
CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Processes (cont.)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Administrivia

❖ HW05 posted after class

▪ Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

▪ Due tomorrow night at midnight

❖ Check-in due before class

▪ Re-opens processed during class

❖ HW06 posted after class Wednesday

▪ Not everything you need will be talked about till Wednesday

▪ Will have extended deadline due to fall break

3

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Lecture Outline

❖ fork() & virtual memory

❖ exec

❖ wait

❖ ordering

4

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

• *almost everything

▪ The new process has a separate virtual address space from the parent

▪ Returns a pid_t which is an integer type.

5

pid_t fork();

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Parent vs Child

❖ After a successful call to fork() there are two processes

▪ The original calling process (the “Parent” in this relationship)

▪ The newly created clone (the “child” in this relationship)

❖ The two processes have different return values from fork() and different
process ID’s

❖ A process can have any number of children, but only one child.

❖ Some operations done on a child can only be done by its parent.

6

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

8

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Demo: vmem.cpp

❖ If processes have separate memory? What happens to points when we fork()?

9

int main() {
 int* ptr = new int(0);
 pid_t pid = fork();

 if (pid == 0) {
 *ptr += 20;
 cout << "I am the child!\n";
 cout << "Address in ptr is: " << ptr << "\n";
 cout << "value at *ptr is: " << *ptr << endl;
 delete ptr;
 } else {
 *ptr += 15;
 cout << "I am the parent!\n";
 cout << "Address in ptr is: " << ptr << "\n";
 cout << "value at *ptr is: " << *ptr << endl;
 delete ptr;
 }
}

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Memory (as we know it from CIS 2400)

❖ The CPU directly uses an address to access a location in memory

10

CPU

0:

1:

2:

3:

4:

5:

...

data

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Virtual Address Translation
❖ Programs don’t know about many of things going on under the hood with

memory. They send an address to the MMU, and the MMU will help get the
data. Programs don’t work with “real” addresses.

11

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x595)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

RAM

Also checks
Caches

Caches

More in 4480/5480

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between the parent and child immediately after fork() is their process id and
the return value from fork() each process gets

12

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Lecture Outline

❖ fork() & virtual memory

❖ exec

❖ wait

❖ ordering

13

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a
C/C++ program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

14

int execvp(const char *file,

 char* const argv[]);

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

15

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

const and execv*

❖ execvp (and the family of exec* functions) are written in C for POSIX

▪ They take in C arrays

▪ They take in a char *const argv[].

❖ Often times we want to use a string() to form argv:

▪ data() gets a pointer to underlying
array/c-string?

▪ Why doesn’t this code work?

16

// str is a command to execute
void execute(const string& str) {
 vector<char*> argv;
 argv.push_back(str.data());
 argv.push_back(nullptr);

 execvp(argv.at(0), argv.data());
}

string::data returns a
const char*

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

const_cast and execv*

❖ execvp (and the family of exec* functions) are written in C for POSIX

▪ They take in C arrays

▪ They take in a char *const argv[].

❖ Const cast can be used to strip const. You should almost never do it.
This is the only time I know offhand where const_cast should be used.

❖ Execvp promises to not change
argv at all, but it is not marked
const all the way since it would
make correct C code give
warnings when you compile it.
“Backwards compatibility” 17

// str is a command to execute
void execute(const string& str) {
 vector<char*> argv;
 argv.push_back(const_cast<char*>(str.data()));
 argv.push_back(nullptr);

 execvp(argv.at(0), argv.data());
}

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

• Valgrind command if you want to check children:
valgrind --trace-children=yes

❖ Show how this is the same as running the command directly in the shell

19

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":)" printed? Assume functions don’t fail

20

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"echo",

 "hello",

 nullptr};

 execvp(argv[0], argv);

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

Ed Discussion

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

❖ What are all the valid prints that this code
could have?

