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Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?
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Administrivia

+» HWO3 Due Tomorrow (was due Tuesday)

= We are grading this on style, so please try to clean up your code if you didn’t do any style.
® Can look at the rubric we had from HWO01 and code quality doc.

® (note that rubric for HWO03 will have more items then HWO01. HWO03 is C++, HWO01 is mostly
C)

+» HWO04 posted Yesterday
= Should be less work than HWO03 | hope?

" You implement some file reader objects

% Check-in Due posted tonight / tomorrow
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Lecture Outline

%~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching
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Memory Hierarchy (So Far)

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

devices

L6:

storage |

LO:

Regs

L4: Main memory
(DRAM)

CPU registers hold words retrieved

retrieved from main memory.

Main memory holds disk blocks

Local secondary storage
(local disks)

retrieved from local disks.

Local disks hold files

Remote secondary storage
(e.g., Web servers)

Bryant and O’Hallaron. Computer Systems: A Programmer’s Perspective, Third Edition

retrieved from disks
on remote servers.

CIS 3990, Fall 2025
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Principle of Locality

+ The tendency for the Programs to access the same set of memory locations
over a short period of time

< TwO0 main types:

» Temporal Locality: If we access data in memory/storage,
we will likely reference it again soon.

= Spatial Locality: If we access data in memory/storage,
we will likely reference data close to it soon.

+ Data that is accessed frequently can be stored in hardware that is quicker to
access.
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Locality Analogy

+ If we are at home and we are hungry, where do we get food from?
= We get it from our refrigerator!
= |f the refrigerator is empty, we go to the grocery store
= When at the grocery store, we don’t just get what we want right now, but also get other
things we think we want in the near future (so that it will be in our fridge when we want it)
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Numbers Everyone Should Know

There is a set of numbers that called “numbers everyone you should know”

From Jeff Dean in 2009

Numbers are out of date
but the relative orders of
magnitude are

about the same

More up to date numbers:

Numbers Everyone Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk

Send packet CA->Netherlands->CA

10,

20,

250,
500,
10,000,
10,000,
30,000,
150,000,

0.5 ns

5 ns

7 ns
100 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

GO qle
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Lecture Outline

<~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching
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%+ Which function implementation do you think is faster?

string read file() { string read file() {
char c; char c;
int fd = open("war_and peace.txt", O RDONLY); ifstream reader("war_and peace.txt");

ssize t res = read(fd, &c, 1); = reader.get();
string data; string data;
// © means EOF // © means EOF
while (res != 0) { while (reader) {
data += c; data += c;
res = read(fd, &c, 1); = reader.get();

}

close(fd);
return data; return data;
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Experiment Results

Reading war_and_peace.txt Char by Char

2.5E+08
2E+09

1.5E+09

Time (ns)

1E+09

500000000

0 |

W fstreamread M fstreamwrite M posixread W posixwrite
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C & C++ streams vs POSIX

+ Why are we getting these different outputs?

+» Both use different ways of writing to standard out.

= C++ iostream: user level portable library for input/output streams. Should work on any
environment that has the C++ standard library

- E.g. cout, operator<x, endl, cin, operator>>, getline, etc.

= POSIX C API: Portable Operating System Interface. Functions that are supported by many

operating systems to support many OS-level concepts (Input/Output, networking,
processes, pipes, threads...)

CIS 3990, Fall 2025
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Buffered writing
+ By default, C++ iostream usually uses buffering on top of POSIX:

" When one writes with cout, the data being written is copied into a buffer allocated by
C++ iostream inside your process’ address space

= As some point, once enough data has been written, the buffer will be “flushed” to the

operating system.
- When the buffer fills (often 1024 or 4096 bytes)

" This prevents invoking the write system call and going to the filesystem too often

13



University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
mmpPp s+d::0fstream fout ("hi.txt");

// read "hi" one char at a time
fout.put (msg.at(0));

fout.put(msg.at(1l));

return EXIT SUCCESS; ) )
- hi.txt (disk/OS)

14
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Buffered Writing Example

int main(int argc, char** argv) {
string msg {"hi"};
std::ofstream fout ("hi.txt");

// read "hi" one char at a time
=y Ffout.put (msg.at(0));

fout.put(msg.at(1l));

return EXIT SUCCESS;
}

Arrow signifies what
will be executed next

Store ‘N’ vto
buffer, so that
we do vot oo to

filesystem yet
buf

ho |

<C++ buffer

hi.txt (disk/OS)

