University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

git (fin.), Processes (start)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Administrivia

+» HWOS5 posted after class

® Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

+» Check-in posted after class or tomorrow

" May be super short and just re-opens, since | am a little sick and pretty tired

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Lecture Outline

2 git
% processes

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

git reset

+ git reset --hard <commit>

= Resets the current branch to the specified commit
= DISCARDS ANY CHANGES MADE SINCE THE SPECIFIED COMMIT
= DANGEROUS! RARELY USE (if ever)

+» git reset --soft <commit>

= Resets the current branch to the specified commit
" Changes made since specified commit will still be there, but “to be committed”

+ Pretty useful command: git reset --soft HEAD~1

" Undoes the most recent commit and sends changes back to “Staging”

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

git tags

+ Allows you to mark a specific commit as important.

+» git tag

= Lists the current tags

/
*

*» gilt tag <tag—-name> <commit-hash>

" Creates a tag with the specified name on the specified commit
= |f commit hash is left out, tag will be created on the same commit as HEAD

X/
>

» git push —--tags

" To push tags to remote

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

HWO05 demo

+» HWOS is a little different, so we will demo
= Using the provided script
" Tagging

+» Should be posted later today, shouldn’t take tooooo long we hope

University of Pennsylvania LO9: git & processes

git branch

» Our git tree doesn’t always look like a line.

R/
0’0

we can create branches with diverging history.

main >
can create branches with git branch <name>
git branch --listtolist branches

git checkout <name> to switch head to the
specified branch

" git checkout -b <name> creates and
checks out a branch with specified name

Example:
" git branch debug

CO

)
©

< debug

CIS 3990, Fall 2025

University of Pennsylvania

LO9: git & processes

CIS 3990, Fall 2025

git branch

+» Our git tree doesn’t always look like a line. @
we can create branches with diverging history.

main -2 GD
+» Example: f

" git branch debug

C2) € deb
" git checkout debug <::> =ond
" git commit -m "..."

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

git branch

+» Our git tree doesn’t always look like a line. @
we can create branches with diverging history.
Cl
+» Example:
" git branch debug
" git checkout debug main = < debug

" git commit -m "..."
" git checkout main

" git commit -m "..."

10

University of Pennsylvania

git branch

LO9: git & processes

Our git tree doesn’t always look like a line.

we can create branches with diverging history.

Example:

git
git
git
git
git
git
git
git

branch debug

checkout debug
commit -m "..."
checkout main

commit -m "..."
checkout debug
commit -m "..."

commit -m "..."

®

Cl

main = C2
©
@é debug

CIS 3990, Fall 2025

11

University of Pennsylvania

LO9: git & processes CIS 3990, Fall 2025

git branch

+» Our git tree doesn’t always look like a line. @

we can create branches with diverging history. “
Cl

+» Example:
u
" git checkout main main = ?2
" git checkout -b new feature GD
" git commit -m "..." new feature 9

@ < debug

12

University of Pennsylvania LO9: git & processes

git branch

+» Our git tree doesn’t always look like a line.
we can create branches with diverging history.

L)

Example:

..

" git checkout main

" git checkout -b new feature

" git commit -m "..." new feature =2

git
git

checkout main

commit -m "..."

C3

®

Cl

C2
©,
@ < debug

CIS 3990, Fall 2025

13

University of Pennsylvania

LO9: git & processes

CIS 3990, Fall 2025

git stash

+ git stash: This will take your local changes, save them, while also letting
your “reset” the current state of your repo to the previous commit

% Can inspect your changes with:
= gijt stash list
= gijt stash show

+ To take your changes out of the stash, you use git stash pop (which also

removes it from the stash). git stash apply doesn’t remove from the
stash.

« If pop/apply would conflict, you either resolve it manually or create a a new
branch for your changes: git stash branch <branchname> 14

University of Pennsylvania

LO9: git & processes

Merge branches

. co
+» We can merge branches if we want to Q
include changes from one branch into
another. -

+» Here we want to include debug into main.

main = C2
©
@é debug

CIS 3990, Fall 2025

15

University of Pennsylvania LO9: git & processes

Merge branches

+» We can merge branches if we want to
include changes from one branch into
another.

