University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Locality (fin) & git (start)

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania LO8: Locality & git

Administrivia

+ HWO04 Due Tomorrow

+» HWOS5 posted Wednesday

= Since you won’t have everything you need till Wednesday

® Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

«» Check-in Due before lecture

= Assignment re-opens processed during/soon after lecture

CIS 3990, Fall 2025

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Lecture Outline

+ Locality Wrap-up

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Memory Hierarchy (again)

LO

CPU registers hold words retrieved

Smaller, 11 h from the L1 cache.
faster, L1: Cache
and (SRAM) L1 cache holds cache lines retrieved
costlier from the L2 cache.
(per byte) L2: L2 cache
per byt (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage | Local secondary storage
devices (local disks)

Local disks hold files
retrieved from disks
on remote servers.

Remote secondary storage
(e.g., Web servers)

CIS 3990, Fall 2025

University of Pennsylvania LO8: Locality & git

Numbers Everyone Should Know

There is a set of numbers that called “numbers everyone you should know”

Numbers Everyone Should Know

From JEff Dean |n 2009 L1 cache reference 0.5 ns
Branch mispredict 5 ns
Numbers are out of date L2 cache reference 7 ns
. Mutex lock/unlock 100 ns
but the relative orders of Main memory reference 100 ns
. Compress 1K bytes with Zippy 10,000 ns
magnltUde are Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
abOUt the Same Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
More up to date numbers: Send packet CA->Netherlands->CA 150,000,000 ns
Go 31\‘

https://colin-

scott.github.io/personal website/research/interactive latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Inheritance Refresher

o i int? ic i public class A {
» What does this print? (This is Java code @) ublic void compute() {

import java.util.Arraylist; System.out.println("A::compute");
import java.util.List; } }
public class ICacheExample { b1 1 4
public static void main(String[] args) { pu ;;,C as§dB extends A {
List<A> 1 = new ArrayList<A>(); public vol comPute() {
System.out.println("B::compute");
.add(new A()); }
.add(new C()); }

.add(new A()); .
.add(new B()); public class C extends A {

public void compute() {
for (A item : 1) { System.out.println("C: :compute");

item.compute(); }

}

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Instruction Cache

+» The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this

= which is why you may see something like L1 I cache and L.1D cache, for Instructions and
Data respectively

+» Consider the previous example, it jumped between the different compute
funCtionS! class B extends A {

void compute () {

e
}

class A { }
void compute () {
/) class C extends A {
} void compute () {
} S/
}
}

University of Pennsylvania

LO8: Locality & git

Instruction Cache

«» Consider this code

class ICacheExample {

static void main(String/[]
List<A> 1 =

v
(A 1tem : 1) {
item.compute () ;

ArrayList<A> () ;

args)

{

}

}

class A {
void compute () {

e

+» When we call item.compute that
could invoke A’s compute,
B’s compute or C's compute

+» Constantly calling different functions,

may not utilizes instruction cache well

}

}

}

}

class B extends A {
void compute () {

v

class C extends A {
void compute () {

e

CIS 3990, Fall 2025

University of Pennsylvania

Instruction Cache

LO8: Locality & git

+» Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

« Instruction Cache
is happier with this ©

rpublic class ICacheExample {
public static void main(String|]
List<A> la = new ArrayList<aA> ()
List 1lb = new ArrayList ()
List<C> lc = new ArrayList<C> ()
a
for (A i1tem : la) {
item.compute () ;
}
for (B item : 1lb) {
item.compute () ;
}
for (C i1tem : 1lc) {
item.compute () ;
}
}
}

\

args)

.
4
.
4
.
4

{

CIS 3990, Fall 2025

10

University of Pennsylvania

LO8: Locality & git

Memory Hierarchy (again)

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage |s.
devices

L4:

L2:

L1:

LO

L1 cache
(SRAM)

CPU registers hold words retrieved
from the L1 cache.

L1 cache holds cache lines retrieved

L2 cache
(SRAM)

from the L2 cache.

L2 cache holds cache lines

L3 cache
(SRAM)

retrieved from L3 cache.

L3 cache holds cache lines

retrieved from main memory.

Main memory

(DRAM)

Main memory holds disk blocks

retrieved from local disks.

