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Poll: how are you?

❖ How are you? Any feedback?
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Administrivia

❖ HW05 posted after class

▪ Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

❖ Check-in posted after class or tomorrow

▪ May be super short and just re-opens, since I am a little sick and pretty tired
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Lecture Outline

❖ git

❖ processes
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git reset

❖ git reset --hard <commit>

▪ Resets the current branch to the specified commit

▪ DISCARDS ANY CHANGES MADE SINCE THE SPECIFIED COMMIT

▪ DANGEROUS! RARELY USE (if ever)

❖ git reset --soft <commit>

▪ Resets the current branch to the specified commit

▪ Changes made since specified commit will still be there, but “to be committed”

❖ Pretty useful command: git reset --soft HEAD~1

▪ Undoes the most recent commit and sends changes back to “Staging”

5
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git tags

❖ Allows you to mark a specific commit as important.

❖ git tag

▪ Lists the current tags

❖ git tag <tag-name> <commit-hash>

▪ Creates a tag with the specified name on the specified commit

▪ If commit hash is left out, tag will be created on the same commit as HEAD

❖ git push --tags

▪ To push tags to remote 

6
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HW05 demo

❖ HW05 is a little different, so we will demo

▪ Using the provided script

▪ Tagging

❖ Should be posted later today, shouldn’t take tooooo long we hope

7
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ can create branches with git branch <name>

❖ git branch --list to list branches

❖ git checkout <name> to switch head to the
specified branch
▪ git checkout –b <name> creates and

checks out a branch with specified name

❖ Example:
▪ git branch debug

8
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."

▪ git checkout main

▪ git commit –m "..."
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ git branch debug

▪ git checkout debug

▪ git commit –m "..."

▪ git checkout main

▪ git commit –m "..."

▪ git checkout debug

▪ git commit –m "..."

▪ git commit –m "..."
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ …

▪ git checkout main

▪ git checkout –b new_feature

▪ git commit -m "..."
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git branch

❖ Our git tree doesn’t always look like a line.
we can create branches with diverging history.

❖ Example:
▪ …

▪ git checkout main

▪ git checkout –b new_feature

▪ git commit -m "..."

▪ git checkout main

▪ git commit -m "..."
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C0

C1

main →

C2C3

C4

 debugC5

new_feature → C6
C7
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git stash

❖ git stash: This will take your local changes, save them, while also letting 
your “reset” the current state of your repo to the previous commit

❖ Can inspect your changes with:

▪ git stash list

▪ git stash show

❖ To take your changes out of the stash, you use git stash pop (which also 
removes it from the stash). git stash apply doesn’t remove from the 
stash.

❖ If pop/apply would conflict, you either resolve it manually or create a a new 
branch for your changes: git stash branch <branchname> 14



CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Merge branches

❖ We can merge branches if we want to 
include changes from one branch into 
another.

❖ Here we want to include debug into main.

15
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Merge branches

❖ We can merge branches if we want to 
include changes from one branch into 
another.

❖ Here we want to include debug into main.

❖ Assume HEAD starts at main
▪ git merge debug 

• May need to resolve conflicts here

16
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Merge branches

❖ We can merge branches if we want to 
include changes from one branch into 
another.

❖ Here we want to include debug into main.

❖ Assume HEAD starts at main
▪ git merge debug 

• May need to resolve conflicts here

❖ debug and main can keep growing and be 
merged again later
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git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from 
last lecture.

❖ Re-base -> “base your changes off of a new 
foundation.”

❖ If HEAD is on debug and we invoke

▪ git rebase main

18

C0

C1

main → C2C3

C4

 debugC5



CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from 
last lecture.

❖ Re-base -> “base your changes off of a new 
foundation.”

❖ If HEAD is on debug and we invoke
▪ git rebase main
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git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from 
last lecture.

❖ Re-base -> “base your changes off of a new 
foundation.”

❖ If HEAD is on debug and we invoke
▪ git rebase main
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git rebase

❖ git rebase is an alternative to merge

▪ Can be used to “merge” branches and also
if there are issues like with merge conflicts from 
last lecture.

❖ Re-base -> “base your changes off of a new 
foundation.”

