
CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git (fin.), Processes (start)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Administrivia

❖ HW05 posted after class

▪ Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

❖ Check-in posted after class or tomorrow

▪ May be super short and just re-opens, since I am a little sick and pretty tired

3

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Lecture Outline

❖ git

❖ processes

4

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git reset

❖ git reset --hard <commit>

▪ Resets the current branch to the specified commit

▪ DISCARDS ANY CHANGES MADE SINCE THE SPECIFIED COMMIT

▪ DANGEROUS! RARELY USE (if ever)

❖ git reset --soft <commit>

▪ Resets the current branch to the specified commit

▪ Changes made since specified commit will still be there, but “to be committed”

❖ Pretty useful command: git reset --soft HEAD~1

▪ Undoes the most recent commit and sends changes back to “Staging”

5

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git tags

❖ Allows you to mark a specific commit as important.

❖ git tag

▪ Lists the current tags

❖ git tag <tag-name> <commit-hash>

▪ Creates a tag with the specified name on the specified commit

▪ If commit hash is left out, tag will be created on the same commit as HEAD

❖ git push --tags

▪ To push tags to remote

6

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

HW05 demo

❖ HW05 is a little different, so we will demo

▪ Using the provided script

▪ Tagging

❖ Should be posted later today, shouldn’t take tooooo long we hope

7

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ can create branches with git branch <name>

❖ git branch --list to list branches

❖ git checkout <name> to switch head to the
specified branch
▪ git checkout –b <name> creates and

checks out a branch with specified name

❖ Example:
▪ git branch debug

8

C0

C1  debugmain →

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."

9

C0

C1

 debug

main →

C2

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."

▪ git checkout main

▪ git commit –m "..."

10

C0

C1

 debugmain → C2C3

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."

▪ git checkout main

▪ git commit –m "..."

▪ git checkout debug

▪ git commit –m "..."

▪ git commit –m "..."

11

C0

C1

main → C2C3

C4

 debugC5

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ …

▪ git checkout main

▪ git checkout –b new_feature

▪ git commit -m "..."

12

C0

C1

main → C2C3

C4

 debugC5

new_feature → C6

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ …

▪ git checkout main

▪ git checkout –b new_feature

▪ git commit -m "..."

▪ git checkout main

▪ git commit -m "..."

13

C0

C1

main →

C2C3

C4

 debugC5

new_feature → C6
C7

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git stash

❖ git stash: This will take your local changes, save them, while also letting
your “reset” the current state of your repo to the previous commit

❖ Can inspect your changes with:

▪ git stash list

▪ git stash show

❖ To take your changes out of the stash, you use git stash pop (which also
removes it from the stash). git stash apply doesn’t remove from the
stash.

❖ If pop/apply would conflict, you either resolve it manually or create a a new
branch for your changes: git stash branch <branchname> 14

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Merge branches

❖ We can merge branches if we want to
include changes from one branch into
another.

❖ Here we want to include debug into main.

15

C0

C1

main → C2C3

C4

 debugC5

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Merge branches

❖ We can merge branches if we want to
include changes from one branch into
another.

❖ Here we want to include debug into main.

❖ Assume HEAD starts at main
▪ git merge debug

• May need to resolve conflicts here

16

C0

C1

C2C3

C4

 debugC5

main → C6

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Merge branches

❖ We can merge branches if we want to
include changes from one branch into
another.

❖ Here we want to include debug into main.

❖ Assume HEAD starts at main
▪ git merge debug

• May need to resolve conflicts here

❖ debug and main can keep growing and be
merged again later

17

C0

C1

C2C3

C4

C5

main →

C6
 debugC7

C8

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

❖ Re-base -> “base your changes off of a new
foundation.”

❖ If HEAD is on debug and we invoke

▪ git rebase main

18

C0

C1

main → C2C3

C4

 debugC5

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

❖ Re-base -> “base your changes off of a new
foundation.”

❖ If HEAD is on debug and we invoke
▪ git rebase main

19

C0

C1

main → C2C3

C4

C5

C2’

C4’

 debugC5’

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

❖ Re-base -> “base your changes off of a new
foundation.”

❖ If HEAD is on debug and we invoke
▪ git rebase main

20

C0

C1

main → C3

C2’

C4’

 debugC5’

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from
last lecture.

❖ Re-base -> “base your changes off of a new
foundation.”

