threads
<+ Data Races

42



University of Pennsylvania L12: IPC & Threads (intro)

Shared Resources

% Some resources are shared between threads and processes

+~ Thread Level:
" Memory

" Things shared by processes

+ Process level
= |/O devices Tssues arise W\AQ\A wWe
. Files try to shared things

- terminal input/output
- The network

CIS 3990, Fall 2025

43



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Data Races

+» Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

= Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

44



University of Pennsylvania

L12: IPC & Threads (intro)

CIS 3990, Fall 2025

Data Race Example

+ |f your fridge has no milk, 1t (Imilk) A
then go out and buy some more |
" What could go wrong? duy milk
\ } J
+ |f you live alone:
®

B

;"‘@

+ If you live with a roommate:

o =

z‘@

o =

]
=

45



University of Pennsylvania L12: IPC & Threads (intro)

+» |dea: leave a note!
® Does this fix the problem?

A.
B. No, could end up with no milk

C. No, could still buy multiple milk
D. We're lost...

CIS 3990, Fall 2025

Talk amongst yourselves

(if (!lnote) ({
1t (!'milk) {
leave note
buy milk
remove note
}
}

46



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Talk amongst yourselves

+ ldea: leave a note! 1f (!note) {
if ('milk) {

® Does this fix the problem?
leave note

We can be interrupted

between checking vote and buy milk
leaving note ® remove note
}
A. ) J
B. No, could end up with no milk Jou  roommate
. . . j
(€.) No, could still buy multiple milk Check vote. |
I Check wote
D. We're lost... . Check wilk |
TV‘?V@ are oﬂ@@f Leave note |
possible scenarios I Check milk
JVWI‘J‘: '”[@5‘/‘[1‘” | Leave uote
multiple wmilks - Bu il
Buy milk I
\

time a7



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Threads and Data Races

+» Data races might interfere in painful, non-obvious ways, depending on the
specifics of where the data race occurs.

+ Example: two threads try to read from and write to the same shared memory
location

" Could get “correct” answer

® Could accidentally read old value
" One thread’s work could get “lost” (Like the first note left in the milk example)

+ Example: two threads try to push an item onto the head of the linked list at the
same time

" Could get “correct” answer

" Could get different ordering of items

= Could break the data structure! 2 "



University of Pennsylvania

Remember this?

+» What does this print?

L12: IPC & Threads (intro)

#define MNUM_THREADS 5@
#define LOOP_NUM 188

int sum_total = ©;

void* thread main{wvoid*® arg) {
for (int 1 = @; ¢ LODOP_NUM; i++) {
sum_total++;
1

r
return MULL;

1
i

int main{int argc, char®** argv) {
pthread t thds[NUM_THREADS];

for (int 1 = @; i < MUM_THREADS; i++) {

if (pthread create(&thds[i], MULL, &thread main, MULL) !
fprintf({stderr, "pthread create failed\n");

for (int 1 = @; i < NUM _THREADS; i++) {
if (pthread_join{thds[i], MNULL} ! j IR
fprintf({stderr, "pthread join failed\n");

printf{"%d\n", sum total);

return EXIT_SUCCESS;
1
J

CIS 3990, Fall 2025

49



University of Pennsylvania

Increment Data Race

+» What seems like a single operation

L12: IPC & Threads (intro)

(++Sum total )

is actually multiple operations in one. The increment
looks something like this in assembly:

\.

(LOAD

ADD

STORE RO into sum total

sum total into RO
RO RO #1

CIS 3990, Fall 2025

+» What happens if we context switch to a different thread while executing these

three instructions?

» Reminder: Each thread has its own registers to work with. Each thread would

have its own RO

50



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Thread 1

51



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0
[LOAD sum total into RO\ Threadl RO = 0

' LOAD sum total into RO )

52



University of Pennsylvania L12: IPC & Th

Increm

ent Data Race

reads (intro)

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total | sum total =0

Thread O RO =0

Threadl RO =1
' LOAD sum total into RO )
ADD RO RO #1

(LOAD sum total 1nto RO )
- /

CIS 3990, Fall 2025

53



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =0
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

54



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1

55



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total ] sum total =1

Thread O RO =1
/LOAD sum total 1nto RO\ Threadl RO =1

' LOAD sum total 1into RO
ADD RO RO #1
STORE RO into sum total

A J

ADD RO RO #1
\STORE RO into sum_total )

« With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

56



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Synchronization

+ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

" Need some mechanism to coordinate the threads
- “Let me go first, then you can go”
= Many different coordination mechanisms have been invented

+ Goals of synchronization:

" Liveness — ability to execute in a timely manner
(informally, “something good eventually happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

57



University of Pennsylvania L12: IPC & Threads (intro)

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that only one thread can

operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

+ Pseudocode:

+» Lock Acquire f

= Wait until the lock is free,
then take it

L)

« Lock Release

= Release the lock

\

// non-critical code

block
lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIS 3990, Fall 2025

58



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Lock API

» Locks are constructs that are provided by the operating system to help ensure
synchronization

= Often called a mutex or a semaphore

» Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

» Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

59



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

pthreads and Locks

% Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

& | int pthread mutex init(pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

o (int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked (-blocks when lock is acquired

o (int pthread mutex unlock (pthread mutex t* mutex); J

®= Releases the lock

> (int pthread mutex destroy(pthread mutex t* mutex);)