❖ We can “Fast forward” main to the same 
commit as debug:
▪ git checkout main

▪ git merge debug
21

C0

C1

main →

C3

C2’

C4’

 debugC5’

Fast forward: only thing to do was move the reference forward
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Rebase vs merge

❖ When to use each?

❖ Merge:

▪ Incorporate changes from one branch onto another

❖ Rebase

▪ Change the starting point of this branch 

22
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Pull Request

❖ A feature of GitHub to propose merging* a set of commits from one branch 
onto another.

❖ Often shortened to “PR”

▪ submit a PR → submit a pull request

❖ Gitlab has the same feature* called “merge request”

▪ I will call it merge request sometimes because that is what I learned.

▪ It also makes more sense as a name imo cause it almost always does a merge.

23
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Pull Request (DEMO)

❖ Go to github repository, there should be a tab called “pull requests” you can 
use near the top

▪ You choose a “compare” (source) branch and a “base” (destination) branch

▪ Write a description and give it a name

▪ Submit the PR and usually you assign specific people to look at it

24
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Pull Request

❖ Go to github repository, there should be a tab called “pull requests” you can 
use near the top

▪ You choose a “compare” (source) branch and a “base” (destination) branch

▪ Write a description and give it a name

▪ Submit the PR and usually you assign specific people to look at it

❖ The branches can be rebased, merged, fast-forwarded, squashed, etc.

❖ A PR is just a wrapper around base git features to encourage good 
communication & organization:

▪ You write up your changes

▪ someone else reviews your changes and accepts or rejects them

• If it is rejected, you can fix it and resubmit 25
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squash

❖ If there are many commits to merge-in, 
we can combine all commits into one 
commit

26
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squash

❖ If there are many commits to merge-in, 
we can combine all commits into one 
commit

▪ (assume we are on main)

▪ git merge --squash debug

❖ There will not be any metadata tying the 
squash to the “source” commits.

▪ So, we usually only use this when we are 
completely finished with a branch and want to 
merge it into another branch (e.g. main)

❖ Can also be done with a rebase
27

C0

C1

main →

C2C3

C4

 debugC5

C6

C6 includes all changes from c2, c4 and c5, but
there is no relationship in the tree.

(The dotted line is just to explain, it won’t show up in git) 
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Useful resources:

❖ Git reference: https://git-scm.com/docs 

▪ Has a cheat sheet: https://git-scm.com/cheat-sheet.html 

❖ Learn Git Branching: https://learngitbranching.js.org/ 

▪ Useful site to play around with branches and make sure you understand them

▪ Pretty short imo, but still very useful

▪ Has “levels” you complete

▪ Can also be used as a sandbox to visualize how different commands affect branches

28
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"simple" fork() example

❖ See Ed Discussion

29

Ed Discussion
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Lecture Outline

❖ git

❖ processes

30
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Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

31

OS kernel [protected]
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Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, CMOS, gates, etc.

❖ Once we got to programming, our computer looks something like:

❖ This model is still useful, and can be
used in many settings

32

Computer

Operating System

Process
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Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

33

Computer

Operating System

P1 P2 P3 Pn…
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OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of 

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between 
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU
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Heap

Code
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CPU
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…



CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate 
process

• Scheduling of processors onto 
cores done by kernel

▪ This is called “Parallelism”
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OS: The Scheduler

❖ When switching between processes, the OS will run some kernel code 

called the “Scheduler”.

▪ Switching between processes is called a context switch.

❖ The scheduler can interrupt a process mid-execution to run some other 

process.

❖ It is responsible for choosing which processes are run and does its best 

to be fair* (Being fair is rather complex).

❖ We often simplify this to think of scheduling (and thus the order 
processes run) as non-deterministic.*

41
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Process State Lifetime (incomplete)
More states in 

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to 

stop running. Through something 

like a hardware timer interrupt
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Creating New Processes

❖  

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the 
“parent”)

• *almost everything

▪ The new process has a separate virtual address space from the parent

▪ Returns a pid_t which is an integer type.

43

pid_t fork();
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fork() and Address Spaces

❖ Fork causes the OS
to clone the 
address space
▪ The copies of the 

memory segments are 
(nearly) identical

▪ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.

