
CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

IPC & Threads (Intro)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Administrivia

❖ HW06 posted before break

▪ Due by end of day Friday due to fall break

❖ Check-in 06 posted after class

▪ Due bye end of day today instead of before lecture (Due to fall break)

▪ If you forgot it, do it now!

❖ Midterm Details

▪ In-class on Wed Oct 22nd

▪ Posted soon

❖ HW07: posted by end of week. We don’t expect you to work on it till after
midterm, but you can start whenever. Shouldn’t be too long (hopefully).
if you want to get started

3

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Lecture Outline

❖ IPC

❖ Threads

❖ Data Races

4

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

IPC

❖ Inter Process Communication

▪ Sharing data between processes on a computer

❖ Communication is important to coordinate processes for some overall goal

❖ Processes have independent memory, so how do they share data?

▪ Answer: need to do something outside of memory

▪ Files, pipes, network connection, and other things.

5

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork copies the file
descriptor table of parent

❖ Exec does NOT reset file descriptor table
6

int pipe(int pipefd[2]);

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained
by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

7

Terminal input

Terminal output

Kernel

Pipe Buffer

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipe Visualization

❖ After fork:

8

Terminal input

Terminal output

Kernel

Pipe Buffer

Parent File Descriptor Table

Child File Descriptor Table

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

9

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipe Visualization

❖ If the parent wanted to read the child’s stdout from a pipe, what are the
proper steps to set that up? (before child calls exec and parent calls wait)

10

Terminal input

Terminal output

Kernel

Pipe Buffer

Parent File Descriptor Table

Child File Descriptor Table

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ What is the bug in this code (see ed to read it better)

11

Ed Discussion

int main(int argc, char* argv[]) {
 array<int,2> pipe_fds{};
 pipe(pipe_fds.data());

 pid_t child = fork();
 if (child == 0) {
 // child
 dup2(pipe_fds.at(1), STDOUT_FILENO);
 close(pipe_fds.at(0));

 // should print "hello" to the pipe
 array<const char*, 3> args {"echo", "hello", nullptr};
 execvp(args.at(0), const_cast<char**>(args.data()));
 }

 auto opt = wrapped_read(pipe_fds.at(0));
 if (opt) {
 cout << opt.value() << endl;
 }

 int wstatus;
 waitpid(child, &wstatus, 0);
 return EXIT_SUCCESS;
}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ This is true for other streams like network communication

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
12

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Lecture Outline

❖ IPC

❖ Threads

❖ Data Races

13

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

14

thread

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

15

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads vs. Processes

16

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads vs. Processes

17

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

We’ve been dealing with threads this whole time!

❖ When we fork() to create a new process, we are cloning the process and the
calling thread.

▪ After the fork there are two processes, each with their own thread inside of them!

❖ Similar ideas about ordering and scheduling we learned with processes still
apply here!

18

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

19

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

20

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• g++ –g –Wall –std=c++23 –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

21

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

22

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

23

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Thread Example

❖ See cthreads.cpp

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

24

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Poll: how are you?

❖ What does this print?

25

Ed Discussionconstexpr int NUM_PROCESSES = 50;
constexpr int LOOP_NUM = 10000;

static int sum_total = 0;

void loop_incr() {
 for (int i = 0; i < LOOP_NUM; ++i) {
 sum_total++;
 }

}

int main(int argc, char** argv) {
 array<pid_t, NUM_PROCESSES> pids{}; // array of process ids

 // create processes to run loop_incr()
 for (int i = 0; i < NUM_PROCESSES; ++i) {
 pids.at(i) = fork();
 if (pids[i] == 0) {
 // child
 loop_incr();
 exit(EXIT_SUCCESS);
 }
 // parent loops and forks more children
 }

 // wait for all child processes to finish
 for (int i = 0; i < NUM_PROCESSES; ++i) {
 waitpid(pids.at(i), NULL, 0);
 }

 // print out the final sum (expecting NUM_PROCESSES * LOOP_NUM)
 cout << "Total: " << sum_total << endl;

 return EXIT_SUCCESS;
}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Poll: how are you?