❖ We can “Fast forward” main to the same
commit as debug:
▪ git checkout main

▪ git merge debug
21

C0

C1

main →

C3

C2’

C4’

 debugC5’

Fast forward: only thing to do was move the reference forward

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Rebase vs merge

❖ When to use each?

❖ Merge:

▪ Incorporate changes from one branch onto another

❖ Rebase

▪ Change the starting point of this branch

22

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Pull Request

❖ A feature of GitHub to propose merging* a set of commits from one branch
onto another.

❖ Often shortened to “PR”

▪ submit a PR → submit a pull request

❖ Gitlab has the same feature* called “merge request”

▪ I will call it merge request sometimes because that is what I learned.

▪ It also makes more sense as a name imo cause it almost always does a merge.

23

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Pull Request (DEMO)

❖ Go to github repository, there should be a tab called “pull requests” you can
use near the top

▪ You choose a “compare” (source) branch and a “base” (destination) branch

▪ Write a description and give it a name

▪ Submit the PR and usually you assign specific people to look at it

24

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Pull Request

❖ Go to github repository, there should be a tab called “pull requests” you can
use near the top

▪ You choose a “compare” (source) branch and a “base” (destination) branch

▪ Write a description and give it a name

▪ Submit the PR and usually you assign specific people to look at it

❖ The branches can be rebased, merged, fast-forwarded, squashed, etc.

❖ A PR is just a wrapper around base git features to encourage good
communication & organization:

▪ You write up your changes

▪ someone else reviews your changes and accepts or rejects them

• If it is rejected, you can fix it and resubmit 25

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

squash

❖ If there are many commits to merge-in,
we can combine all commits into one
commit

26

C0

C1

main → C2C3

C4

 debugC5

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

squash

❖ If there are many commits to merge-in,
we can combine all commits into one
commit

▪ (assume we are on main)

▪ git merge --squash debug

❖ There will not be any metadata tying the
squash to the “source” commits.

▪ So, we usually only use this when we are
completely finished with a branch and want to
merge it into another branch (e.g. main)

❖ Can also be done with a rebase
27

C0

C1

main →

C2C3

C4

 debugC5

C6

C6 includes all changes from c2, c4 and c5, but
there is no relationship in the tree.

(The dotted line is just to explain, it won’t show up in git)

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Useful resources:

❖ Git reference: https://git-scm.com/docs

▪ Has a cheat sheet: https://git-scm.com/cheat-sheet.html

❖ Learn Git Branching: https://learngitbranching.js.org/

▪ Useful site to play around with branches and make sure you understand them

▪ Pretty short imo, but still very useful

▪ Has “levels” you complete

▪ Can also be used as a sandbox to visualize how different commands affect branches

28

https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://git-scm.com/cheat-sheet.html
https://learngitbranching.js.org/
https://learngitbranching.js.org/

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

"simple" fork() example

❖ See Ed Discussion

29

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Lecture Outline

❖ git

❖ processes

30

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

31

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, CMOS, gates, etc.

❖ Once we got to programming, our computer looks something like:

❖ This model is still useful, and can be
used in many settings

32

Computer

Operating System

Process

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

33

Computer

Operating System

P1 P2 P3 Pn…

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

34

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run some kernel code

called the “Scheduler”.

▪ Switching between processes is called a context switch.

❖ The scheduler can interrupt a process mid-execution to run some other

process.

❖ It is responsible for choosing which processes are run and does its best

to be fair* (Being fair is rather complex).

❖ We often simplify this to think of scheduling (and thus the order
processes run) as non-deterministic.*

41

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Process State Lifetime (incomplete)
More states in

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to

stop running. Through something

like a hardware timer interrupt

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

• *almost everything

▪ The new process has a separate virtual address space from the parent

▪ Returns a pid_t which is an integer type.

43

pid_t fork();

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

44

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

45

parent

OS

fork()

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

46

parent child

OS

clone

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

❖ Which process runs first?
Up to the scheduler: non-
determinsitic

47

parent child

OS

child pid 0

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

48

fork();

cout << "Hello!" << endl;

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

❖ "Hello!\n" is printed twice

49

fork();

cout << "Hello!" << endl;

fork();

cout << "Hello!" << endl;

Parent Process (PID = X) Child Process (PID = Y)

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

50

fork();

fork();

cout << "Hello!" << endl;

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

51

int x = 3;

fork();

x++;

cout << x << endl;

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

❖ How many times is ":)" printed?