+» Here we want to include debug into main.

+ Assume HEAD starts at main
" git merge debug

- May need to resolve conflicts here

Cl

C5) €< debug

main =2(cé

CIS 3990, Fall 2025

16

University of Pennsylvania LO9: git & processes

Merge branches

We can merge branches if we want to
include changes from one branch into
another.

Here we want to include debug into main.

Assume HEAD starts at main
" git merge debug

- May need to resolve conflicts here

debug and main can keep growing and be
merged again later

CIS 3990, Fall 2025

Cl

e
< debug
main 9@
17

University of Pennsylvania LO9: git & processes

git rebase

+ git rebaseisan alternative to merge

® Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

+» Re-base -> “base your changes off of a new
foundation.”

« If HEAD is on debug and we invoke

" git rebase main

main =2

®

Cl

C2
©,
@ < debug

CIS 3990, Fall 2025

18

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

git rebase

. . . co
+ git rebase isan alternative to merge

® Can be used to “merge” branches and also

OmO

" gilt rebase main
C5’) < debug

if there are issues like with merge conflicts from o1
last lecture.
main =2 (C3 C2
+ Re-base -> “base your changes off of a new f ’,','.'f.'.‘.,x
foundation.” €2> [ca
i N
+ |f HEAD is on debug and we invoke GD

19

University of Pennsylvania LO9: git & processes

git rebase

+ git rebaseisan alternative to merge

® Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

+» Re-base -> “base your changes off of a new
foundation.”

« If HEAD is on debug and we invoke

" gilt rebase main

CO

Cl

On0,

main =2(C3

C5’) < debug

CIS 3990, Fall 2025

20

CIS 3990, Fall 2025

University of Pennsylvania LO9: git & processes

git rebase

. . . co
+ git rebase isan alternative to merge

® Can be used to “merge” branches and also
if there are issues like with merge conflicts from o1
last lecture.

On0,

C3
+» Re-base -> “base your changes off of a new
foundation.”

Fast forward: only thing to do was move the reference forward
« We can “Fast forward” main to the same

commit as debug:

" git checkout main

main =2 (C5’) <€ debug

" git merge debug .

University of Pennsylvania

LO9: git & processes

Rebase vs merge

+ When to use each?

+» Merge:

" |ncorporate changes from one branch onto another

+» Rebase
" Change the starting point of this branch

CIS 3990, Fall 2025

22

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Pull Request

+ A feature of GitHub to propose merging* a set of commits from one branch
onto another.

«» Often shortened to “PR”

" submit a PR = submit a pull request

+ Gitlab has the same feature* called “merge request”
= | will call it merge request sometimes because that is what | learned.
" |t also makes more sense as a name imo cause it almost always does a merge.

23

University of Pennsylvania

LO9: git & processes

Pull Request (DEMO)

+~ Go to github repository, there should be a tab called “pull requests” you can
use near the top

" You choose a “compare” (source) branch and a “base” (destination) branch
= Write a description and give it a name

= Submit the PR and usually you assign specific people to look at it

CIS 3990, Fall 2025

24

University of Pennsylvania

LO9: git & processes

CIS 3990, Fall 2025

Pull Request

+~ Go to github repository, there should be a tab called “pull requests” you can
use near the top

" You choose a “compare” (source) branch and a “base” (destination) branch
= Write a description and give it a name

= Submit the PR and usually you assign specific people to look at it

%+ The branches can be rebased, merged, fast-forwarded, squashed, etc.

« A PR is just a wrapper around base git features to encourage good
communication & organization:

" You write up your changes

" someone else reviews your changes and accepts or rejects them

- Ifitis rejected, you can fix it and resubmit 25

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

squash
. . CO
% If there are many commits to merge-in, Q
we can combine all commits into one
commit c1

main = C2
©
@é debug

26

University of Pennsylvania LO9: git & processes

CIS 3990, Fall 2025

squash

+ |f there are many commits to merge-in,
we can combine all commits into one
commit
= (assume we are on main)

" git merge --squash debug

+» There will not be any metadata tying the
squash to the “source” commits.

