
CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Locality (fin) & git (start)
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Administrivia

❖ HW04 Due Tomorrow

❖ HW05 posted Wednesday

▪ Since you won’t have everything you need till Wednesday

▪ Should be a pretty short assignment, just a “hands on” for the git stuff
so that you aren’t as scared when you see it again :)

❖ Check-in Due before lecture

▪ Assignment re-opens processed during/soon after lecture

3

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Lecture Outline

❖ Locality Wrap-up

❖ git

4

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Memory Hierarchy (again)

5

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

6

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Inheritance Refresher

❖ What does this print? (This is Java code)

7

public class A {
 public void compute() {
 System.out.println("A::compute");
 }
}

public class B extends A {
 public void compute() {
 System.out.println("B::compute");
 }
}

public class C extends A {
 public void compute() {
 System.out.println("C::compute");
 }
}

import java.util.ArrayList;
import java.util.List;

public class ICacheExample {
 public static void main(String[] args) {
 List<A> l = new ArrayList<A>();

 l.add(new A());
 l.add(new C());
 l.add(new A());
 l.add(new B());

 for (A item : l) {
 item.compute();
 }
 }
}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this
▪ which is why you may see something like L1I cache and L1D cache, for Instructions and

Data respectively

❖ Consider the previous example, it jumped between the different compute
functions!

8

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 9

public class ICacheExample {

 public static void main(String[] args) {

 List<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this ☺

10

public class ICacheExample {

 public static void main(String[] args) {

 List<A> la = new ArrayList<A>();

 List lb = new ArrayList();

 List<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Memory Hierarchy (again)

11

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

What is the network?

❖ We will talk about networking later, but for now:

▪ When we say “networking” we mean one computer communicating with another
computer (typically via the internet, but not necessarily).

▪ Sending/Receiving data over the network at a low level **looks** very similar to
reading/writing data to/from a file.

❖ Since there is a huge number of computers that could theoretically
communicated with, the storage space is much larger than the storage space
on our computer.

❖ Using the network has a huge overhead, even compared file Input/Output.

▪ Can have benefits still (e.g. parallelism or scalability) that we will talk about later.

12

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Crude (yet useful) example

❖ I wrote a program to add generate 1,000,000 pairs of 64-bit integers and then
add each pair together (do 1,000,000 64-bit additions).

▪ One program does the additions locally

▪ One program generates the numbers, sends them over the network and then receives the
result back.

❖ Which one is faster?
By how much?

▪ Local one is ~4,000 times faster.

▪ This was even while the network test
was the same computer connecting
to a different program on the same
computer. (If it was a different computer, it probably would be even slower) 13

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

TRAP: Network Drives!!!!!!!!

❖ When navigating in file explorer/finder/the terminal there may be things that
look like files/directories but are not actually “normal” files/directories.

❖ Some folders are actually “network drives”, meaning that the actual file
contents are stored on a separate computer, and reading from the file involves
reading it from the network.

▪ This can be easily missed and can greatly affect the speed of a program.

▪ Example: if you must feed terabytes of data from a file to a GPU to train an LLM.

14

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Microservices

❖ Software architecture where you make a bunch of small and independent
programs (services) that all communicate with each other over the network.

▪ > network

▪ If you aren’t careful, this can lead to significant latency in performing a task

▪ There are also many difficulties that come up with using the network that we may talk
about later

❖ The network is still useful! But it is slow and complex. Be careful!

15

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Efficiency

❖ What does it mean for software to be “Efficient”?

16

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Efficiency

❖ What does it mean for software to be “Efficient”?

❖ Turns out, we are very vague when we talk about “efficiency” in computer
science. Usually involves trying to keep some ratio low/high:

▪ Performance: time/task or tasks/second  what you probably thought of first

▪ There is a lot more to code than just “performance”

17

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Other Metrics:

❖ There is a lot more to code than just performance:

▪ Correctness: right_outcome/program_execution (ideally 100%)

▪ Privacy: data re-identifiability vs effort it requires

▪ Security: minimize exploits

▪ Accessibility: average time it takes a user to use your thing

▪ Energy: watts/task

▪ Memory: information / bytes

▪ Readability: minimize time it takes to understand code

▪ Maintainability: minimize the time it takes to debug/update code

18

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Previous Example:

❖ What does this code do? Does it do it correctly?