Local secondary storage
(local disks)

Local disks hold files

rogrammer’s Perspective, Third Edition

retrieved from disks
on remote servers.

Remote secondary storage
(e.g., Web servers)

CIS 3990, Fall 2025

11

University of Pennsylvania LO8: Locality & git

CIS 3990, Fall 2025

What is the network?

+» We will talk about networking later, but for now:

= When we say “networking” we mean one computer communicating with another
computer (typically via the internet, but not necessarily).

= Sending/Receiving data over the network at a low level **looks** very similar to
reading/writing data to/from a file.

% Since there is a huge number of computers that could theoretically

communicated with, the storage space is much larger than the storage space
on our computer.

% Using the network has a huge overhead, even compared file Input/Output.

® Can have benefits still (e.g. parallelism or scalability) that we will talk about later.

12

University of Pennsylvania

LO8: Locality & git

Crude (yet useful) example

CIS 3990, Fall 2025

% | wrote a program to add generate 1,000,000 pairs of 64-bit integers and then
add each pair together (do 1,000,000 64-bit additions).

" One program does the additions locally

" One program generates the numbers, sends them over the network and then receives the

result back.

«» Which one is faster?
By how much?

® Local oneis ~4,000 times faster.

" This was even while the network test
was the same computer connecting
to a different program on the same

3.5E+10

3E+10

2.5E+10

2E+10

1s)

time (

1.5E+10

1E+10

S5E+08

500000 600000 700000 800000 900000 1000000

additions performed

| ocal

network

computer. (If it was a different computer, it probably would be even slower) 13

University of Pennsylvania

LO8: Locality & git

CIS 3990, Fall 2025

TRAP: Network Drives!!!!111]

+» When navigating in file explorer/finder/the terminal there may be things that
look like files/directories but are not actually “normal” files/directories.

+~ Some folders are actually “network drives”, meaning that the actual file

contents are stored on a separate computer, and reading from the file involves
reading it from the network.

" This can be easily missed and can greatly affect the speed of a program.
= Example: if you must feed terabytes of data from a file to a GPU to train an LLM.

14

University of Pennsylvania LO8: Locality & git

CIS 3990, Fall 2025

Microservices

+» Software architecture where you make a bunch of small and independent
programs (services) that all communicate with each other over the network.

= > network

" |f you aren’t careful, this can lead to significant latency in performing a task

" There are also many difficulties that come up with using the network that we may talk
about later

« The network is still useful! But it is slow and complex. Be careful!

15

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Efficiency

« What does it mean for software to be “Efficient”?

16

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Efficiency

« What does it mean for software to be “Efficient”?

+~ Turns out, we are very vague when we talk about “efficiency” in computer
science. Usually involves trying to keep some ratio low/high:

" Performance: time/task or tasks/second < what you probably thought of first
" There is a lot more to code than just “performance”

17

University of Pennsylvania LO8: Locality & git

Other Metrics:

%+ Thereis a lot more to code than just performance:

Correctness: right_outcome/program_execution (ideally 100%)
Privacy: data re-identifiability vs effort it requires

Security: minimize exploits

Accessibility: average time it takes a user to use your thing
Energy: watts/task

Memory: information / bytes

Readability: minimize time it takes to understand code
Maintainability: minimize the time it takes to debug/update code

CIS 3990, Fall 2025

18

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Previous Example:

+» What does this code do? Does it do it correctly?

void bar(const matrix<N, N>& ml, const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t i =0; 1 < ml.rows; i +=r) {
for (size t j =0; j < m2.cols; j +=r) {
for (size t k = 0; k < N; k +=r) {
for (size t ib = 1i; ib < 1 + r; ++ib) {
for (size t jb = j; jb < j + r; ++jb) {

for (size t kb = k; kb < k + r; ++kb) {
out[ib, jb] += ml[ib, kb] * m2[kb, jb];

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Previous Example:

+» What does this code do? Does it do it correctly?

void foo(const matrix<N, N>& ml, const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t 1 =0; 1 < ml.rows; ++1i) {

for (size t j = 0; j < m2.cols; ++j) {

for (size t k = 0; k < m2.rows; ++k) {
out[i, j] += mi[i, k] * m2[k, J];

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Performance Analysis

+» Both do matrix multiplication one on the left utilizes cache better.

