
CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

The Shell & Processes (fin.)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Administrivia

❖ HW06 posted after class today

▪ Not everything you need will be talked about till Wednesday

▪ Will have extended deadline due to fall break

❖ Check-in 06 posted after class

▪ Just finishing something you may not finish in class today

▪ Keeping it due by end of day Monday so that we can process re-opens in a timely manner

❖ Midterm Details

▪ In-class on Wed Oct 22nd

▪ Posted soon

3

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Lecture Outline

❖ The Shell

❖ stdin, stdout, & redirection

❖ pipe()

❖ Processes in other languages

4

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Unix Shell

❖ A user level process that reads in commands

▪ This is the terminal you use to compile, and run your code

❖ Commands can either specify one of our programs to run or specify one of the
already installed programs

▪ Other programs can be installed easily.

❖ There are many different shells, in this class we use Bash

▪ Others like zsh, fish, etc exit.

❖ There are many commonly used bash programs, we will go over a few and
other important bash things.

5

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Current Working Directory & Hierarchical File System

❖ Folder and Directory are pretty much synonyms. Technically there is a
difference, but it is not worth covering.

❖ In some ways a shell is like File Explorer or Finder

▪ Has a concept of a “Current Working Directory” which is the directory we are in right now

▪ We change which directory we are in and can use it to explore the contents of other
directories as we wish.

❖ Directories can contain other Directories

▪ Subdirectory is used to describe a directory
contained in another

▪ a few directories being the “overall root”

▪ “parent” and “child” terminology returns here.
6

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

. / ..

❖ "/" is used to connect directory and file names together to create a file path.
▪ E.g. "workspace/595/hello/"

❖ "." is used to specify the current directory.
▪ E.g. "./test_suite" tells to look in the current directory for a file called

"test_suite"

❖ ".." is like "." but refers to the parent directory.
▪ E.g. "./example/../test_suite" would be effectively the same as the previous

example.

7

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

UNIX Design Philosophy

❖ Philosophy behind development of UNIX that spread to standards for
developing software generally.

▪ Arguable more influential than UNIX itself

❖ Short version:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a universal* interface.

8

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more verbose format

❖ Revisiting the design philosophy:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a universal interface.

❖ These programs can be easily combined with UNIX Shell operators to solve
more interesting problems

9

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Common Commands (Pt. 1)

❖ "ls" lists out the entries in the specified directory (or current directory if
another directory is not specified

❖ "cd" changes directory to the specified directory

▪ E.g. "cd ./solution_binaries"

❖ "exit" closes the terminal

❖ "mkdir" creates a directory of specified name

❖ "touch" creates a specified file. If the file already exists, it just updates the
file’s time stamp

10

Going over these quick,

these are here for your reference.

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Common Commands (Pt. 2)

❖ "echo" takes in command line args and simply prints those args to stdout

▪ "echo hello!" simply prints "hello!"

❖ "wc" reads a file or from stdin some contents. Prints out the line count, word
count, and byte count

❖ "cat" prints out the contents of a specified file to stdout. If no file is specified,
prints out what is read from stdin

❖ "head" print the first 10 line of specified file or stdin to stdout

11

Going over these quick,

these are here for your reference.

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Common Commands (Pt. 3)

❖ "grep" given a pattern (regular expression) searches for all occurrences of
such a pattern. Can search a file, search a directory recursively or stdin. Results
printed to stdout

❖ "history" prints out the history of commands used by you on the terminal

❖ "cron" a program that regularly checks for and runs any commands that are
scheduled via "crontab"

❖ "wget" specify a URL, and it will download that file for you

12

Going over these quick,

these are here for your reference.

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

The shell just fork-exec’s your commands*

❖ Whenever you type in a command like echo hello

▪ echo is the name of a program (just like test_suite or cowsay)

▪ By default the shell will search in /bin/ for a program of specified name and fork-exec it

▪ execvp will automatically search /bin/ for you

❖ When we have a ./ before the name (like ./test_suite) it tells us to look
in the current directory instead of /bin/

❖ A shell doesn’t implement “echo” specifically

▪ It just forks a process that execvp’s echo.

