University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

The Shell & Processes (fin.)

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Administrivia

+» HWO6 posted after class today
= Not everything you need will be talked about till Wednesday
= Will have extended deadline due to fall break

+» Check-in 06 posted after class
® Just finishing something you may not finish in class today
= Keeping it due by end of day Monday so that we can process re-opens in a timely manner

« Midterm Details
" |n-class on Wed Oct 22nd
= Posted soon

University of Pennsylvania

Lecture Outline

%+ The Shell
+» stdin, stdout, & redirection

« pipe()
% Processes in other languages

L11: Shell & processes

CIS 3990, Fall 2025

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Unix Shell

/
>

» A user level process that reads in commands

" This is the terminal you use to compile, and run your code

/
*

» Commands can either specify one of our programs to run or specify one of the
already installed programs

= Other programs can be installed easily.

+ There are many different shells, in this class we use Bash
® Others like zsh, fish, etc exit.

*

There are many commonly used bash programs, we will go over a few and
other important bash things.

*

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Current Working Directory & Hierarchical File System

+ Folder and Directory are pretty much synonyms. Technically there is a
difference, but it is not worth covering.

+» In some ways a shell is like File Explorer or Finder

" Has a concept of a “Current Working Directory” which is the directory we are in right now

= We change which directory we are in and can use it to explore the contents of other
directories as we wish.

« Directories can contain other Directories
= Subdirectory is used to describe a directory r}. i [—}
contained in another o = B [

= 3 few directories being the “overall root” v " T
= “parent” and “child” terminology returns here. = B = [=

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

.

+» "/"is used to connect directory and file names together to create a file path.
= E.g. "workspace/595/hello/"

+» "."is used to specify the current directory.

" Eg."./test suite" tellsto lookin the current directory for a file called
"test suite’

« "."is like "." but refers to the parent directory.

" Eg."./example/../test suite" would be effectively the same as the previous
example.

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

UNIX Design Philosophy

+ Philosophy behind development of UNIX that spread to standards for
developing software generally.

= Arguable more influential than UNIX itself

+~ Short version:
" Programs should "Do One Thing And Do It Well."
" Programs should be written to work together
= Werite programs that handle text streams, since text streams is a universal* interface.

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Unix Shell Commands

+» Commands can also specify flags

m Eg."1s —-1"lists the files in the specified directory in a more verbose format

% Revisiting the design philosophy:
® Programs should "Do One Thing And Do It Well."
" Programs should be written to work together

= Write programs that handle text streams, since text streams is a universal interface.

« These programs can be easily combined with UNIX Shell operators to solve
more interesting problems

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

g over these quick,

Common Commands (Pt- 1) these are here for our reference.

» "1s" lists out the entries in the specified directory (or current directory if
another directory is not specified

» "ed" changes directory to the specified directory

" Eg."cd ./solution binaries"

» "exit" closes the terminal
» 'mkdir" creates a directory of specified name

» "touch' creates a specified file. If the file already exists, it just updates the
file’s time stamp

10

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

g over these quick,

Common Commands (Pt- 2) these are here for our reference.

» "echo" takes in command line args and simply prints those args to stdout
= "echo hello!" simply prints "hello!"

» 'we' reads a file or from stdin some contents. Prints out the line count, word
count, and byte count

» 'cat" prints out the contents of a specified file to stdout. If no file is specified,
prints out what is read from stdin

- "head" print the first 10 line of specified file or stdin to stdout

11

University of Pennsylvania

L11: Shell & processes CIS 3990, Fall 2025

g over these quick,

Common Commands (Pt- 3) these are here for our reference.

» 'grep" given a pattern (regular expression) searches for all occurrences of

such a pattern. Can search a file, search a directory recursively or stdin. Results
printed to stdout

» '"history" prints out the history of commands used by you on the terminal

» "'eron' a program that regularly checks for and runs any commands that are
scheduled via "crontab"

» 'wget" specify a URL, and it will download that file for you

12

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

The shell just fork-exec’s your commands*

+ Whenever you type in a command like echo hello
" ccho is the name of a program (just like test_suite or cowsay)
= By default the shell will searchin /bin/ for a program of specified name and fork-exec it
" execvp will automatically search /bin/ for you

+ When we have a . / before the name (like . /test suite)ittells us to look
in the current directory instead of /bin/

+ A shell doesn’t implement “echo” specifically

= |t just forks a process that execvp’s echo.

13

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Ed Discussion

+» Lets implement a simple shell!

+» See Ed ©

15

University of Pennsylvania

Lecture Outline

% The Shell
+» stdin, stdout, & redirection

« pipe()
% Processes in other languages

L11: Shell & processes

CIS 3990, Fall 2025

16

University of Pennsylvania L11: Shell & processes

stdout, stdin, stderr

+~ By default, there are three “files” open when a program starts
= stdin: for reading terminal input typed by a user
« cinin C++
« System.ininJava
= stdout: the normal terminal output.
- cout in C++
- System.out inJava
= stderr: the terminal output for printing errors
« cerrin C++

- System.errinljava

CIS 3990, Fall 2025

17

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

stdout, stdin, stderr

+ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

®" STDIN FILENO -> 0
= STDOUT FILENO -> 1
" STDERR FILENO -> 2

+~ These will be open on default for a process

» Printing to stdout with cout will use write (STDOUT FILENO, ..)