19

void bar(const matrix<N, N>& m1, const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; i += r) {
 for (size_t j = 0; j < m2.cols; j += r) {
 for (size_t k = 0; k < N; k += r) {
 for (size_t ib = i; ib < i + r; ++ib) {
 for (size_t jb = j; jb < j + r; ++jb) {
 for (size_t kb = k; kb < k + r; ++kb) {
 out[ib, jb] += m1[ib, kb] * m2[kb, jb];
 }
 }
 }
 }
 }
 }
}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Previous Example:

❖ What does this code do? Does it do it correctly?

20

void foo(const matrix<N, N>& m1, const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; ++i) {

 for (size_t j = 0; j < m2.cols; ++j) {

 for (size_t k = 0; k < m2.rows; ++k) {
 out[i, j] += m1[i, k] * m2[k, j];
 }

 }

 }
}

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Performance Analysis

❖ Both do matrix multiplication one on the left utilizes cache better.

▪ (Times are in ns for multiplying two 1024 x 1024 matricies)

❖ Which one is better though? What does it mean to be better?

21

void bar(const matrix<N, N>& m1,
 const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; i += r) {
 for (size_t j = 0; j < m2.cols; j += r) {
 for (size_t k = 0; k < N; k += r) {
 for (size_t ib = i; ib < i + r; ++ib) {
 for (size_t jb = j; jb < j + r; ++jb) {
 for (size_t kb = k; kb < k + r; ++kb) {
 out[ib, jb] += m1[ib, kb] * m2[kb, jb];
 }
 }
 }
 }
 }
 }
}

void foo(const matrix<N, N>& m1,
 const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; ++i) {
 for (size_t j = 0; j < m2.cols; ++j) {
 for (size_t k = 0; k < m2.rows; ++k) {
 out[i, j] += m1[i, k] * m2[k, j];
 }
 }
 }
}

6,716,299 (ns)

7,609,260 (ns)

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Memory Hierarchy

❖ Main Points:

▪ It is more than just BigO analysis – The constants that are discarded in this analysis can
matter A LOT.

▪ There is more to your computer than just the CPU (Processor). Memory, file I/O, network,
etc. can have big impacts on the performance of your code

▪ These things are still useful, you should not completely abandon the network, file I/O, etc.
But if your code is running slowly/needs to be faster, then don’t forget to check things
other than the CPU.

▪ There is also more to code than just performance. Most of the time some concessions are
made to make code simpler & easier to maintain code.

22

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Lecture Outline

❖ Locality Wrap-up

❖ git

23

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

What point does git have?

❖ A few points may have come to mind:

▪ Sharing code

▪ Keeping a copy of code somewhere else

▪ Saving progress

❖ These all can be summarized by “version control”

▪ You know when you write a paper for a class (or you draft a resume) you may have
multiple versions: final_paper_draft.doc, final_paperv1.doc, final_paperv3.doc

▪ Or if you are using google sheets it keeps track of this history by noting down the edits
made and you can go back to view previous versions.

• Also keeps track of who made what changes

• Stores a copy of the files remotely (in google drive) so it can be accessed via other computers
24

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git as version control

❖ Version control (via git) will allow us to:

▪ Revert changes made to a file or the entire project

▪ See what edits are made over time, by whom, and when

25

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

git != GitHub

❖ git and github are two separate entities

❖ git:

▪ Originally created by Linus Torvalds for version control of the Linux Kernel

▪ Free and open-source distributed software system

❖ GitHub:

▪ A host owned by Microsoft.

▪ Provides ways to control access, track bugs, request features, etc. for software projects

▪ Uses git to handle the core version control

▪ GitHub is not the only service like this, others like GitLab and GitBucket exist

26

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Repository

❖ A repository, commonly referred to as a repo, is a location that stores a copy of
all files, history, etc.