13

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

❖ Lets implement a simple shell!

❖ See Ed ☺

15

Ed Discussion

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Lecture Outline

❖ The Shell

❖ stdin, stdout, & redirection

❖ pipe()

❖ Processes in other languages

16

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

17

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use write(STDOUT_FILENO, …)

18

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have its own file descriptor
table managed by the OS

❖ The table is just an array, and the file descriptor is an index into it.

19

Terminal input

Terminal output

Foo.txt

open("Foo.txt", O_RDWR);

0

1

2

3

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

20

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

21

fork()

parent child

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

File Descriptor Table: Per Process

❖ each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

22

parent child

Child is unaffected by parent calling open!

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Gap Slide

❖ Gap slide to distinguish we are moving on to a new example (that looks very
similar to the previous one)

23

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

24

Terminal input

Terminal output

Foo.txt

0

1

2

3

printf is implemented using
write(STDOUT_FILENO

That’s why it is redirected
after changing stdout

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is associated with something
other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to the redirected output

❖ To do this: use dup2()

25

Terminal input

Terminal output

Foo.txt

0

1

2

3

dup2(3, STDOUT_FILENO);

Redirects stdout to go to
file descriptor 3’s destination

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Closing a file descriptor

❖ If we close a file descriptor, it only closes that descriptor, not the file itself

❖ Other file descriptors to the same file will still be open

❖ use close()

26

Terminal input

Terminal output

Foo.txt

0

1

2

3

close(3);

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

dup2()

❖ ssize_t read(int fd, void* buf,

▪ Creates a copy of the file descriptor oldfd using newfd as the new file descriptor
number

▪ If newfd was a previously open file, it is silently closed before being reused

▪ Returns -1 on error.

27

int dup2(int oldfd, int newfd);

File descriptor

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Lecture Outline

❖ The Shell

❖ stdin, stdout, & redirection

❖ pipe()

❖ Processes in other languages

28

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork copies the file
descriptor table of parent

❖ Exec does NOT reset file descriptor table
29

int pipe(int pipefd[2]);

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file descriptors for reading
and writing. This "file" only exists as long as the pipe exists and is maintained
by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

30

Terminal input

Terminal output

Kernel

Pipe Buffer

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH

31

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

❖ Given the following code, what is the contents of "hello.txt" and what is
printed to the terminal?

32

Ed Discussion

using std::flush; // similar to endl. flush buffer but don't print a newline

int main() {
 int fd = open("hello.txt", O_WRONLY);

 cout << "hi" << flush;

 close(STDOUT_FILENO);
 cout << "?" << flush;

 dup2(fd, STDOUT_FILENO);
 cout << "!" << flush;

 close(fd);
 cout << "*" << flush;
}

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

❖ What does the parent print? What
does the child print? why? (assume
pipe, close and fork succeed)

41

pipe_unidirect.cpp
on course website

Ed Discussion

int main() {
 array<int, 2> pipe_fds;
 pipe(pipe_fds.data());

 pid_t pid = fork();

 if (pid == 0) {
 // child process
 // close the end of the pipe that isn't used
 close(pipe_fds.at(0));

 dup2(pipe_fds.at(1), STDOUT_FILENO);
 string greeting {"Hello!"};

 cout << greeting << flush;

 optional<string> response = wrapped_read(pipe_fds.at(1));
 if (response.has_value()) {
 cout << response.value() << endl;
 }

 exit(EXIT_SUCCESS);
 }
 // continued in the code block to the right

 // parent
 /// close the end of the pipe I won't use
 close(pipe_fds.at(1));

 optional<string> message = wrapped_read(pipe_fds.at(0));
 if (message.has_value()) {
 cout << message.value() << endl;
 }

 string greeting{"Howdy!"};
 wrapped_write(pipe_fds.at(0), greeting);

 int wstatus;
 waitpid(pid, &wstatus, 0);

 return EXIT_SUCCESS;
}

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Pipes & EOF

❖ Many programs will read from a file until they hit EOF and will not terminate
until then

❖ Like reading from the terminal, just because there is nothing in the pipe, does
not mean nothing else will ever come through the pipe.