18

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

File Descriptor Table

+ In addition to an address space, each process will have its own file descriptor
table managed by the OS

+~ The table is just an array, and the file descriptor is an index into it.

Terminal input

open ("Foo.txt", O RDWR); >
//
— | Terminal output

w N = O

— il

\ Foo.txt

19

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

File Descriptor Table: Per Process

+» each process will have its own file descriptor table managed by the OS

+~ Fork will make a copy of the parent’s file descriptor table for the child

Terminal input

>_
0 ..---"'""'—/

Terminal output

1
| ‘_‘_‘_—Qt

20

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

File Descriptor Table: Per Process

» each process will have its own file descriptor table managed by the OS

» Fork will make a copy of the parent’s file descriptor table for the child

parent child
Terminal input Terminal input
> =
/ /
0 —] fork () 0 —
1 Terminal output Terminal output

== TS =

21

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

File Descriptor Table: Per Process

+» each process will have its own file descriptor table managed by the OS

Fork will make a copy of the parent’s file descriptor table for the child

Terminal input Terminal input

open ("Foo.txt"™, O RDWR) > >_

Terminal output 1 Terminal output

S =
T
\Footxt

w N = O

Child is unaffected by parent calling open!

22

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Gap Slide

+» Gap slide to distinguish we are moving on to a new example (that looks very
similar to the previous one)

23

University of Pennsylvania

L11: Shell & processes CIS 3990, Fall 2025

Redirecting stdin/out/err

printf isimplemented using
write (STDOUT FILENO
That’s why it is redirected
after changing stdout

+» We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

+» Now, any calls to printf, cout, System.out, etc now go to the redirected output

% To do this: use dup?2 ()

w N = O

Terminal input

T~

>_
—

Terminal output

\
—

Foo.txt
’Mww~ dup2 (3, STDOUT FILENO);
Redirects stdout to go to

file descriptor 3’s destination ”

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Redirecting stdin/out/err

+» We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

» Now, any calls to printf, cout, System.out, etc now go to the redirected output

» To do this: use dup?2 () Terminal input
>_
i //
1 N Terminal output
2 >
3 T~ .

Foo.txt
’ dup? (3, STDOUT_FILENO) ;

Redirects stdout to go to
file descriptor 3’s destination

25

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Closing a file descriptor

+ |If we close a file descriptor, it only closes that descriptor, not the file itself
+ Other file descriptors to the same file will still be open

« useclose ()
Terminal input

close (3); >_
//
N\ Terminal output

w N = O

26

University of Pennsylvania

L11: Shell & processes

dup2 ()

»(int dup2(int oldfd, int newfd);]
File descriptor

= Creates a copy of the file descriptor o1d£fd using newfd as the new file descriptor
number

" |f newfd was a previously open file, it is silently closed before being reused

® Returns -1 on error.

CIS 3990, Fall 2025

27

University of Pennsylvania

Lecture Outline

% The Shell
+» stdin, stdout, & redirection

= pipe()
% Processes in other languages

L11: Shell & processes

CIS 3990, Fall 2025

28

University of Pennsylvania L11: Shell & p CIS 3990, Fall 2025

Pipes

int pipe(int pipefd[2]):

«» Creates a unidirectional data channel for IPC
+» Communication through file descriptors! // POSIX ©

+ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

+» pipefd[0] isthereading end of the pipe
» pipefd[1] isthe writing end of the pipe

+ In addition to copying memory, fork copies the file
descriptor table of parent

+ Exec does NOT reset file descriptor table

29

University of Pennsylvania

Pipe Visualization

+~ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained

by the OS.
= Data written to the pipe is stored in a Terminal input
buffer until it is read from the pipe S
—
P—

— Terminal output

— | — .
ti-

Kernel
Pipe Buffer

L11: Shell & processes CIS 3990, Fall 2025

30

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Pipes & EOF

» Many programs will read from a file until they hit EOF and will not terminate
until then

» Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

® EQF is not read in this case

» EOF is only read from a pipe when:
" There is nothing in the pipe
= All write ends of the pipe are closed

+~ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

31

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025
Ed Discussion

+ Given the following code, what is the contents of "hello.txt" and what is

printed to the terminal?
using std::flush; // similar to endl. flush buffer but don't print a newline

int main() {
int fd = open("hello.txt", O_WRONLY);

cout << "hi" << flush;

close(STDOUT_FILENO);
cout << "?" << flush;

dup2(fd, STDOUT_FILENO);
cout << "!" << flush;

close(fd);
cout << "*" << flush;