" “Uninitializes” a mutex — clean up when done

60



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

pthread Mutex Examples

+» See total.cpp

® Data race between threads

+ See total locking.cpp

= Adding a mutex fixes our data race

+ How does total locking compare to sequential code andto total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

®= One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- See total locking better.cpp

61



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Ed Discussion

« The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized /7 global variables
2 | pthread mutex t lock;
. . 3 int g = 0;
+ Thread-1 executes line 8 while 2 line % o
Thread-2 executes line 21. 5
) 6 |void funl() {
Choose one: . 7 pthread mutex lock(&lock);
= Could lead to a race condition. 8 g += 3;
= There is no possible race condition. 9 pthread mutex unlock (&lock);
= The situation cannot occur. 10 Kt+;
11 |}
12
« Thread-1 executes line 15 while | et A e B
Thread-2 executes line 15. 15| a += b;
Choose one: o I
= Could lead to a race condition. 18
= There is no possible race condition. 19 | void fun3 () {
= The situation cannot occur. 20 pthread mutex_lock (&lock);
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

62



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Ed Discussion

« The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized /7 global variables
2 | pthread mutex t lock;
. . 3 int g = 0;
+ Thread-1 executes line 8 while 2 line % o
Thread-2 executes line 14 5
) 6 |void funl() {
Choose one: . 7 pthread mutex lock(&lock);
= Could lead to a race condition. 8 g += 3;
= There is no possible race condition. 9 pthread mutex unlock (&lock);
= The situation cannot occur. 10 Kt+;
11 |}
12
« Thread-1 executes line 14 while | et A e B
Thread-2 executes line 16. 15| a += b;
Choose one: o I
= Could lead to a race condition. 18
= There is no possible race condition. 19 | void fun3 () {
= The situation cannot occur. 20 pthread mutex_lock (&lock);
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

63



University of Pennsylvania L12: IPC & Threads (intro) CIS 3990, Fall 2025

Ed Discussion

Consider the code below, which outputs are possible?
static int counter = 0; // global var

int main() {

pthread t thdl, thd2; void* thread_fn(void* arg) {
- int amount = *static cast<int*>(arg);

int* argl = new int(2); for (int 1 = @; i < amount; ++i) {
int* arg2 = new int(3); counter += 1;

}
pthread create(&thdl, nullptr, thread fn, argl); delete arg;

pthread create(&thd2, nullptr, thread fn, arg2); return nullptr;

pthread join(thdl, nullptr);
pthread join(thd2, nullptr);

cout << counter << endl;

return EXIT_SUCCESS;




University of Pennsylvania

That’s all for now!

+» Next time:
= Parallelism vs concurrency

" More processes vs threads
= Parallel Algorithms

+ Hopefully you are doing well ©

L12: IPC & Threads (intro)

CIS 3990, Fall 2025

65



	Default Section
	Slide 1: IPC & Threads (Intro) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: IPC
	Slide 6: Pipes
	Slide 7: Pipe Visualization
	Slide 8: Pipe Visualization
	Slide 9: Pipes & EOF
	Slide 10: Pipe Visualization
	Slide 11
	Slide 12: Pipes & EOF
	Slide 13: Lecture Outline
	Slide 14: Introducing Threads
	Slide 15: Threads vs. Processes
	Slide 16: Threads vs. Processes
	Slide 17: Threads vs. Processes
	Slide 18: We’ve been dealing with threads this whole time!
	Slide 19: Single-Threaded Address Spaces
	Slide 20: Multi-threaded Address Spaces
	Slide 21: POSIX Threads (pthreads)
	Slide 22: Creating and Terminating Threads
	Slide 23: What To Do After Forking Threads?
	Slide 24: Thread Example
	Slide 25: Poll: how are you?
	Slide 26: Poll: how are you?
	Slide 27
	Slide 28: Polling Question
	Slide 29: Visualization
	Slide 30: Visualization: Memory
	Slide 31: Visualization: Memory
	Slide 32: Visualization: Memory
	Slide 33: Visualization: Memory
	Slide 34: Sequential Consistency
	Slide 35: Visualization: Ordering
	Slide 36: Visualization: Ordering
	Slide 37: Visualization: Ordering
	Slide 38: Visualization: Ordering
	Slide 39: Visualization: Ordering
	Slide 40: Visualization: Ordering
	Slide 41: Visualization: Ordering
	Slide 42: Lecture Outline
	Slide 43: Shared Resources
	Slide 44: Data Races
	Slide 45: Data Race Example
	Slide 46: Data Race Example
	Slide 47: Data Race Example
	Slide 48: Threads and Data Races
	Slide 49: Remember this?
	Slide 50: Increment Data Race
	Slide 51: Increment Data Race
	Slide 52: Increment Data Race
	Slide 53: Increment Data Race
	Slide 54: Increment Data Race
	Slide 55: Increment Data Race
	Slide 56: Increment Data Race
	Slide 57: Synchronization
	Slide 58: Lock Synchronization
	Slide 59: Lock API
	Slide 60: pthreads and Locks
	Slide 61: pthread Mutex Examples
	Slide 62: Threads & Mutex
	Slide 63: Threads & Mutex
	Slide 64: Threads & Mutex
	Slide 65: That’s all for now!