▪ The working directory (or working tree) is different from the repository

▪ When working via GitHub, your computer has a repository on it, and GitHub also maintains
a separate copy of the repository

❖ Typically, you never want to put any results of compilation (e.g. executables or
.o files) inside of the repo. Others can just rebuild those

27

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Init/clone

❖ Can create a git repository based on the current directory you are in via
 git init

❖ Used to clone / copy a repository that already exists somewhere (e.g. GitHub)
 git clone <repo_location>

 e.g.
 git clone https://github.com/torvalds/linux.git

 git clone git@github.com:torvalds/linux.git

❖ You can also create a repository via GitHub and then clone it to your device

❖ Repositories will have a hidden directory called .git that contains the core
files needed by git.

28

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Commits

❖ Git uses commits to track the different “versions” and edits made to a git
repository

❖ A commit is sort of like a “checkpoint” or “snapshot” of a repository.

❖ Each commit contains information:

▪ When it was created

▪ Who created the commit

▪ What was different between this commit and the previous commit

▪ A unique hash ID

❖ After you modify/create a file, you add/stage it to be part of the next commit.
Then you create the commit and optionally push

▪ git add -> git commit -> git push 29

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

add

❖ Used to track a new file, or some updates to an existing file so that these
changes are part of the next commit

❖ You probably used git add . Does anyone know what the dot means?

▪ Adds all files in the current directory and any sub directories

❖ You can be more specific and only include some things
▪ git add file.txt

▪ git add file.txt sub_directory/other_file.cpp

❖ git stage does the same thing

❖ git reset <file> will unstage/unadd a file
30

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

.gitignore

❖ A .gitignore file specifies intentionally untracked files that Git should
ignore using regex-like syntax patterns.

▪ .gitignore is still just a file. You can create and edit it like you would a new .cpp file.

▪ Since the file name starts with a `.` it is “hidden” by default.
(ls will not show it unless do ls -a).

❖ Each line in a .gitignore file specifies a pattern for files to be tracked or
not tracked

31

a leading # indicates a comment. This is a comment!

*.pdf # do not track any file that ends in .pdf and may have any

test_suite # do not track any file named test_suite

/lib/ # do not track the lib directory or anything inside of it

!/lib/must # Do track the /lib/must file! (combined with above, the rest of /lib is ingored)

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

commit

❖ To create a commit based off of added/staged changes, we use
git commit

❖ Each commit has:

▪ When it was created, Who created the commit, What was different between this commit
and the previous commit, A unique hash ID

• Done for you based off of what you have already added, etc.

▪ A commit message!

• Which is like the “subject line” of an email describing the commit. You must supply this

❖ Use git commit -m "your message here" to create a commit with
the specified message. If you don’t provide a message like this, then it will
prompt you in an editor you may not be familiar with (demo)

32

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Version control as a tree of commits

❖ git manages our versions as a tree of commits.

❖ There can be multiple “branches” that diverge
from each other.

▪ For now, we will use one branch: “main”

▪ Historically called “master”

▪ A branch is a “history” of commits*
(more on branches next lecture)

❖ Our repo usually starts with a commit:

33

C0  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Version control as a tree of commits

❖ git manages our versions as a tree of commits.

❖ There can be multiple “branches” that diverge
from each other.

▪ For now, we will use one branch: “main”

▪ Historically called “master”

▪ A branch is a “history” of commits*
(more on branches next lecture)

❖ Our repo usually starts with a commit:

❖ Creating a new commit builds off of the previous
(ancestor commits)

34

C0

C1  main

A branch refers to a
specific commit.

Often, this is the
“youngest” commit
in a sequence.

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Version control as a tree of commits

❖ git manages our versions as a tree of commits.

❖ There can be multiple “branches” that diverge
from each other.

▪ For now, we will use one branch: “main”

▪ Historically called “master”

▪ A branch is a “history” of commits*
(more on branches next lecture)

❖ Our repo usually starts with a commit:

❖ Creating a new commit builds off of the previous
(ancestor commits)

35

C0

C1

A branch refers to a
specific commit.

Often, this is the
“youngest” commit
in a sequence.

C2  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Version control as a tree of commits

❖ git manages our versions as a tree of commits.

❖ There can be multiple “branches” that diverge
from each other.