❖ What does this print?

26

Ed Discussion
constexpr int NUM_THREADS = 50;
constexpr int LOOP_NUM = 10000;

static int sum_total = 0;

// increment sum_total LOOP_NUM times
void* thread_main(void* arg) {
 for (int i = 0; i < LOOP_NUM; i++) {
 sum_total++;
 }
 return nullptr; // return type is a pointer

}

int main(int argc, char** argv) {
 array<pthread_t, NUM_THREADS> thds{}; // array of thread ids

 // create threads to run thread_main()
 for (int i = 0; i < NUM_THREADS; i++) {

 pthread_create(&thds.at(i), nullptr, &thread_main, nullptr);
 }

 // wait for all child threads to finish
 // (children may terminate out of order, but cleans up in order)
 for (int i = 0; i < NUM_THREADS; i++) {
 pthread_join(thds.at(i), nullptr);
 }

 // print out the final sum (expecting NUM_THREADS * LOOP_NUM)
 cout << "Total: " << sum_total << endl;

 return EXIT_SUCCESS;
}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ How many times is ":)" printed?

27

void* thread_fn(void* arg) {
 cout << ":)\n";
}

int main() {
 vector<pthread_t> pthds;

 for (int i = 0; i < 4; ++i) {
 pthread_t thd;
 pthread_create(&thd, nullptr, thread_fn, nullptr);
 pthds.push_back(thd);
 }

 for (auto& pthd : pthds) {
 pthread_join(pthd, nullptr);
 }
}

Ed Discussion

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Polling Question

❖ What are all possible outputs of this program?

28

void* thrd_fn(void* arg) {

 int* ptr = reinterpret_cast<int*>(arg);

 cout << *ptr << endl;

}

int main() {

 pthread_t thd1{};

 pthread_t thd2{};

 int x = 1;

 pthread_create(&thd1, nullptr, thrd_fn, &x);

 x = 2;

 pthread_create(&thd2, nullptr, thrd_fn, &x);

 pthread_join(thd1, nullptr);

 pthread_join(thd2, nullptr);

}

Are these outputs
possible?

1
2

2
2

1
1

2
1

Ed Discussion

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization

29

int main() {

 int x = 1;

 pthread_create(...);

 x = 2;

 pthread_create(...);

 pthread_join(...);

 pthread_join(...);

}

thrd_fn() {

 cout << *ptr ...;

 return nullptr;

}

thrd_fn() {

 cout << *ptr ...;

 return nullptr;

}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

30

int x

main()

1

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

31

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

1

thd1

int* ptr

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

32

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

33

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

thd2

int* ptr

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Sequential Consistency

❖ Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the
program order.

34

int x = 1

main()

create thd1

x = 2

create thd2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created
then x is set to 2
then thread 2 is created

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

35

int x = 1

main() thd1 thd2

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

36

int x = 1

main() thd1 thd2

create thd1

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

37

int x = 1

main() thd1 thd2

create thd1

x = 2

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

38

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

39

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

40

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running.

This is also why total.cpp allocated individual
integers for each thread.
Though it could have also just made an array on the stack

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

41

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

Technically this diagram is missing something that makes 2 1 possible.
Hint: basic_ostream& operator<<(int value);
 (cout is an ostream)

Anyone see how?

This is also why total.cpp allocated individual
integers for each thread.
Though it could have also just made an array on the stack

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Lecture Outline

❖ IPC

❖ Threads

❖ Data Races

42

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

43

Issues arise when we

try to shared things

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

▪ Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

44

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

45

if (!milk) {

 buy milk

}

! !

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

46

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

Talk amongst yourselves

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

47

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

Talk amongst yourselves

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the
specifics of where the data race occurs.

❖ Example: two threads try to read from and write to the same shared memory
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost” (Like the first note left in the milk example)

❖ Example: two threads try to push an item onto the head of the linked list at the
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
48

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Remember this?