15
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Buffered Writing Example Arrow signifies what

will be executed next

Store I' nto

buffer, so that
we do ot go to
filesystem yet

buf
int main(int argc, char** argv) h i
string msg {"hi"}; ~,
std::ofstream fout ("hi.txt"); >
// read "hi" one char at a time C++ buffer
fout.put (msg.at(0)); h

= fout.put (msg.at(l));

return EXIT SUCCESS;

| hi.txt (disk/OS)

16
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Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) { h i
string msg {"hi"};
std::ofstream fout ("hi.txt");
// read "hi" one char at a time C++ bufter
fout.put (msg.at(0)); h [
fout.put (msg.at (1)) ; whewn we call destruct the stream,
we deallocate and flush +he buffer
to disk
return EXIT SUCCESS; ] )
} - hi.txt (disk/OS)

17
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Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
std::ofstream fout ("hi.txt");

// read "hi" one char at a time
fout.put (msg.at(0));

fout.put(msg.at(1l));

m—gp rcturn EXIT SUCCESS;

| hi.txt (disk/OS)

h [

18
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Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string buf[2] = {'h', '1'};
map int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &buf, sizeof (char));

write (fd, &buf+l, sizeof (char));

close (fd) ;

return EXIT SUCCESS; ) )
- hi.txt (disk/OS)
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Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
=l write (fd, & (msg.at(0)), sizeof (char));

write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
return EXIT SUCCESS;

) hi.txt (disk/OS)

20
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Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &(msg.at(0)), sizeof (char));

= write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
return EXIT SUCCESS; h

} ‘

txt (disk/OS)

21
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Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &(msg.at(0)), sizeof (char));

write (fd, &(msg.at(l)), sizeof (char));

_> close (fd) ;

return EXIT SUCCESS;
}

hi.txt (diik/OS)
h [

22
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Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) { h i
string msg {"hi"};
int fd = open ("hi.txt", O WRONLY | O CREAT);
// read "hi" one char at a time 'me(DSHWWEﬂﬁ+6W

write (fd, &(msg.at(0)), sizeof (char)); aaw5565W5+@adoFomc()

write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
el cturn EXIT SUCCESS;

) hi.txt (disk/OS)

h [

23
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Buffered Reading
+ By default, C++ £ stream uses buffering on top of POSIX:

" When one reads with £stream, a lot of data is copied into a buffer allocated by the
fstream inside your process’ address space

"= Next time you read data, it is retrieved from the buffer
« This avoids having to invoke a system call again

= As some point, the buffer will be “refreshed”:
- When you process everything in the buffer (often 1024 bytes)

= Similar thing happens when you write to a file

CIS 3990, Fall 2025
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Buffered Reading Example Arrow signifies what

will be executed next

arr

int main(int argc, char** argv) {
std::array<char, s> buf {};
e std::ifstream fin ("hi.txt");

// read "hi" one char at a time
fout.get (arr.at(0));

fout.get (arr.at(l));

return EXIT SUCCESS; ) )
- hi.txt (disk/OS)

h [
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Buffered Reading Example Arrow signifies what

will be executed next

Copy out what
arr Was requested

int main(int argc, char** argv) {
std::array<char, s> buf {};
std::ifstream fin("hi.txt");

// read "hi" one char at a time C++ buffer
= fout.get(arr.at(0)); "h R
fout.get (arr.at(l)); PRead as wuch as
yout cam from +he
return EXIT SUCCESS; fﬂ@ .
} - hi.txt (disk/OS)
h [

26
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Buffered Reading Example Arrow signifies what

will be executed next

Get vext char
from buffer

arr
int main(int argc, char** argv) { h -
std::array<char, s> buf {};
std::ifstream fin("hi.txt");
C++ buffer
// read "hi" one char at a time
fout.get(arr.at(0)); h TR

=l £out.get(arr.at(l));
No need +o go +o file!

return EXIT SUCCESS;

) hi.txt (disk/OS)

h [
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Buffered Reading Example Arrow signifies what

will be executed next

arr
int main(int argc, char** argv) { h i
std::array<char, s> buf {};
std::ifstream fin("hi.txt");
C++ buffer
// read "hi" one char at a time
fout.get(arr.at(0)); h TR
fout.get (arr.at(l));
#
return EXIT SUCCESS; . ]
} - hi.txt (disk/OS)
h [

