University of Pennsylvania L10: processes CIS 3990, Fall 2025

Processes (cont.)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania

L10: processes

Administrivia

+» HWOS5 posted after class

" Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

" Due tomorrow night at midnight

«» Check-in due before class

= Re-opens processed during class

+» HWOG6 posted after class Wednesday

= Not everything you need will be talked about till Wednesday
= Will have extended deadline due to fall break

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» fork() & virtual memory
% exec
+ wait

%~ ordering

L10: processes

CIS 3990, Fall 2025

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Creating New Processes

KX pld_t fork() -

" Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

- *almost everything
" The new process has a separate virtual address space from the parent
" Returnsapid t whichisan integer type.

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Parent vs Child

/
>

» After a successful call to fork() there are two processes
® The original calling process (the “Parent” in this relationship)
" The newly created clone (the “child” in this relationship)

/
*

» The two processes have different return values from fork() and different
process ID’s

0‘0

A process can have any number of children, but only one child.

0’0

Some operations done on a child can only be done by its parent.

CIS 3990, Fall 2025

University of Pennsylvania L10: processes

Definition: Process

+» Definition: An instance of a program
that is being executed
(or is ready for execution)

+» Consists of:
" Memory (code, heap, stack, etc)

= Registers used to manage execution
(stack pointer, program counter, ...)

= QOther resources

SP=>

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =>

Read-Only Segments
.text, .rodata

University of Pennsylvania L10: processes

OS: Protection System

+» OS isolates process from each other
= Each process seems to have exclusive use of
memory and the processor.
« Thisis anillusion

« More on Memory when we talk about virtual
memory later in the course

= OS permits controlled sharing between
processes

- E.g. through files, the network, etc.

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

0

O

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(untrusted)

ON
(trusted)

CIS 3990, Fall 2025

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Demo: vmem.cpp

+ |f processes have separate memory? What happens to points when we fork()?

int main() {
int* ptr = new int(0);
pid t pid = fork();

if (pid == 0) {
*ptr += 20;
cout << "I am the child!\n";
cout << "Address in ptr is:
cout << "value at *ptr is:

<< ptr
<< *ptr

delete ptr;

else {

*ptr += 15;

cout << "I am the parent!\n";

cout << "Address in ptr is:
cout << "value at *ptr is:
delete ptr;

<< ptr
<< *ptr

CIS 3990, Fall 2025

University of Pennsylvania L10: processes

Memory (as we know it from CIS 2400)

+» The CPU directly uses an address to access a location in memory

addregs (OX3)

data

ook Wy BQ

10

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Virtual Address Translation

« Programs don’t know about many of things going on under the hood with
memory. They send an address to the MMU, and the MMU will help get the
data. Programs don’t work with “real” addresses.

RAM
) 0: .
Virtual address Physical address Wore v 4460/54%0
(0x595) (0x3) L
2:
Memory Also checks 3:
Management Caches 4-
Unit
Caches 5:

data

11

University of Pennsylvania L10: processes

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

® Each process is scheduled by the OS

- Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

" Processes are created by fork() system call

- Only difference between the parent and child immediately after fork() is their process id and
the return value from fork() each process gets

CIS 3990, Fall 2025

12

University of Pennsylvania

Lecture Outline

+» fork() & virtual memory
» exec

% wait

%~ ordering

L10: processes

CIS 3990, Fall 2025

13

L10: processes CIS 3990, Fall 2025

University of Pennsylvania

execvp()

» execvp int execvp (const char *file,
char* const argvl(]):;

+» Duplicates the action of the shell (terminal) in terms of finding the

command/program to run
« Argv is an array of char*, the same kind of argv that is passedtomain () ina

C/C++ program

" argv[0] MUST have the same contents as the file parameter
= argv must have NULL/nullptr as the last entry of the array

<« Returns -1 on error. Does NOT return on success

14

University of Pennsylvania

Exec Visualization

L10: processes

+» Exec takes a process and discards or “resets” most of it

Stack

Shared Libraries

Stack

SP==

1
T

PC=

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

example.cpp

v

T

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

other.cpp

NOTE that the following
DO change

- The stack

- The heap

- Globals

- Loaded code

- Registers

NOTE that the following
do NOT change

- Process ID

- Open files

- The kernel

CIS 3990, Fall 2025

15

University of Pennsylvania L10: processes CIS 3990, Fall 2025

const and execv*

+» execvp (and the family of exec* functions) are written in C for POSIX

" They take in C arrays
" They take inachar *const argv[].