= (Times are in ns for multiplying two 1024 x 1024 matricies)

+» Which one is better though? What does it mean to be better?
6,716,299 (ns)

void bar(const matrix<N, N>& mil,
const matrix<N, N>& m2, matrix<N, N>& out) {
for (size_ t i =0; 1 < ml.rows; i +=r) {
for (size t j = 0; j < m2.cols; j +=r) {
for (size_t k =0; k < N; k +=r) {
for (size t ib = i; ib < i + r; ++ib) { 7,609,260 (ns)
for (size t jb = j; jb < j + r; ++jb) {

void foo(const matrix<N, N>& ml,
for (size t kb = k; kb < k + r; ++kb) {

const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t 1 = 0; i < ml.rows; ++i) {
for (size t j = 0; j < m2.cols; ++j) {
for (size t k = @; k < m2.rows; ++k) {

out[ib, jb] += mi[ib, kb] * m2[kb, jb];

out[i, j] += mi[i, k] * m2[k, jI;

21

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Memory Hierarchy

+» Main Points:
" |t is more than just BigO analysis — The constants that are discarded in this analysis can
matter A LOT.

" There is more to your computer than just the CPU (Processor). Memory, file I/O, network,
etc. can have big impacts on the performance of your code

" These things are still useful, you should not completely abandon the network, file I/0O, etc.
But if your code is running slowly/needs to be faster, then don’t forget to check things
other than the CPU.

" There is also more to code than just performance. Most of the time some concessions are
made to make code simpler & easier to maintain code.

22

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Lecture Outline

+ Locality Wrap-up

23

University of Pennsylvania

LO8: Locality & git

CIS 3990, Fall 2025

What point does git have?

+ A few points may have come to mind:
= Sharing code

= Keeping a copy of code somewhere else
= Saving progress

% These all can be summarized by “version control”

" You know when you write a paper for a class (or you draft a resume) you may have
multiple versions: final_paper_draft.doc, final _papervl.doc, final_paperv3.doc

= QOrif you are using google sheets it keeps track of this history by noting down the edits
made and you can go back to view previous versions.

- Also keeps track of who made what changes
- Stores a copy of the files remotely (in google drive) so it can be accessed via other computers

24

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git as version control

% Version control (via git) will allow us to:
= Revert changes made to a file or the entire project
= See what edits are made over time, by whom, and when

25

University of Pennsylvania LO8: Locality & git

git 1= GitHub

git and github are two separate entities

git:

® QOriginally created by Linus Torvalds for version control of the Linux Kernel
" Free and open-source distributed software system

GitHub:

A host owned by Microsoft.

Provides ways to control access, track bugs, request features, etc. for software projects
Uses git to handle the core version control

GitHub is not the only service like this, others like GitLab and GitBucket exist

CIS 3990, Fall 2025

26

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Repository

+ A repository, commonly referred to as a repo, is a location that stores a copy of
all files, history, etc.
= The working directory (or working tree) is different from the repository

=" When working via GitHub, your computer has a repository on it, and GitHub also maintains
a separate copy of the repository

+ Typically, you never want to put any results of compilation (e.g. executables or
.0 files) inside of the repo. Others can just rebuild those

27

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Init/clone

+~ Can create a git repository based on the current directory you are in via
git init

+» Used to clone / copy a repository that already exists somewhere (e.g. GitHub)
git clone <repo location>

e.g.
git clone https://github.com/torvalds/linux.git
git clone git@github.com:torvalds/linux.git

+ You can also create a repository via GitHub and then clone it to your device

+ Repositories will have a hidden directory called . git that contains the core
files needed by git.

28

University of Pennsylvania LO8: Locality & git

CIS 3990, Fall 2025

Commits

% Git uses commits to track the different “versions” and edits made to a git
repository

+» A commit is sort of like a “checkpoint” or “snapshot” of a repository.
+» Each commit contains information:

" When it was created

" Who created the commit

" What was different between this commit and the previous commit
= A unique hash ID

+ After you modify/create a file, you add/stage it to be part of the next commit.
Then you create the commit and optionally push

® git add -> git commit -> git push 29

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

add

+» Used to track a new file, or some updates to an existing file so that these
changes are part of the next commit

» You probably used git add . Doesanyone know what the dot means?