= So, we usually only use this when we are
completely finished with a branch and want to

main =2
@ & debug

©

C
C

merge it into another branch (e,g, main) C6 includes all changes from c2, c4 and c5, but
there is no relationship in the tree.

« Can also be done with a rebase

(The dotted line is just to explain, it won’t show up in git)

27

University of Pennsylvania

LO9: git & processes

Useful resources:

+ Git reference: https://git-scm.com/docs
® Has a cheat sheet: https://git-scm.com/cheat-sheet.html

+» Learn Git Branching: https://learngitbranching.js.org/

= Useful site to play around with branches and make sure you understand them
= Pretty short imo, but still very useful

" Has “levels” you complete

® Can also be used as a sandbox to visualize how different commands affect branches

CIS 3990, Fall 2025

28

https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://learngitbranching.js.org/
https://learngitbranching.js.org/

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

« See Ed Discussion

29

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Lecture Outline

2 git
% processes

30

CIS 3990, Fall 2025

University of Pennsylvania LO9: git & processes

Definition: Process

+» Definition: An instance of a program
that is being executed
(or is ready for execution)

+» Consists of:
" Memory (code, heap, stack, etc)

= Registers used to manage execution
(stack pointer, program counter, ...)

= QOther resources

SP=>

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =>

Read-Only Segments
.text, .rodata

31

CIS 3990, Fall 2025

University of Pennsylvania LO9: git & processes

Computers as we know them now

% In CIS 2400, you learned about hardware, transistors, CMQOS, gates, etc.
+» Once we got to programming, our computer looks something like:

Wl/)&]-f‘ . ‘ ‘ Process
S erssmg/wrow@ WIHN e -
S

« This model is still useful, and can be
used in many settings

32

University of Pennsylvania

LO9: git & processes

Multiple Processes

+» Computers run multiple processes “at the same time”

» One or more processes for each
of the programs on your computer

+» Each process has its own...
" Memory space
" Registers

® Resources

Operating System

CIS 3990, Fall 2025

33

University of Pennsylvania LO9: git & processes

OS: Protection System

+» OS isolates process from each other
= Each process seems to have exclusive use of
memory and the processor.
« Thisis anillusion

« More on Memory when we talk about virtual
memory later in the course

= OS permits controlled sharing between
processes

- E.g. through files, the network, etc.

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

0

O

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(untrusted)

ON
(trusted)

CIS 3990, Fall 2025

34

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously
= Applications for one or more users
- Web browsers, email clients, editors, ...
= Background tasks

- Monitoring network & 1/0 devices

CIS 3990, Fall 2025

LO9: git & processes

University of Pennsylvania

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ves Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

+ Single processor executes multiple processes concurrently

® Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)
= Register values for nonexecuting processes saved in memory

LO9: git & processes CIS 3990, Fall 2025

University of Pennsylvania

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data oo Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

Save current registers in memory

University of Pennsylvania

LO9: git & processes CIS 3990, Fall 2025

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data oo Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

Save current registers in memory

Schedule next process for execution

CIS 3990, Fall 2025

LO9: git & processes

University of Pennsylvania

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ves Data
Code : Code Code
Saved . | Ssaved Saved
registers registers registers
N7
CPU
Registers

1. Save current registers in memory
2. Schedule next process for execution
3. Load saved registers and switch address space (context switch)

University of Pennsylvania

LO9: git & processes

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data oo Data

Code Code Code

Saved Saved Saved
registers registers registers

: < Multicore Processors
CPU CPU :
_ " Multiple CPUs on single chip

Registers Registers

= Share memory

= Each can execute a separate
process

 Scheduling of processors onto
cores done by kernel

®" This is called “Parallelism”

CIS 3990, Fall 2025

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

OS: The Scheduler

= When switching between processes, the OS will run some kernel code
called the “Scheduler”.

= Switching between processes is called a context switch.

+ The scheduler can interrupt a process mid-execution to run some other
process.

+ It is responsible for choosing which processes are run and does its best
to be fair* (Being fair is rather complex).

+ We often simplify this to think of scheduling (and thus the order
processes run) as non-deterministic.”