44

OS kernel [protected]
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Heap (malloc/free)

Read/Write Segment
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Read-Only Segment
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

45

parent

OS

fork()
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

46

parent child

OS

clone
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

❖ Which process runs first?
Up to the scheduler: non-
determinsitic

47

parent child

OS

child pid 0
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"simple" fork() example

❖ What does this print?

48

fork();

cout << "Hello!" << endl;
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"simple" fork() example

❖ What does this print?

❖ "Hello!\n" is printed twice

49

fork();

cout << "Hello!" << endl;

fork();

cout << "Hello!" << endl;

Parent Process (PID = X) Child Process  (PID = Y)
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"simple" fork() example

❖ What does this print?

50

fork();

fork();

cout << "Hello!" << endl;

Ed Discussion
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"simple" fork() example

❖ What does this print?

51

int x = 3;

fork();

x++;

cout << x << endl;

Ed Discussion
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❖ How many times is ":)" printed?

52

int main(int argc, char* argv[]) {

  for (int i = 0; i < 4; i++) {

    fork();

  }

  cout << ":)\n";

  return EXIT_SUCCESS;

}

Ed Discussion
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❖ What does this print?

fork() example

53

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

Ed Discussion
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fork() example

54

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process  (PID = Y)
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fork() example

55

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

Parent Process (PID = X) Child Process  (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  cout << "Child!" << endl;

} else {

  cout << "Parent!" << endl;

}

Prints "Parent" Prints "Child"Which prints first?
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fork() example

56

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

Always prints "Hello"
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fork() example

57

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

Always prints "Hello"
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fork() example

58

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

fork()

Child Process  (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0
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fork() example

59

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 1234; 

} else {

  x = 5678;

}

cout << x << endl;

fork()

Child Process  (PID = Y)Parent Process (PID = X)

Always prints "5678" Always prints "1234"

fork_ret = Y fork_ret = 0
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Exiting a Process

❖  

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid().
 (more on these in a future lecture)

60

void exit(int status);
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❖ How many 
numbers are 
printed? What 
number(s) get 
printed from 
each process?

61

Ed Discussion

int global_num = 1;

void function() {

  global_num++;

  cout << global_num << endl;

}

int main() {

  pid_t id = fork();

 if (id == 0) {

    function();

    id = fork();

    if (id == 0) {

      function();

    }

    return EXIT_SUCCESS;

  }

  global_num += 2;

  cout << global_num << endl;

  return EXIT_SUCCESS;

}
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Polling Question

❖ Are the following outputs possible?

62

pid_t fork_ret = fork();

if (fork_ret == 0) {

  fork_ret = fork();

  if (fork_ret == 0) {

    cout << "Hi 3!" << endl;

  } else {

    cout << "Hi 2!" << endl;

  }

} else {

  cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Ed Discussion
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Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between the parent and child immediately after fork() is their process id and
the return value from fork() each process gets

63
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execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the 
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a 
C/C++ program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

64

int execvp(const char *file,

    char* const argv[]);



CIS 3990, Fall 2025L09: git & processesUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

65

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cpp

other.cpp

NOTE that the following 
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following 
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers
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Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its open files by default

66
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Exec Demo

❖ See exec_example.cpp

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

67
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Poll: how are you?

❖ In each of these, how often is ":)" printed? Assume functions don’t fail

68

int main(int argc, char* argv[]) {

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"echo",

                    "hello",

                    nullptr};

    execvp(argv[0], argv);

  }

  cout << ":)" << endl;

  return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    return EXIT_SUCCESS;

  }

  cout << ":)" << endl;

  return EXIT_SUCCESS;

}

Ed Discussion
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Poll: how are you?

❖ What’s wrong with this code? It tries to clone a repo and then compile
the code in that repo. Assume the argv[]’s are set up correctly to do this.

69

int main(int argc, char* argv[]) {

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"git", "clone", "repo_name.git", nullptr};

    execvp(argv[0], argv);

  }

  pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"make", "-C", "repo_name", nullptr};

    execvp(argv[0], argv);

  }

  return EXIT_SUCCESS;

}

Ed Discussion
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That’s all for now!

❖ Next time:

▪ More Processes ☺

❖ Hopefully you are doing well ☺

70
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