= Adds all files in the current directory and any sub directories

+ You can be more specific and only include some things
" git add file.txt
" git add file.txt sub directory/other file.cpp

» git stage doesthe same thing

X/
>

» git reset <file> will unstage/unadd a file

X/
>

30

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

.gitignore

+ A .gitignore file specifies intentionally untracked files that Git should
ignore using regex-like syntax patterns.

= gitignore is still just a file. You can create and edit it like you would a new .cpp file.

= Since the file name starts with a "." it is “hidden” by default.
(1s will not show it unless do 1s -a).

+ Eachlineina .gitignore file specifies a pattern for files to be tracked or
not tracked

a leading # indicates a comment. This is a comment!
* . pdf # do not track any file that ends in .pdf and may have any
test suite # do not track any file named test suite

/1lib/ # do not track the 1lib directory or anything inside of it

I/1ib/must # Do track the /lib/must file! (combined with above, the rest of /lib is ingored)

31

commit

+» To create a commit based off of added/staged changes, we use
glt commit

«» Each commit has:

= When it was created, Who created the commit, What was different between this commit
and the previous commit, A unique hash ID

L)

- Done for you based off of what you have already added, etc.
= A commit message!

« Which is like the “subject line” of an email describing the commit. You must supply this

K/
0’0

Usegit commit -m "your message here" to create a commit with
the specified message. If you don’t provide a message like this, then it will
prompt you in an editor you may not be familiar with (demo)

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

32

University of Pennsylvania LO8: Locality & git

Version control as a tree of commits

. . . < main
> glt Manages our versions as a tree of commits.

+» There can be multiple “branches” that diverge
from each other.
" For now, we will use one branch: “main”
® Hijstorically called “master”

= A branchis a “history” of commits*
(more on branches next lecture)

«» Our repo usually starts with a commit:

CIS 3990, Fall 2025

33

University of Pennsylvania LO8: Locality & git

Version control as a tree of commits

+» git manages our versions as a tree of commits.

+» There can be multiple “branches” that diverge
from each other.
" For now, we will use one branch: “main”
® Hijstorically called “master”

= A branchis a “history” of commits*
(more on branches next lecture)

«» Our repo usually starts with a commit:

+ Creating a new commit builds off of the previous
(ancestor commits)

CIS 3990, Fall 2025

A branch refers to a
specific commit.

Often, this is the
“youngest” commit

1 in a sequence.

CO

Cl) € main

34

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

A branch refers to a

Version control as a tree of commits specific commit.

@ Often, this is the
% git manages our versions as a tree of commits. “voungest” commit
1 in a sequence.

+» There can be multiple “branches” that diverge

from each other. GD

" For now, we will use one branch: “main”

® Hijstorically called “master”
s) _ @ < main
= A branchis a “history” of commits*

(more on branches next lecture)

«» Our repo usually starts with a commit:

+ Creating a new commit builds off of the previous
(ancestor commits)

35

University of Pennsylvania LO8: Locality & git

Version control as a tree of commits

+» git manages our versions as a tree of commits.

+» There can be multiple “branches” that diverge
from each other.
" For now, we will use one branch: “main”
® Hijstorically called “master”

= A branchis a “history” of commits*
(more on branches next lecture)

«» Our repo usually starts with a commit:

+ Creating a new commit builds off of the previous
(ancestor commits)

CIS 3990, Fall 2025

A branch refers to a
specific commit.

0 Often, this is the
“youngest” commit
1 in a sequence.
O,
O,
@é main

36

University of Pennsylvania

LO8: Locality & git

Inspecting a repository

+ git log: prints the commits made in your repository
" Prints up to the current commit.you are on
" This is similar to the diagram on the previous slide.

® Each commit has their hash, commit message, ancestor commit, etc
" ——graph options to print it as a nice graph.

CIS 3990, Fall 2025

37

University of Pennsylvania

LO8: Locality & git

CIS 3990, Fall 2025

Inspecting a repository

+ git status will show which files are
= Untracked by git
" Modified but not staged for commit

= Added to the staging area but committed.