41

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Process State Lifetime (incomplete)

Wore states in

Process creation future lectures

Selected by the
e.g. fork ()

kernel to run .
Process finished

Ready Terminated

~_ _—

After running for a bit
it is another processes “turn”

Processes can be “interrupted” to
stop ruvving. Throungh something
like a hardware timer interrupt

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Creating New Processes

KX pld_t fork() -

" Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

- *almost everything
" The new process has a separate virtual address space from the parent
" Returnsapid t whichisan integer type.

43

University of Pennsylvania

Fork causes the OS
to clone the
address space

" The copies of the
memory segments are

(nearly) identical

" The new process has
copies of the parent’s

data, stack-allocated
variables, open file
descriptors, etc.

LO9: git & processes

fork () and Address Spaces

Stack

|
1

Shared Libraries

1

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

Stack

SP==

|
1

Shared Libraries

1

Heap (malloc/free)

Read/Write Segment
.data, .bss

[PC==

Read-Only Segment
.text, .rodata

fork ()

CHILD

CIS 3990, Fall 2025

% University of Pennsylvania

LO9: git & processes

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
 Child receives a 0

CIS 3990, Fall 2025

45

% University of Pennsylvania

LO9: git & processes

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
 Child receives a 0

clone

CIS 3990, Fall 2025

46

University of Pennsylvania

LO9: git & processes CIS 3990, Fall 2025

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid child pid
» Child receives a 0

+ Which process runs first?
Up to the scheduler: non-
determinsitic

47

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

"simple" fork () example

fork () ;
cout << "Hello!" << endl;

+» What does this print?

48

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

"simple" fork () example

Parent Process (PID = X) Child Process (PID =Y)
fork () ; fork () ;

e e
cout << "Hello!" << endl; cout << "Hello!" << endl;

+» What does this print?

+ "Hello!\n" is printed twice

49

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

fork () ;
fork () ;
cout << "Hello!" << endl;

+» What does this print?

50

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

int x = 3;

fork () ;

XArar §

cout << x << endl;

+» What does this print?

51

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

+» How many timesis ":)" printed?

int main(int argc, char* argv([]) {
for (int 1 = 0; 1 < 4; i++) {
fork () ;

cout << ":)\n";
return EXIT SUCCESS;
}

52

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

—ppid t fork ret = fork();

1f (fork ret == 0) {
cout << "Child!"™ << endl;
} else {

cout << "Parent!" << endl;

+» What does this print?

53

University of Pennsylvania

fork () example

Parent Process (PID = X)

LO9: git & processes

Child Process (PID =Y)

—ppid t fork ret = fork();

1f (fork ret == 0) {
cout << "Child!"™ << endl;
} else {

cout << "Parent!" << endl;

_quid_t fork ret fork () ;

(fork ret
cout <<
} else {
cout <<

"Child!" << endl;

"Parent!" << endl;

fork ()

CIS 3990, Fall 2025

54

University of Pennsylvania

fork () example

Parent Process (PID = X)

—ppid t fork ret = fork();

LO9: git & processes

Child Process (PID =Y)

_quid_t fork ret = fork();

1f (fork ret == 0) {
cout << "Child!"™ << endl;
} else {

1f (fork ret == 0) {

cout << "Child!"™ << endl;
} else {

cout << "Parent!" << endl;
}

fork ret

pid t fork ret = fork();
1f (fork ret == 0) {

cout << "Child!"™ << endl;
} else {

=P cCcout << "Parent!" << endl;
}

Prints "Parent”

Which prints first?

cout << "Parent!" << endl;
}
fork ret =
pid t fork ret = fork();
1f (fork ret == 0) {
=g cout << "Child!" << endl;
} else {
cout << "Parent!" << endl;

}

Prints "Child"

CIS 3990, Fall 2025

55

University of Pennsylvania

fork () example

LO9: git & processes

—‘cout << "Hello!" << endl;

pid t fork ret = fork();
int x;

1f (fork ret == 0) {
x = 1234;

} else {
x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIS 3990, Fall 2025

56

University of Pennsylvania

fork () example

LO9: git & processes

cout << "Hello!" << endl;

-—p»pid t fork ret = fork();

int x;

1f (fork ret == 0) {
x = 1234;