+» Often times we want to use a string() to form argv:

= data() gets a pointer to underlying
array/c-string?

string::data returns a

void execute(const string& str) { const char*

’ . vector<char*> argv;
" Why doesn’t this code work? argv.push_back(str.data());

argv.push _back(nullptr);

execvp(argv.at(@), argv.data());
¥

16

CIS 3990, Fall 2025

University of Pennsylvania L10: processes

const_cast and execv*

+ execvp (and the family of exec* functions) are written in C for POSIX

*

" They take in C arrays
" They take inachar *const argv[].

% Const cast can be used to strip const. You should almost never do it.
This is the only time | know offhand where const_cast should be used.

) // str is a command to execute
+ Execvp promises to not change FERS IR RO

argv at all, but it is not marked vector<char*> argv;
argv.push_back(const cast<char*>(str.data()));

const all the way since it would | R T}
make correct C code give
warnings when you compile it. }
“Backwards compatibility” 17

execvp(argv.at(@), argv.data());

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Exec Demo

+ See exec example.cpp
= Brief code demo to see how exec works
" What happens when we call exec?

= What happens to allocated memory when we call exec?

 Valgrind command if you want to check children:
valgrind --trace-children=yes

+» Show how this is the same as running the command directly in the shell

19

University of Pennsylvania

L10: processes

CIS 3990, Fall 2025

Ed Discussion

+ In each of these, how oftenis " :) " printed? Assume functions don’t fail

7

int main(int argc, char* argv]([])
pid t pid = fork();
if (pid == 0) |
// we are the child
char* argv|[] = {"echo",
"hello",
nullptr};

execvp (argv[0], argv);

cout << ":)" << endl;

return EXIT_SUCCESS;

D

{ rint main(int argc, char* argv([]) {
char* envp[] = { NULL };
pid t pid = fork();
if (pid == 0) {

// we are the child
return EXIT SUCCESS;

}

cout << ":)" << endl;

return EXIT_SUCCESS;

\

20

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Ed Discussion

+» What are all the valid prints that this code int main() {

could have? pid_t cpid = fork();
weirdprint("fork");

« Assume functions don’t fail

if (cpid == 0) {
cpid = fork();
if (cpid == 0) {
weirdprint("grandchild");
} else {

void weirdprint(const string& to_print) { weirdprint(“child");

vector<char*> argv; }

argv.push_bacK(const cast<char*>("echo")); weirdprint("exiting");
argv.push_back(const_cast<char*>(to_print.data())); exit (EXIT_SUCCESS);
argv.push_back(nullptr); }

execvp(argv.at(0), argv.data()); weirdprint(“parent”);

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Ed Discussion

+» What's wrong with this code? It tries to clone a repo and then compile
the code in that repo. Assume the argv[]’s are set up correctly to do this.

7

int main(int argc, char* argv([]) {]

pid t pid = fork();

if (pid == 0) {
// we are the child
array<const char*, 4> argv[] = {"git", "clone", "repo name.git", nullptr};
execvp (argv[0], const cast<char**>(argv.data()));

}

pid = fork () ;

1t (pid == 0) {
// we are the child
array<const char*, 4> argv = {"make", "-C", "repo name", nullptr};
execvp (argv[0], const cast<char**>(argv.data())):;

}
return EXIT SUCCESS;

22

University of Pennsylvania L10: processes

CIS 3990, Fall 2025

This code is broken. It

main() compiles, but it
f I{ doesn’t do what we
orki) T execvp(clone repo) want. VVI'“/p

|

exit()

fork()
T~ execvp(compile repo)

!

| exit()
exit()