▪ For now, we will use one branch: “main”

▪ Historically called “master”

▪ A branch is a “history” of commits*
(more on branches next lecture)

❖ Our repo usually starts with a commit:

❖ Creating a new commit builds off of the previous
(ancestor commits)

36

C0

C1

A branch refers to a
specific commit.

Often, this is the
“youngest” commit
in a sequence.

C2

C3  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Inspecting a repository

❖ git log: prints the commits made in your repository

▪ Prints up to the current commit.you are on

▪ This is similar to the diagram on the previous slide.

▪ Each commit has their hash, commit message, ancestor commit, etc

▪ --graph options to print it as a nice graph.

37

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Inspecting a repository

❖ git status will show which files are

▪ Untracked by git

▪ Modified but not staged for commit

▪ Added to the staging area but committed.

❖ git diff can be used to compare the difference between commits/files

▪ just git diff shows all changes/files tracked by git, not staged for commit

▪ git diff <commit hash> will show the difference between your local repository
and a local commit

▪ Can specify a file name at the end to see differences on that file specifically e.g.

• git diff 30864f188a web/code/String.cpp

• git diff web/code/String.cpp

38

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

39

C0

C1

C2

C3  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

❖ HEAD

▪ A reference to the current branch/commit that you
were on in your repository. Previous to now it was
always the same as main so it was omitted.

❖ Changes made when looking in the past are easy
to lose. Be careful! 40

C0

C1

C2

C3  main

 HEAD

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

❖ Here c1 is the commit hash. We can also
checkout relative to HEAD or a branch (e.g. main)

41

C0

C1

C2

C3  main

 HEAD

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

❖ Here c1 is the commit hash. We can also
checkout relative to HEAD or a branch (e.g. main)

git checkout main^

Checks out the parent of main

42

C0

C1

C2

C3  main

 HEAD

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

❖ Here c1 is the commit hash. We can also
checkout relative to HEAD or a branch (e.g. main)

git checkout HEAD^^

Checks out the parent of the parent of head

43

C0

C1

C2

C3  main

 HEAD

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can change your repo state
to previous commits using git checkout

❖ git checkout <commit_hash>

▪ Sets our repo to the specified commit

▪ e.g. git checkout c1

❖ Here c1 is the commit hash. We can also
checkout relative to HEAD or a branch (e.g. main)

git checkout main

Go back to main

44

C0

C1

C2

C3  main

 HEAD

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Git checkout & HEAD

❖ You can also use checkout to reset a file to the
state it had in a previous commit:

❖ git checkout -- dir/file.txt

▪ Resets dir/file.txt to the version from most
recent commit

❖ git checkout <hash> -- dir/file.txt

▪ To go to a specific commit

45

C0

C1

C2

C3  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Commit Hash

❖ When you see commit hashes (e.g. through git log), you will see that they are
really long:

▪ E.g. 30864f188a7ba385d1de423c79242782d5daf964

❖ Most of the time, only the first 6 to 8 characters are needed to identify a
commit

❖ git checkout 30864f188a7ba385d1de423c79242782d5daf964

▪ Full commit hash

❖ git checkout 30864f18

▪ First 8 characters

46

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Some Poll Questions

❖ See Ed ☺

47

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Remote

❖ Notice how we left off push and pull till now!

❖ Remember git != github, you can use git without having a “remote” repository.

❖ Remote repository: versions of your repository that are hosted elsewhere (e.g.
in github or on a different location on your computer)

❖ Pull, push, merge, etc are used to synchronize your local repository with any
remote repositories

❖ Can type git remote show to list the name of remote repos

▪ git remote show <name> to see details about a specific connection

48

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Push & Pull

❖ git push

▪ updates the remote repository with any commits you have locally

❖ git pull

▪ updates local repository with any commits that are in remote, but not local

❖ Can encounter an error if multiple pushes cause a “fork” in the commit tree…

▪ Usually cause a teammate pushed to the same branch before you.