❖ Assume functions don’t fail

21

int main() {
 pid_t cpid = fork();
 weirdprint("fork");

 if (cpid == 0) {
 cpid = fork();
 if (cpid == 0) {
 weirdprint("grandchild");
 } else {
 weirdprint("child");
 }
 weirdprint("exiting");
 exit(EXIT_SUCCESS);
 }
 weirdprint("parent");
}

void weirdprint(const string& to_print) {
 vector<char*> argv;
 argv.push_bacK(const_cast<char*>("echo"));
 argv.push_back(const_cast<char*>(to_print.data()));
 argv.push_back(nullptr);
 execvp(argv.at(0), argv.data());
}

Ed Discussion

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Poll: how are you?

❖ What’s wrong with this code? It tries to clone a repo and then compile
the code in that repo. Assume the argv[]’s are set up correctly to do this.

22

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 array<const char*, 4> argv[] = {"git", "clone", "repo_name.git", nullptr};

 execvp(argv[0], const_cast<char**>(argv.data()));

 }

 pid = fork();

 if (pid == 0) {

 // we are the child

 array<const char*, 4> argv = {"make", "-C", "repo_name", nullptr};

 execvp(argv[0], const_cast<char**>(argv.data()));

 }

 return EXIT_SUCCESS;

}

Ed Discussion

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Any questions so far?

23

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

main()

fork()

fork()

exit()

execvp(clone repo)

execvp(compile repo)

exit()

exit()

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Lecture Outline

❖ fork() & virtual memory

❖ exec

❖ wait

❖ ordering

24

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

From a previous poll:

25

This code is broken. It
compiles, but it doesn’t
always do what we want.
Why?

We can’t garuntee the
ordering of the processes, is
there any way we can
synchronize things some?

broken_autograder.c

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 array<const char*, 4> argv[] = {"git", "clone",

 "repo_name.git",

 nullptr};

 execvp(argv[0], const_cast<char**>(argv.data()));

 }

 pid = fork();

 if (pid == 0) {

 // we are the child

 array<const char*, 4> argv = {"make", "-C",

 "repo_name", nullptr};

 execvp(argv[0], const_cast<char**>(argv.data()));

 }

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter wstatus

▪ options are optional, pass in 0 for default options in most cases

▪ Returns process ID of child who was waited for or -1 on error

26

pid_t waitpid(pid_t pid, int *wstatus, int options);

By default, only waits

for in status change to

“terminated”

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Execution Blocking

❖ When a process calls wait() and there is a process to wait on, the calling
process blocks

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

27

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Fixed code from poll

28

int main(int argc, char* argv[]) {

 // fork a process to exec clang

 pid_t clone_ pid = fork();

 if (clone_pid == 0) {

 // we are the child

 array<const char*, 4> argv[] = {"git", "clone", "repo_name.git", nullptr};

 execvp(argv.at(0), const_cast<char**>(argv.data()));

 exit(EXIT_FAILURE);

 }

 waitpid(clone_pid, nullptr, 0); // should error check, not enough slide space :(

 // fork to run the compiled program

 pid_t make_pid = fork();

 if (make_pid == 0) {

 // the process created by fork

 array<const char*, 4> argv = {"make", "-C", "repo_name", nullptr};

 execvp(argv.at(0), const_cast<char**>(argv.data()));

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Demo: wait_example

❖ See wait_example.cpp

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

29

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the child executed.
▪ In the program, it is extremely likely this happens if the child is calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

30

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes that aren’t “completely
done”

❖ Each process in this table has a process control block (PCB) to hold information
about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

31

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run anymore

▪ still “exists”, has a PCB still, so that a parent can check its status one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

32

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

33

Process Table

User Processes

OS

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

34

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

35

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

36

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

37

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

38

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

39

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

40

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

41

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

42

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

43

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

44

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

45

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Diagram: wait_example.cpp

46

User Processes

OS

Process Table

./wait_example

Is reaped by its

parent. In our

example, that is the

terminal shell

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ Demo: see example in exit_status.cpp

47

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Lecture Outline

❖ fork() & virtual memory

❖ exec

❖ wait

❖ ordering

48

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Linearizability

❖ We can think of the actions done within a process as being “linear”

❖ A set of operations are linearizable if: The actions performed can be
represented as a sequential history

❖ Actions done across processes cannot always be ordered

49

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Linearizability

❖ We can represent this with a DAG

❖ Arrows show dependencies on what
must come before/after a certain
operation.