23

University of Pennsylvania

Lecture Outline

+» fork() & virtual memory
% exec

< wait

%~ ordering

L10: processes

CIS 3990, Fall 2025

24

University of Pennsylvania

L10: processes

From a previous poll:

pid t pid = fork();

if (pid == 0) {
// we are the child
array<const char*, 4>

}
pid = fork();
1f (pid == 0) {

// we are the child
array<const char*, 4>

}

return EXIT SUCCESS;

execvp (argv[0], const

execvp (argv[0], const

(int main (int argc, char* argv([]) {

argv[] = {"git", "clone",
"repo name.git",
nullptr};
cast<char**>(argv.data())):;
argv = {"make", "-C",
"repo name", nullptr};
cast<char**>(argv.data())):;

CIS 3990, Fall 2025

This code is broken. It
compiles, but it doesn’t

always do what we want.
Why?

We can’t garuntee the
ordering of the processes, is
there any way we can
synchronize things some?

25

University of Pennsylvania L10: processes CIS 3990, Fall 2025

waitpid()

[pid_t waitpid(pid t pid, int *wstatus, 1int options);

*

By defanlt, ouly waits

_ for in status change +o
- Also cleans up the child process “Lerminated”

= Calling process waits for a child process (specified by pid) to exit

= Gets the exit status of child process through output parameter wstatus
= options are optional, passin O for default options in most cases
= Returns process ID of child who was waited for or =1 on error

26

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Execution Blocking

« When a process calls wait () and there is a process to wait on, the calling
process blocks

+ |f a process blocks or is blocking it is not scheduled for execution.

® |t is not run until some condition “unblocks” it

" Forwait (), it unblocks once there is a status update in a child

27

University of Pennsylvania L10: processes

Fixed code from poll

CIS 3990, Fall 2025

rint main (int argc, char* argv([]) {
// fork a process to exec clang
pid t clone pid = fork();

1f (clone pid == 0) {
// we are the child
array<const char*, 4> argv[] = {"git", "clone", "repo name.git", nullptr};
execvp (argv.at(0), const cast<char**>(argv.data())):

exit (EXIT FAILURE) ;

}
waitpid(clone pid, nullptr, 0); // should error check, not enough slide space

// fork to run the compiled program
pid t make pid = fork();

1f (make pid == 0) {
// the process created by fork
array<const char*, 4> argv = {"make", "-C", "repo name", nullptr};
execvp (argv.at(0), const cast<char**>(argv.data())):

exit (EXIT FAILURE) ;

}
return EXIT SUCCESS;

s

28

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Demo: wait example

+ Seewalt example.cpp

" Brief demo to see how a process blocks when it calls wait()
= Makes use of fork (), execve (), andwait ()

« Execution timeline:

Child exec’s sleep 10

Child exits
< J
Program starts \
> @ R Y o ——
fork () Parent Parent is blocked Parent is unblocked
calls wait finishes wait ()

exits

29

University of Pennsylvania L10: processes CIS 3990, Fall 2025

What if the child finishes first?

+ In the timeline | drew, the parent called wait before the child executed.
= |n the program, it is extremely likely this happens if the child is calling sleep 10

" What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

30

CIS 3990, Fall 2025

University of Pennsylvania L10: processes

Process Tables & Process Control Blocks

+ The operating system maintains a table of all processes that aren’t “completely
done”

+» Each process in this table has a process control block (PCB) to hold information
about it.

+ A PCB can contain:

Process ID

Parent Process ID

Child process IDs

Process Group ID

Status (e.g. running/zombie/etc)

Other things (file descriptors, register values, etc)

31

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Zombie Process

+» Answer: processes that are terminated become “zombies”
m Zombie processes deallocate their address space, don’t run anymore
= still “exists”, has a PCB still, so that a parent can check its status one final time

= |f the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

32

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

Process Table

CIS 3990, Fall 2025

33

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

Process Table

100 J—

PCB: wait_example
id = 100
status = running

CIS 3990, Fall 2025

34

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

Process Table

100 J—

PCB: wait_example
id = 100
status = running

CIS 3990, Fall 2025

35

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid

= 100

SP=>

Stack

I

t

Shared Libraries

t

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
.text, .rodata

fork ()