49

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Merge

❖ git merge integrates a
remote repo with local repo

❖ Sometimes there are conflicts:

❖ Should main refer to C3 or C4?
They both have C2 as an
ancestor…

50

C0

C1

C2

C3

REMOTE

C0

C1

C2

C4

LOCAL

C0

C1

C2

C4

Combined

C3

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Merge Conflict

❖ One solution: Combine the two
into one commit that has
changes from both

❖ git merge can do this
automatically if there is no
overlap in the differences
between the two.

▪ (they change different files, or
different parts of files)

51

C0

C1

C2

C3

REMOTE

C0

C1

C2

C4

LOCAL

C0

C1

C2

C4

Combined

C3

C5  main

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Merge Conflict (Manual intervention)

❖ If the changes are too close to each other/overlap, then manual intervention is
necessary to decide what to keep / what to change.

❖ Lets say we had the code:

❖ We change the code to: , and push it

❖ But just before us, a colleague pushed:

❖ Git will tell us our pushed failed, and we must pull and merge changes.
Automatic merge will fail and our file will update to look something like:

52

cout << "I am" << endl;

cout << "I am a goofy goober" << endl;

cout << "I am a weirdo" << endl;

<<<<<<< HEAD (Current Change)
 cout << "I am a goofy goober" << endl;
=======
 cout << "I am a weirdo" << endl;
>>>>>>> 30864f18 (Incoming Change)

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

Merge Conflict (Manual intervention)

❖ Git will tell us our pushed failed, and we must pull and merge changes.
Automatic merge will fail and our file will update to look something like:

❖ This is just characters in a file. Nothing special here. The characters just mark
what our current change was, and what the remote change was .

❖ To resolve, it, delete the <<<<<<<, =======, >>>>>>> lines and change the
code to whatever you want it to be. This could be one of the two changes
given, or a combination:

▪ Then add, commit, push etc.

53

<<<<<<< HEAD (Current Change)
 cout << "I am a goofy goober" << endl;
=======
 cout << "I am a weirdo" << endl;
>>>>>>> 30864f18 (Incoming Change)

 cout << "I am a weird goofy goober" << endl;

CIS 3990, Fall 2025L08: Locality & gitUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Git wrapup

▪ Processes & The OS some more ☺

❖ Hopefully you are doing well ☺

54

	Default Section
	Slide 1: Locality (fin) & git (start) Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy (again)
	Slide 6: Numbers Everyone Should Know
	Slide 7: Inheritance Refresher
	Slide 8: Instruction Cache
	Slide 9: Instruction Cache
	Slide 10: Instruction Cache
	Slide 11: Memory Hierarchy (again)
	Slide 12: What is the network?
	Slide 13: Crude (yet useful) example
	Slide 14: TRAP: Network Drives!!!!!!!!
	Slide 15: Microservices
	Slide 16: Efficiency
	Slide 17: Efficiency
	Slide 18: Other Metrics:
	Slide 19: Previous Example:
	Slide 20: Previous Example:
	Slide 21: Performance Analysis
	Slide 22: Memory Hierarchy
	Slide 23: Lecture Outline
	Slide 24: What point does git have?
	Slide 25: Git as version control
	Slide 26: git != GitHub
	Slide 27: Repository
	Slide 28: Init/clone
	Slide 29: Commits
	Slide 30: add
	Slide 31: .gitignore
	Slide 32: commit
	Slide 33: Version control as a tree of commits
	Slide 34: Version control as a tree of commits
	Slide 35: Version control as a tree of commits
	Slide 36: Version control as a tree of commits
	Slide 37: Inspecting a repository
	Slide 38: Inspecting a repository
	Slide 39: Git checkout & HEAD
	Slide 40: Git checkout & HEAD
	Slide 41: Git checkout & HEAD
	Slide 42: Git checkout & HEAD
	Slide 43: Git checkout & HEAD
	Slide 44: Git checkout & HEAD
	Slide 45: Git checkout & HEAD
	Slide 46: Commit Hash
	Slide 47: Some Poll Questions
	Slide 48: Remote
	Slide 49: Push & Pull
	Slide 50: Merge
	Slide 51: Merge Conflict
	Slide 52: Merge Conflict (Manual intervention)
	Slide 53: Merge Conflict (Manual intervention)
	Slide 54: That’s all for now!