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Ed Discussion

int main() {

array<int, 2> pipe fds: +» What does the parent print? What
does the child print? why? (assume

pipe, close and fork succeed)
pipe_unidirect.cpp

pipe(pipe_fds.data());
pid t pid = fork();

if (pid == 0) {
// child process bsi
// close the end of the pipe that isn't used on course website

close(pipe_fds.at(9)); // parent

. /// close the end of the pipe I won't use
dup2(plpe_FdS.at(1), STDOUT_FILENO); close(pipe_de.at(l));

string greeting {"Hello!"};

optional<string> message = wrapped _read(pipe_fds.at(9));
if (message.has_value()) {

cout << message.value() << endl;
optional<string> response = wrapped read(pipe fds.at(1)); }

if (response.has_value()) {
cout << response.value() << endl;

cout << greeting << flush;

string greeting{"Howdy!"};
} wrapped _write(pipe_fds.at(9), greeting);
eXit(EXIT_SUCCESS); int wstatus;

} waitpid(pid, &wstatus, 0);
// continued in the code block to the right

return EXIT_SUCCESS;

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Pipes & EOF

» Many programs will read from a file until they hit EOF and will not terminate
until then

» Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.
" EQOF is not read in this case

» EOF is only read from a pipe when:
" There is nothing in the pipe
= All write ends of the pipe are closed

« This is true for other streams like network communication
« Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

42

University of Pennsylvania

Redirecting in the shell

+» You can redirect stdin / stdout /stderr for programs in the shell to have them

read / write from a file instead of the shell

M WC < example.txt

R/
0’0

R/
0’0

" wc reads from example.txt instead of the terminal

echo hello > some file.md

= Echo hello prints into the specified file instead of terminal

cat example.cpp >> some file.md

= Appends the output onto the end of a file

make tidy-check 2> err.txt

= Capture stderr instead of stdout

make tidy-check &> all output.txt
= Captures both stdout and stderr

L11: Shell & processes CIS 3990, Fall 2025

43

University of Pennsylvania

L11: Shell & processes

Pipe in the shell

+ Pipes can also be used in the shell to combine commands in the shell

«» One of the more useful commands | use:

history | grep valgrind
" Runs history but feeds its output as the input to grep.

" Grep then searches history’s output for each line that contains the target and prints it
= Very useful for looking up commands that you may have forgotten!

CIS 3990, Fall 2025

44

University of Pennsylvania

Lecture Outline

% The Shell
+» stdin, stdout, & redirection

« pipe()
+» Processes in other languages

L11: Shell & processes

CIS 3990, Fall 2025

45

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Fork-exec

+» Fork-exec lets us write programs that do what can be done in the shell
" We can execute other programs from our program

" Those other programs can be written in any language! As long as it can run on your system

+ This functionality is a fundamental tool.

+ This is an Immensely useful tool so it can be found in other languages:
= Java has the RunTime class

= Python has the subprocess module
® Rust has the Command API
" Node.Js hasthe child process module

= Usually, it is a bit more user friendly than what we have in C and C++

46

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

Example: python subprocess module

import subprocess

this looks really pretty because none of the error handling or parsing is around this

s]gle]e subprocess.run("clang++-15 -o hello hello.cpp", shell=True, stderr=subprocess.PIPE,
stdout=subprocess.PIPE, timeout=60)

subprocess.run("./hello", shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE,
timeout=60)

get the stdout, stderr, and returncode of the process
stdout = proc.stdout.decode()

stderror = proc.stderr.decode()
returncode = proc.returncode

University of Pennsylvania L11: Shell & processes CIS 3990, Fall 2025

That’s all for now!

+ Next time:

" Threads & Concurrency!

+ Hopefully you are doing well ©

48

	Default Section
	Slide 1: The Shell & Processes (fin.) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Unix Shell
	Slide 6: Current Working Directory & Hierarchical File System
	Slide 7: . / ..
	Slide 8: UNIX Design Philosophy
	Slide 9: Unix Shell Commands
	Slide 10: Common Commands (Pt. 1)
	Slide 11: Common Commands (Pt. 2)
	Slide 12: Common Commands (Pt. 3)
	Slide 13: The shell just fork-exec’s your commands*
	Slide 15
	Slide 16: Lecture Outline
	Slide 17: stdout, stdin, stderr
	Slide 18: stdout, stdin, stderr
	Slide 19: File Descriptor Table
	Slide 20: File Descriptor Table: Per Process
	Slide 21: File Descriptor Table: Per Process
	Slide 22: File Descriptor Table: Per Process
	Slide 23: Gap Slide
	Slide 24: Redirecting stdin/out/err
	Slide 25: Redirecting stdin/out/err
	Slide 26: Closing a file descriptor
	Slide 27: dup2()
	Slide 28: Lecture Outline
	Slide 29: Pipes
	Slide 30: Pipe Visualization
	Slide 31: Pipes & EOF
	Slide 32
	Slide 41
	Slide 42: Pipes & EOF
	Slide 43: Redirecting in the shell
	Slide 44: Pipe in the shell
	Slide 45: Lecture Outline
	Slide 46: Fork-exec
	Slide 47: Example: python subprocess module
	Slide 48: That’s all for now!