Process Table

100

PCB: wait_example
id = 100

| _—""| status = running
-

CIS 3990, Fall 2025

36

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example

pid = 100 id 101
Spe= Stalck sp—= Stack
!
' fork |
Shared Libraries O r Shared Libraries
1 1
Heap (malloc/free) Heap (malloc/free)
Read/Write Segments >
oo b;s > mad.'.\g'l;vi: .sbeémnﬁ
=3 Read-Only Segments (2= Read-Only Segments
-text, .rodata -text, .rodata

./wait example

Process Table

100

101

//

PCB: wait_example
id = 100
status = running

PCB: wait_example
id = 101
status = running

CIS 3990, Fall 2025

37

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example
= 100

pid

SP=>

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

walt (&status)

./wait example

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 3990, Fall 2025

38

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait_example | /wait example

pid

SP=>

= 100

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

walt (&status) exec (/bin/sleep)

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 3990, Fall 2025

39

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example /bin/sleep
pid = 100 pid = 101
[ostammisroteemar
= 5‘31"‘ Stack
! 5 Shared Libraries
t
Heap [malloc/free) Heap (malloc/free)
Read/Write Segments Read/Write Segment
.data, .bss .dota, .bss
95} Resc-Ony Segmees e tent rodeta

walt (&status) exec (/bin/sleep)

OS PCB: wait_example
Process Table id = 100
100 ’M,,/”’ status = blocked
101 —
PCB: /bin/sleep
id = 101
status = running

40

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example /bin/sleep
pid = 100 pid = 101
[os termel protectea |
= SYTk Stack
T dLb = Shared Libraries
GI’E'FB"ES
S e
wait (&status) exit ()
0S PCB: wait_example
Process Table id = 100
100 ,/ status = blocked
101
PCB: /bin/sleep
id = 101
status = running
a1

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

walt (&status)

OS PCB: wait_example
Process Table id = 100

100 _| status = blocked

o1 "
PCB: /bin/sleep
id = 101

status = ZOMBIE

42

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example

pid = 100
[08 ermel protectea |
Py Srick
t
Shared I'.\branes
Heap (malloc/free)
nead,f:{;l:; .s:‘émenu
1P =2 Matg‘:\ﬁmenu
walt (&status) N
0S PCB: wait_example \'
Process Table id = 100

status = RUNNING

/
PCB: /bin/sleep
\ilel /

status = ZOMBIE

100
101

43

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

OS PCB: wait_example
Process Table id = 100

100 1—| status = RUNNING

44

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Diagram: wait_example.cpp

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

exit ()

OS PCB: wait_example
Process Table id = 100

100 1—| status = RUNNING

45

University of Pennsylvania

L10: processes

Diagram: wait_example.cpp

User Processes

OS

./wait example
Is reaped by i+s
parent. In our
example, that is the
terminal shell

Process Table

CIS 3990, Fall 2025

46

University of Pennsylvania L10: processes CIS 3990, Fall 2025

wait() status

» status output fromwait () can be passed to a macro to see what changed
WIFEXITED () | true iff the child exited nomrally

WIFSIGNALED () [true iff the child was signaled to exit

WIFSTOPPED () [true iff the child stopped

WIFCONTINUED () |true iff child continued

» Demo: see exampleinexit status.cpp

47

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Lecture Outline

+» fork() & virtual memory
% exec
+ wait

+» ordering

48

CIS 3990, Fall 2025

University of Pennsylvania L10: processes

Linearizability

+» We can think of the actions done within a process as being “linear”

+» A set of operations are linearizable if: The actions performed can be
represented as a sequential history

+» Actions done across processes cannot always be ordered

49

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Lineariza bility Notice Now i is lnear
parent within a single process
+» We can represent this with a DAG begin Peross processes i i
+ Arrows show dependencies on what ‘”i”‘“”f“)'” (n his
i example
must come before/after a certain
operation. A — . dierra

int main() { [.)]
. exec echo

cout << "begin\n"; again
pid t pid = fork(); ¥
if (pid == 09) { madre

cout << "sierra\n"; |
execvp("echo", {"echo", "madre", nullptr}); W

}

cout << "again\n";
waitpid(pid, nullptr, 0); and again
cout << "and again\n";