52

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 cout << ":)\n";

 return EXIT_SUCCESS;

}

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

❖ What does this print?

fork() example

53

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

54

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

55

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 cout << "Child!" << endl;

} else {

 cout << "Parent!" << endl;

}

Prints "Parent" Prints "Child"Which prints first?

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

56

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

57

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

58

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

fork() example

59

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Always prints "5678" Always prints "1234"

fork_ret = Y fork_ret = 0

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid().
 (more on these in a future lecture)

60

void exit(int status);

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

❖ How many
numbers are
printed? What
number(s) get
printed from
each process?

61

Ed Discussion

int global_num = 1;

void function() {

 global_num++;

 cout << global_num << endl;

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 cout << global_num << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

62

pid_t fork_ret = fork();

if (fork_ret == 0) {

 fork_ret = fork();

 if (fork_ret == 0) {

 cout << "Hi 3!" << endl;

 } else {

 cout << "Hi 2!" << endl;

 }

} else {

 cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between the parent and child immediately after fork() is their process id and
the return value from fork() each process gets

63

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a
C/C++ program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

64

int execvp(const char *file,

 char* const argv[]);

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

65

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its open files by default

66

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

67

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":)" printed? Assume functions don’t fail

68

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"echo",

 "hello",

 nullptr};

 execvp(argv[0], argv);

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 cout << ":)" << endl;

 return EXIT_SUCCESS;

}

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Poll: how are you?

❖ What’s wrong with this code? It tries to clone a repo and then compile
the code in that repo. Assume the argv[]’s are set up correctly to do this.

69

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"git", "clone", "repo_name.git", nullptr};

 execvp(argv[0], argv);

 }

 pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"make", "-C", "repo_name", nullptr};

 execvp(argv[0], argv);

 }

 return EXIT_SUCCESS;

}

Ed Discussion

CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ More Processes ☺

❖ Hopefully you are doing well ☺

70

	Default Section
	Slide 1: git (fin.), Processes (start) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: git reset
	Slide 6: git tags
	Slide 7: HW05 demo
	Slide 8: git branch
	Slide 9: git branch
	Slide 10: git branch
	Slide 11: git branch
	Slide 12: git branch
	Slide 13: git branch
	Slide 14: git stash
	Slide 15: Merge branches
	Slide 16: Merge branches
	Slide 17: Merge branches
	Slide 18: git rebase
	Slide 19: git rebase
	Slide 20: git rebase
	Slide 21: git rebase
	Slide 22: Rebase vs merge
	Slide 23: Pull Request
	Slide 24: Pull Request (DEMO)
	Slide 25: Pull Request
	Slide 26: squash
	Slide 27: squash
	Slide 28: Useful resources:
	Slide 29: "simple" fork() example
	Slide 30: Lecture Outline
	Slide 31: Definition: Process
	Slide 32: Computers as we know them now
	Slide 33: Multiple Processes
	Slide 34: OS: Protection System
	Slide 35: Multiprocessing: The Illusion
	Slide 36: Multiprocessing: The (Traditional) Reality
	Slide 37: Multiprocessing: The (Traditional) Reality
	Slide 38: Multiprocessing: The (Traditional) Reality
	Slide 39: Multiprocessing: The (Traditional) Reality
	Slide 40: Multiprocessing: The (Modern) Reality
	Slide 41: OS: The Scheduler
	Slide 42: Process State Lifetime (incomplete)
	Slide 43: Creating New Processes
	Slide 44: fork() and Address Spaces
	Slide 45: fork()
	Slide 46: fork()
	Slide 47: fork()
	Slide 48: "simple" fork() example
	Slide 49: "simple" fork() example
	Slide 50: "simple" fork() example
	Slide 51: "simple" fork() example
	Slide 52
	Slide 53: fork() example
	Slide 54: fork() example
	Slide 55: fork() example
	Slide 56: fork() example
	Slide 57: fork() example
	Slide 58: fork() example
	Slide 59: fork() example
	Slide 60: Exiting a Process
	Slide 61
	Slide 62: Polling Question
	Slide 63: Processes & Fork Summary
	Slide 64: execvp()
	Slide 65: Exec Visualization
	Slide 66: Exec Demo
	Slide 67: Exec Demo
	Slide 68: Poll: how are you?
	Slide 69: Poll: how are you?
	Slide 70: That’s all for now!