} else {
x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIS 3990, Fall 2025

57

University of Pennsylvania

fork () example
Parent Process (PID = X)

cout << "Hello!" << endl;
-ppid t fork ret = fork();
int x;

1f (fork ret == 0) {
x = 1234;

} else {
x = 5678;

}

cout << x << endl;

LO9: git & processes

Child Process (PID =Y)

fork_ret =Y

Always prints "Hello"

cout << "Hello!"™ << endl;
pid t fork ret = fork();
int x;

1f (fork ret == 0) {
x = 1234;

} else {
x = 5678;

}

cout << x << endl;

fork ()

fork ret = 0

Does NOT print "Hello"

CIS 3990, Fall 2025

58

University of Pennsylvania

fork () example

Parent Process (PID = X)

cout << "Hello!" << endl;
pid t fork ret = fork();
int x;

1f (fork ret == 0) {
x = 1234;
} else {

- x = 50678;

}
cout << x << endl;

LO9: git & processes

Child Process (PID =Y)

fork_ret =Y

Always prints "Hello"
Always prints "5678"

cout << "Hello!"™ << endl;
pid t fork ret = fork();
int x;

1f (fork ret == 0) {

- x = 1234;

} else {
x = 5678;
}
cout << x << endl;

fork ()

fork ret = 0

Always prints "1234"

CIS 3990, Fall 2025

59

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Exiting a Process

- vold exit(int status);

= Causes the current process to exit normally

= Automatically called by main () when main returns

= Exits with a return status (e.g. EXIT SUCCESS or EXIT FAILURE)
« This is the same int returned by main ()

" The exit status is accessible by the parent process with wait () orwaitpid/().
(more on these in a future lecture)

60

University of Pennsylvania

}

int global num = 1;

void function () {

global num++;
cout << global num << endl;

int main() {

pid t id = fork();

1f (id == 0) {
function () ;
id = fork() ;
1f (id == 0) {
function () ;

}
return EXIT SUCCESS;

}

global num += 2;
cout << global num << endl;
return EXIT SUCCESS;

LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

< How many
numbers are
printed? What
number(s) get
printed from
each process?

61

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

+» Are the following outputs possible?

PAE_E temls Lefe = fHerasi) f Sequence 1: Sequence 2:
lff(firk_iet ;2 kl){ Hi 1 Hi 3
ork ret = for ;]
if (fork ret == 0) { Bye Hi 1
cout << "Hi 31" << endl; Hi 2 Hi 2
} else { Bye Bye
cout << "Hi 2!" << endl; Bye Bye
} Hi 3 Bye
} else {

cout << "Hi1 1!" << endl;

}
cout << "Bye" << endl;

\ J

62

University of Pennsylvania LO9: git & processes

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

® Each process is scheduled by the OS

- Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

" Processes are created by fork() system call

- Only difference between the parent and child immediately after fork() is their process id and
the return value from fork() each process gets

CIS 3990, Fall 2025

63

LO9: git & processes CIS 3990, Fall 2025

University of Pennsylvania

execvp()

» execvp int execvp (const char *file,
char* const argvl(]):;

+» Duplicates the action of the shell (terminal) in terms of finding the

command/program to run
« Argv is an array of char*, the same kind of argv that is passedtomain () ina

C/C++ program

" argv[0] MUST have the same contents as the file parameter
= argv must have NULL/nullptr as the last entry of the array

<« Returns -1 on error. Does NOT return on success

64

University of Pennsylvania

Exec Visualization

LO9: git & processes

+» Exec takes a process and discards or “resets” most of it

Stack

Shared Libraries

Stack

SP==

1
T

PC=

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

example.cpp

v

T

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

other.cpp

NOTE that the following
DO change

- The stack

- The heap

- Globals

- Loaded code

- Registers

NOTE that the following
do NOT change

- Process ID

- Open files

- The kernel

CIS 3990, Fall 2025

65

CIS 3990, Fall 2025

University of Pennsylvania LO9: git & processes

Exec Demo

+ See exec example.cpp
= Brief code demo to see how exec works
" What happens when we call exec?
= What happens if we open some files before exec?
= What happens if we replace stdout with a file?