❖ What does this print?

49

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these
three instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would
have its own R0

50

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

51

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

52

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

53

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

54

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

55

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

❖ With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

56

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

57

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

58

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

59

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

60

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

pthread Mutex Examples

❖ See total.cpp

▪ Data race between threads

❖ See total_locking.cpp

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.cpp

61

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

62

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

Ed Discussion

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

Ed Discussion

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

Threads & Mutex

❖ Consider the code below, which outputs are possible?

64

Ed Discussion

int main() {
 pthread_t thd1, thd2;

 int* arg1 = new int(2);
 int* arg2 = new int(3);

 pthread_create(&thd1, nullptr, thread_fn, arg1);
 pthread_create(&thd2, nullptr, thread_fn, arg2);

 pthread_join(thd1, nullptr);
 pthread_join(thd2, nullptr);

 cout << counter << endl;

 return EXIT_SUCCESS;
}

static int counter = 0; // global var

void* thread_fn(void* arg) {
 int amount = *static_cast<int*>(arg);
 for (int i = 0; i < amount; ++i) {
 counter += 1;
 }
 delete arg;
 return nullptr;
}

CIS 3990, Fall 2025L12: IPC & Threads (intro)University of Pennsylvania

That’s all for now!

❖ Next time:

▪ Parallelism vs concurrency

▪ More processes vs threads

▪ Parallel Algorithms

❖ Hopefully you are doing well ☺

65

	Default Section
	Slide 1: IPC & Threads (Intro) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: IPC
	Slide 6: Pipes
	Slide 7: Pipe Visualization
	Slide 8: Pipe Visualization
	Slide 9: Pipes & EOF
	Slide 10: Pipe Visualization
	Slide 11
	Slide 12: Pipes & EOF
	Slide 13: Lecture Outline
	Slide 14: Introducing Threads
	Slide 15: Threads vs. Processes
	Slide 16: Threads vs. Processes
	Slide 17: Threads vs. Processes
	Slide 18: We’ve been dealing with threads this whole time!
	Slide 19: Single-Threaded Address Spaces
	Slide 20: Multi-threaded Address Spaces
	Slide 21: POSIX Threads (pthreads)
	Slide 22: Creating and Terminating Threads
	Slide 23: What To Do After Forking Threads?
	Slide 24: Thread Example
	Slide 25: Poll: how are you?
	Slide 26: Poll: how are you?
	Slide 27
	Slide 28: Polling Question
	Slide 29: Visualization
	Slide 30: Visualization: Memory
	Slide 31: Visualization: Memory
	Slide 32: Visualization: Memory
	Slide 33: Visualization: Memory
	Slide 34: Sequential Consistency
	Slide 35: Visualization: Ordering
	Slide 36: Visualization: Ordering
	Slide 37: Visualization: Ordering
	Slide 38: Visualization: Ordering
	Slide 39: Visualization: Ordering
	Slide 40: Visualization: Ordering
	Slide 41: Visualization: Ordering
	Slide 42: Lecture Outline
	Slide 43: Shared Resources
	Slide 44: Data Races
	Slide 45: Data Race Example
	Slide 46: Data Race Example
	Slide 47: Data Race Example
	Slide 48: Threads and Data Races
	Slide 49: Remember this?
	Slide 50: Increment Data Race
	Slide 51: Increment Data Race
	Slide 52: Increment Data Race
	Slide 53: Increment Data Race
	Slide 54: Increment Data Race
	Slide 55: Increment Data Race
	Slide 56: Increment Data Race
	Slide 57: Synchronization
	Slide 58: Lock Synchronization
	Slide 59: Lock API
	Slide 60: pthreads and Locks
	Slide 61: pthread Mutex Examples
	Slide 62: Threads & Mutex
	Slide 63: Threads & Mutex
	Slide 64: Threads & Mutex
	Slide 65: That’s all for now!