+ git diff can be usedto compare the difference between commits/files
" justgit diff shows all changes/files tracked by git, not staged for commit

" git diff <commit hash> will show the difference between your local repository
and a local commit

= Can specify a file name at the end to see differences on that file specifically e.g.
- git diff 30864f188a web/code/String.cpp

- git diff web/code/String.cpp

38

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git checkout & HEAD

% You can change your repo state @
to previous commits using git checkout
()
+ glt checkout <commit hash> |
= Sets our repo to the specified commit Ga

" eg.git checkout cl
@é main

39

University of Pennsylvania LO8: Locality & git

Git checkout & HEAD

/
>

» You can change your repo state
to previous commits using git checkout

+ glt checkout <commit hash>

= Sets our repo to the specified commit
" eg.git checkout cl

« HEAD

= A reference to the current branch/commit that you

were on in your repository. Previous to now it was
always the same as main so it was omitted.

o

Changes made when looking in the past are easy
to lose. Be careful!

@
GD < HEAD
()
@é main

CIS 3990, Fall 2025

40

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git checkout & HEAD

+ You can change your repo state @
to previous commits using git checkout [
GD < HEAD
+ glt checkout <commit hash> |
= Sets our repo to the specified commit Ga
" eg.git checkout cl

« Here cl is the commit hash. We can also @é main
checkout relative to HEAD or a branch (e.g. main)

41

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git checkout & HEAD

+ You can change your repo state @
to previous commits using git checkout [
GD < HEAD
+ glt checkout <commit hash> |
= Sets our repo to the specified commit Ga
" eg.git checkout cl

« Here cl is the commit hash. We can also @é main
checkout relative to HEAD or a branch (e.g. main)

glit checkout main”
Checks out the parent of main

42

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git checkout & HEAD

co
+ You can change your repo state Q
to previous commits using git checkout
()
+ glt checkout <commit hash> |
= Sets our repo to the specified commit Ga € HEAL
" eg.git checkout cl

« Here cl is the commit hash. We can also @é main
checkout relative to HEAD or a branch (e.g. main)

git checkout HEAD""
Checks out the parent of the parent of head

43

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Git checkout & HEAD

CO) € HEAD
+ You can change your repo state Q
to previous commits using git checkout
()
+ glt checkout <commit hash> |
= Sets our repo to the specified commit Ga
" eg.git checkout cl

« Here cl is the commit hash. We can also @é main
checkout relative to HEAD or a branch (e.g. main)

glt checkout main
Go back to main

44

University of Pennsylvania LO8: Locality & git

Git checkout & HEAD

«» You can also use checkout to reset a file to the @
state it had in a previous commit:
©

» git checkout -- dir/file.txt
® Resetsdir/file.txt tothe version from most -
recent commit

» git checkout <hash> -- dir/file.txt @e mnain
" To go to a specific commit

CIS 3990, Fall 2025

45

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Commit Hash

+ When you see commit hashes (e.g. through git log), you will see that they are
really long:
= E.g.30864f188a7ba385d1de423c79242782d5daf964

» Most of the time, only the first 6 to 8 characters are needed to identify a
commit

« glt checkout 30864f188a7ba385dlded23¢c79242782d5datft964
" Full commit hash
«+ glt checkout 30864f18

® First 8 characters

46

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Some Poll Questions

+» See Ed ©

47

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Remote

Notice how we left off push and pull till now!
Remember git |= github, you can use git without having a “remote” repository.

Remote repository: versions of your repository that are hosted elsewhere (e.g.
in github or on a different location on your computer)

Pull, push, merge, etc are used to synchronize your local repository with any
remote repositories

Cantypegit remote show to list the name of remote repos

" git remote show <name> to see details about a specific connection

48

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Push & Pull

» glt push

" updates the remote repository with any commits you have locally

» git pull

" updates local repository with any commits that are in remote, but not local

+ Can encounter an error if multiple pushes cause a “fork” in the commit tree...

= Usually cause a teammate pushed to the same branch before you.

49

University of Pennsylvania

Merge

+ git merge integratesa

remote repo with local repo

+ Sometimes there are conflicts:

« Should main refer to C3 or C4?