+« NOTE: When a process exits, then it will close all of its open files by default

66

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Exec Demo

+ See exec example.cpp

= Brief code demo to see how exec works
" What happens when we call exec?
= What happens to allocated memory when we call exec?

67

University of Pennsylvania

LO9: git & processes

CIS 3990, Fall 2025

Ed Discussion

+ In each of these, how oftenis " :) " printed? Assume functions don’t fail

7

int main (int argc, char* argvi]) { [int main(int argc, char* argvi]) {
char* envp[] = { NULL };
pid t pid = fork();
if (pid == 0) { pid t pid = fork();
// we are the child if (pid == 0) {
char* argv[] = {"echo", // we are the child
"hello", return EXIT SUCCESS;
nullptr}; }
execvp (argv[0], argv):;
} cout << ":)" << endl;
cout << ":)" << endl; return EXIT SUCCESS;

return EXIT_SUCCESS;

\

68

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

Ed Discussion

+» What's wrong with this code? It tries to clone a repo and then compile
the code in that repo. Assume the argv[]’s are set up correctly to do this.

7

int main(int argc, char* argv([]) {)

pid t pid = fork();

if (pid == 0) {
// we are the child
char* argv[] = {"git", "clone", "repo name.git", nullptr};

execvp (argv([0], argv);

}

pid = fork () ;
1f (pid == 0) {
// we are the child
char* argv[] = {"make", "-C", "repo name", nullptr};

execvp (argv([0], argv);

}
return EXIT SUCCESS;

69

University of Pennsylvania LO9: git & processes CIS 3990, Fall 2025

That’s all for now!

+ Next time:

=" More Processes ©

+ Hopefully you are doing well ©

70

	Default Section
	Slide 1: git (fin.), Processes (start) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: git reset
	Slide 6: git tags
	Slide 7: HW05 demo
	Slide 8: git branch
	Slide 9: git branch
	Slide 10: git branch
	Slide 11: git branch
	Slide 12: git branch
	Slide 13: git branch
	Slide 14: git stash
	Slide 15: Merge branches
	Slide 16: Merge branches
	Slide 17: Merge branches
	Slide 18: git rebase
	Slide 19: git rebase
	Slide 20: git rebase
	Slide 21: git rebase
	Slide 22: Rebase vs merge
	Slide 23: Pull Request
	Slide 24: Pull Request (DEMO)
	Slide 25: Pull Request
	Slide 26: squash
	Slide 27: squash
	Slide 28: Useful resources:
	Slide 29: "simple" fork() example
	Slide 30: Lecture Outline
	Slide 31: Definition: Process
	Slide 32: Computers as we know them now
	Slide 33: Multiple Processes
	Slide 34: OS: Protection System
	Slide 35: Multiprocessing: The Illusion
	Slide 36: Multiprocessing: The (Traditional) Reality
	Slide 37: Multiprocessing: The (Traditional) Reality
	Slide 38: Multiprocessing: The (Traditional) Reality
	Slide 39: Multiprocessing: The (Traditional) Reality
	Slide 40: Multiprocessing: The (Modern) Reality
	Slide 41: OS: The Scheduler
	Slide 42: Process State Lifetime (incomplete)
	Slide 43: Creating New Processes
	Slide 44: fork() and Address Spaces
	Slide 45: fork()
	Slide 46: fork()
	Slide 47: fork()
	Slide 48: "simple" fork() example
	Slide 49: "simple" fork() example
	Slide 50: "simple" fork() example
	Slide 51: "simple" fork() example
	Slide 52
	Slide 53: fork() example
	Slide 54: fork() example
	Slide 55: fork() example
	Slide 56: fork() example
	Slide 57: fork() example
	Slide 58: fork() example
	Slide 59: fork() example
	Slide 60: Exiting a Process
	Slide 61
	Slide 62: Polling Question
	Slide 63: Processes & Fork Summary
	Slide 64: execvp()
	Slide 65: Exec Visualization
	Slide 66: Exec Demo
	Slide 67: Exec Demo
	Slide 68: Poll: how are you?
	Slide 69: Poll: how are you?
	Slide 70: That’s all for now!