50

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Polls

+» See Ed ©

51

University of Pennsylvania L10: processes CIS 3990, Fall 2025

Ed Discussion

int main() {

.] pid t pid = fork();

+» How many prints can this program have? if (pid == 0) {

pid = fork();

if (pid == 0) {
execute("echo", "hello");

}

pit t pid2 = fork();

if (pid2 == @) {
execute("echo", "bye");

}
waitpid(pid, nullptr, 0);
void execute(const string& cmd, const string& arg) { waitpid(pid2, nullptr, 0);
vector<char*> argv; cout << "child done\n";
argv.push _back(const cast<char*>(cmd.data())); }
argv.push_back(const cast<char*>(arg.data())); pid = fork();
argv.push_back(nullptr); if (pid == 0) {

exexute("echo", "bingus");

execvp(argv.at(®), argv.data()); }
waitpid(pid, nullptr, 0);

University of Pennsylvania

int main() {
pid t pid = fork();
if (pid == 0) {
pid = fork();
if (pid == 0) {
execute("echo", "hello");
}
pit t pid2 = fork();
if (pid2 == @) {
execute("echo", "bye");
}
waitpid(pid, nullptr, 0);
waitpid(pid2, nullptr, 0);

cout << "child done\n";

}

pid = fork();

if (pid == 0) {
exexute("echo", "bingus");

}
waitpid(pid, nullptr, 0);

L10: processes

fork

CIS 3990, Fall 2025

Ed Discussion

v

fork

exececho]
v
hello

—

exececho]

¥
bye

¢ évb

Child done

AN

exececho]

v
bingus

N—

VAN AR

exececho]

¥
bingus

University of Pennsylvania

That’s all for now!

+ Next time:

" More Processes ©
® The shelll

+ Hopefully you are doing well ©

L10: processes

CIS 3990, Fall 2025

54

	Default Section
	Slide 1: Processes (cont.) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Creating New Processes
	Slide 6: Parent vs Child
	Slide 7: Definition: Process
	Slide 8: OS: Protection System
	Slide 9: Demo: vmem.cpp
	Slide 10: Memory (as we know it from CIS 2400)
	Slide 11: Virtual Address Translation
	Slide 12: Processes & Fork Summary
	Slide 13: Lecture Outline
	Slide 14: execvp()
	Slide 15: Exec Visualization
	Slide 16: const and execv*
	Slide 17: const_cast and execv*
	Slide 19: Exec Demo
	Slide 20: Poll: how are you?
	Slide 21
	Slide 22: Poll: how are you?
	Slide 23: Any questions so far?
	Slide 24: Lecture Outline
	Slide 25: From a previous poll:
	Slide 26: waitpid()
	Slide 27: Execution Blocking
	Slide 28: Fixed code from poll
	Slide 29: Demo: wait_example
	Slide 30: What if the child finishes first?
	Slide 31: Process Tables & Process Control Blocks
	Slide 32: Zombie Process
	Slide 33: Diagram: wait_example.cpp
	Slide 34: Diagram: wait_example.cpp
	Slide 35: Diagram: wait_example.cpp
	Slide 36: Diagram: wait_example.cpp
	Slide 37: Diagram: wait_example.cpp
	Slide 38: Diagram: wait_example.cpp
	Slide 39: Diagram: wait_example.cpp
	Slide 40: Diagram: wait_example.cpp
	Slide 41: Diagram: wait_example.cpp
	Slide 42: Diagram: wait_example.cpp
	Slide 43: Diagram: wait_example.cpp
	Slide 44: Diagram: wait_example.cpp
	Slide 45: Diagram: wait_example.cpp
	Slide 46: Diagram: wait_example.cpp
	Slide 47: wait() status
	Slide 48: Lecture Outline
	Slide 49: Linearizability
	Slide 50: Linearizability
	Slide 51: Polls
	Slide 52
	Slide 53
	Slide 54: That’s all for now!