50

int main() {
 cout << "begin\n";
 pid_t pid = fork();
 if (pid == 0) {
 cout << "sierra\n";
 execvp("echo", {"echo", "madre", nullptr});
 }
 cout << "again\n";
 waitpid(pid, nullptr, 0);
 cout << "and again\n";
}

parent

begin

again

and again

fork

wait

sierra

madre

exec echo

Notice how it is linear

within a single process

Across processes it is

non-linear (in this

example)

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

Polls

❖ See Ed ☺

51

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

❖ How many prints can this program have?

52

void execute(const string& cmd, const string& arg) {
 vector<char*> argv;
 argv.push_back(const_cast<char*>(cmd.data()));
 argv.push_back(const_cast<char*>(arg.data()));
 argv.push_back(nullptr);

 execvp(argv.at(0), argv.data());
}

Ed Discussion

int main() {
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 if (pid == 0) {
 execute("echo", "hello");
 }
 pit_t pid2 = fork();
 if (pid2 == 0) {
 execute("echo", "bye");
 }
 waitpid(pid, nullptr, 0);
 waitpid(pid2, nullptr, 0);
 cout << "child done\n";
 }
 pid = fork();
 if (pid == 0) {
 exexute("echo", "bingus");
 }
 waitpid(pid, nullptr, 0);
}

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

53

Ed Discussion
int main() {
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 if (pid == 0) {
 execute("echo", "hello");
 }
 pit_t pid2 = fork();
 if (pid2 == 0) {
 execute("echo", "bye");
 }
 waitpid(pid, nullptr, 0);
 waitpid(pid2, nullptr, 0);
 cout << "child done\n";
 }
 pid = fork();
 if (pid == 0) {
 exexute("echo", "bingus");
 }
 waitpid(pid, nullptr, 0);
}

parent

fork

wait

fork

exec echo

fork

fork

fork

wait

wait

wait

bingus

exec echo

bingus

exec echo

bye

exec echo

hello

Child done

CIS 3990, Fall 2025L10: processesUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ More Processes ☺

▪ The shell!

❖ Hopefully you are doing well ☺

54

	Default Section
	Slide 1: Processes (cont.) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Creating New Processes
	Slide 6: Parent vs Child
	Slide 7: Definition: Process
	Slide 8: OS: Protection System
	Slide 9: Demo: vmem.cpp
	Slide 10: Memory (as we know it from CIS 2400)
	Slide 11: Virtual Address Translation
	Slide 12: Processes & Fork Summary
	Slide 13: Lecture Outline
	Slide 14: execvp()
	Slide 15: Exec Visualization
	Slide 16: const and execv*
	Slide 17: const_cast and execv*
	Slide 19: Exec Demo
	Slide 20: Poll: how are you?
	Slide 21
	Slide 22: Poll: how are you?
	Slide 23: Any questions so far?
	Slide 24: Lecture Outline
	Slide 25: From a previous poll:
	Slide 26: waitpid()
	Slide 27: Execution Blocking
	Slide 28: Fixed code from poll
	Slide 29: Demo: wait_example
	Slide 30: What if the child finishes first?
	Slide 31: Process Tables & Process Control Blocks
	Slide 32: Zombie Process
	Slide 33: Diagram: wait_example.cpp
	Slide 34: Diagram: wait_example.cpp
	Slide 35: Diagram: wait_example.cpp
	Slide 36: Diagram: wait_example.cpp
	Slide 37: Diagram: wait_example.cpp
	Slide 38: Diagram: wait_example.cpp
	Slide 39: Diagram: wait_example.cpp
	Slide 40: Diagram: wait_example.cpp
	Slide 41: Diagram: wait_example.cpp
	Slide 42: Diagram: wait_example.cpp
	Slide 43: Diagram: wait_example.cpp
	Slide 44: Diagram: wait_example.cpp
	Slide 45: Diagram: wait_example.cpp
	Slide 46: Diagram: wait_example.cpp
	Slide 47: wait() status
	Slide 48: Lecture Outline
	Slide 49: Linearizability
	Slide 50: Linearizability
	Slide 51: Polls
	Slide 52
	Slide 53
	Slide 54: That’s all for now!