▪ EOF is not read in this case

❖ EOF is only read from a pipe when:

▪ There is nothing in the pipe

▪ All write ends of the pipe are closed

❖ This is true for other streams like network communication

❖ Good practice: CLOSE ALL PIPE FDS YOU ARE DONE WITH
42

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Redirecting in the shell

❖ You can redirect stdin / stdout /stderr for programs in the shell to have them
read / write from a file instead of the shell

❖ Read

▪ wc reads from example.txt instead of the terminal

❖ Ech

▪ Echo hello prints into the specified file instead of terminal

❖ D

▪ Appends the output onto the end of a file

❖ D

▪ Capture stderr instead of stdout

❖ D

▪ Captures both stdout and stderr
43

make tidy-check &> all_output.txt

echo hello > some_file.md

cat example.cpp >> some_file.md

make tidy-check 2> err.txt

wc < example.txt

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Pipe in the shell

❖ Pipes can also be used in the shell to combine commands in the shell

❖ One of the more useful commands I use:

▪ Runs history but feeds its output as the input to grep.

▪ Grep then searches history’s output for each line that contains the target and prints it

▪ Very useful for looking up commands that you may have forgotten!

44

history | grep valgrind

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Lecture Outline

❖ The Shell

❖ stdin, stdout, & redirection

❖ pipe()

❖ Processes in other languages

45

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Fork-exec

❖ Fork-exec lets us write programs that do what can be done in the shell

▪ We can execute other programs from our program

▪ Those other programs can be written in any language! As long as it can run on your system

❖ This functionality is a fundamental tool.

❖ This is an Immensely useful tool so it can be found in other languages:
▪ Java has the RunTime class

▪ Python has the subprocess module

▪ Rust has the Command API

▪ Node.Js has the child_process module

▪ Usually, it is a bit more user friendly than what we have in C and C++

46

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

Example: python subprocess module

import subprocess

this looks really pretty because none of the error handling or parsing is around this

proc = subprocess.run("clang++-15 -o hello hello.cpp", shell=True, stderr=subprocess.PIPE,
 stdout=subprocess.PIPE, timeout=60)

proc = subprocess.run("./hello", shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE,

 timeout=60)

get the stdout, stderr, and returncode of the process

stdout = proc.stdout.decode()

stderror = proc.stderr.decode()

returncode = proc.returncode

47

CIS 3990, Fall 2025L11: Shell & processesUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Threads & Concurrency!

❖ Hopefully you are doing well ☺

48

	Default Section
	Slide 1: The Shell & Processes (fin.) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Unix Shell
	Slide 6: Current Working Directory & Hierarchical File System
	Slide 7: . / ..
	Slide 8: UNIX Design Philosophy
	Slide 9: Unix Shell Commands
	Slide 10: Common Commands (Pt. 1)
	Slide 11: Common Commands (Pt. 2)
	Slide 12: Common Commands (Pt. 3)
	Slide 13: The shell just fork-exec’s your commands*
	Slide 15
	Slide 16: Lecture Outline
	Slide 17: stdout, stdin, stderr
	Slide 18: stdout, stdin, stderr
	Slide 19: File Descriptor Table
	Slide 20: File Descriptor Table: Per Process
	Slide 21: File Descriptor Table: Per Process
	Slide 22: File Descriptor Table: Per Process
	Slide 23: Gap Slide
	Slide 24: Redirecting stdin/out/err
	Slide 25: Redirecting stdin/out/err
	Slide 26: Closing a file descriptor
	Slide 27: dup2()
	Slide 28: Lecture Outline
	Slide 29: Pipes
	Slide 30: Pipe Visualization
	Slide 31: Pipes & EOF
	Slide 32
	Slide 41
	Slide 42: Pipes & EOF
	Slide 43: Redirecting in the shell
	Slide 44: Pipe in the shell
	Slide 45: Lecture Outline
	Slide 46: Fork-exec
	Slide 47: Example: python subprocess module
	Slide 48: That’s all for now!