They both have C2 as an
ancestor...

LO8: Locality & git

REMOTE

CIS 3990, Fall 2025

LOCAL Combined

® ©
9 2
D @G

50

University of Pennsylvania

Merge Conflict

«» One solution: Combine the two

into one commit that has
changes from both

» git merge can do this
automatically if there is no
overlap in the differences
between the two.

" (they change different files, or
different parts of files)

LO8: Locality & git

REMOTE

CIS 3990, Fall 2025

LOCAL Combined

© ©
©

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Merge Conflict (Manual intervention)

If the changes are too close to each other/overlap, then manual intervention is
necessary to decide what to keep / what to change.

Lets say we had the code: RS SRSURENEIRNESO-I I
We change the code t0: SRR At , and push it

But just before us, a colleague pushed: Ee iSRS NIRRTy RNR QN[I R

Git will tell us our pushed failed, and we must pull and merge changes.
Automatic merge will fail and our file will update to look something like:

<<<<<<< HEAD (Current Change)
cout << "I am a goofy goober" << endl;

cout << "I am a weirdo" << endl;
>>>>>>> 30864118 (Incoming Change)

52

University of Pennsylvania LO8: Locality & git CIS 3990, Fall 2025

Merge Conflict (Manual intervention)

+ Git will tell us our pushed failed, and we must pull and merge changes.
Automatic merge will fail and our file will update to look something like:

<<<<<<< HEAD (Current Change)
cout << "I am a goofy goober" << endl;

cout << "I am a weirdo" << endl;
>>>>>>> 30864118 (Incoming Change)

% This is just characters in a file. Nothing special here. The characters just mark
what our current change was, and what the remote change was .

To resolve, it, delete the <<<<<<<, =======, >>>>>>> lines and change the
code to whatever you want it to be. This could be one of the two changes
given, or a combination: cout << "I am a weird goofy goober"” << endl;

J
0‘0

®" Then add, commit, push etc.

53

University of Pennsylvania

That’s all for now!

% Next time:
" Git wrapup

® Processes & The OS some more ©

+ Hopefully you are doing well ©

LO8: Locality & git

CIS 3990, Fall 2025

54

	Default Section
	Slide 1: Locality (fin) & git (start) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy (again)
	Slide 6: Numbers Everyone Should Know
	Slide 7: Inheritance Refresher
	Slide 8: Instruction Cache
	Slide 9: Instruction Cache
	Slide 10: Instruction Cache
	Slide 11: Memory Hierarchy (again)
	Slide 12: What is the network?
	Slide 13: Crude (yet useful) example
	Slide 14: TRAP: Network Drives!!!!!!!!
	Slide 15: Microservices
	Slide 16: Efficiency
	Slide 17: Efficiency
	Slide 18: Other Metrics:
	Slide 19: Previous Example:
	Slide 20: Previous Example:
	Slide 21: Performance Analysis
	Slide 22: Memory Hierarchy
	Slide 23: Lecture Outline
	Slide 24: What point does git have?
	Slide 25: Git as version control
	Slide 26: git != GitHub
	Slide 27: Repository
	Slide 28: Init/clone
	Slide 29: Commits
	Slide 30: add
	Slide 31: .gitignore
	Slide 32: commit
	Slide 33: Version control as a tree of commits
	Slide 34: Version control as a tree of commits
	Slide 35: Version control as a tree of commits
	Slide 36: Version control as a tree of commits
	Slide 37: Inspecting a repository
	Slide 38: Inspecting a repository
	Slide 39: Git checkout & HEAD
	Slide 40: Git checkout & HEAD
	Slide 41: Git checkout & HEAD
	Slide 42: Git checkout & HEAD
	Slide 43: Git checkout & HEAD
	Slide 44: Git checkout & HEAD
	Slide 45: Git checkout & HEAD
	Slide 46: Commit Hash
	Slide 47: Some Poll Questions
	Slide 48: Remote
	Slide 49: Push & Pull
	Slide 50: Merge
	Slide 51: Merge Conflict
	Slide 52: Merge Conflict (Manual intervention)
	Slide 53: Merge Conflict (Manual intervention)
	Slide 54: That’s all for now!