28
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Buffered Reading Example Arrow signifies what

will be executed next

arr

int main(int argc, char** argv) { h i
std::array<char, s> buf {};
std::ifstream fin("hi.txt");

// read "hi" one char at a time
fout.get (arr.at(0));

fout.get (arr.at(l));

mmtdp rcturn EXIT SUCCESS;

) hi.txt (disk/OS)

h [

29
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%+ Which function implementation do you think is faster?

string read file() { string read file() {
char c; array<char, 1024> buf{};

int fd = open("war_and peace.txt", O _RDONLY); int fd = open("war_and peace.txt", O RDONLY);

ssize t res = read(fd, &c, 1); ssize t res = read(fd, buf.data(), 4096);
string data; string data;
// © means EOF // © means EOF
while (res != 0) { while (res != 0) {
data += c; data += string(buf.data(), res);
res = read(fd, &c, 1); res = read(fd, buf.data(), 4096);

} }

close(fd); close(fd);
return data; return data;
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%+ Which function implementation do you think is faster?

string read file() { string read file() {
array<char, 1024> buf{}; array<char, 1024> buf{};
ifstream reader("war_and_peace.txt"); int fd = open("war_and peace.txt", O RDONLY);

reader.read(buf, 4096); ssize t res = read(fd, buf.data(), 4096);
string data; string data;
// © means EOF // © means EOF
while (reader) { while (res != 0) {
data += string(buf.data()); data += string(buf.data(), res);
reader.read(buf, 4096); res = read(fd, buf.data(), 4096);

} }

close(fd);
return data; return data;
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Experiment Results

2.5E+05

All Results 2E+09

1.5E+09

1E+0S

Time (ns)

200000000

reading & writing war_and_peace.txt
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Experiment Results

reading & writing war_and_peace.txt

After removing 60000000
char by char posix
50000000
40000000
)
L
a 30000000
&
=
20000000
10000000
0 _ ] _ - _ [
fstream fstream  posix pOsix mmap mmap fstream fstream
read write read write read write read write
(chunks) (chunks) (chunks) (chunks) (char) (char)

33
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This is just war_and_peace

Expe riment Resu Its difference can amplify as we have more data to handle

can also a vary a lot from machine to machine

reading & writing war_and_peace.txt

3500000
After removing

char by char posix 3000000

and 2500000

char by char stream
£ 2000000
£ 1500000
1000000
500000
. B B B

fstreamread fstream posixread posixwrite mmapread mmap write
{chunks) write (chunks) (chunks)
Difference between fstream & posix:

fstream makes extra copies od the data.
Copying data is a very fast thing to do though, so difference is not as big. a4

ns)

Time
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Optional Aside: what is mmap?

» mmap() is a posix system call that directly maps memory to a file.
(among other things)

= Reading/writing to memory will read/write to the file

" Once the mapping is setup, no need to go through the OS or make extra copies of the
data, just access it directly.

= Can take some time to setup the mapping initially.

+» Not enough time to talk about it in detail now.
Take OS or ask how it works after class (if you want to know more)

CIS 3990, Fall 2025
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+» What gets printed here?

int main() {
int* x = nullptr;

// write to file, and clear the log when we open it
fstream log("log.txt", ios base::out | ios base::trunc);

log << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

log << "I'm alive?" << endl;

return EXIT_FAILURE;

36
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endl

+» endlis more than just “newline”. It also “flushes” the buffer

+ Flush the buffer: "take everything we have accumulated things in the buffer
and send it to the destination”.

« Quick: Which is faster?

int main() {
fstream log("log.txt");

int main() {
fstream log("log.txt");

log << "I\n";
log << "am\n";

log << "I" << endl;
log << "am" << endl;

log << "ok" << endl; log << "ok" << endl;

return EXIT_FAILURE; return EXIT_FAILURE;

+ A flush is another system call to write to the destination...

37
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+» What gets printed here?

int main() {
int* x = nullptr;

cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

cout << "I'm alive?" << endl;

return EXIT_FAILURE;

38
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+» What gets printed here?

int main() {
int* x = nullptr;

cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

cout << "I'm alive?" << endl;

return EXIT_FAILURE;

Cout is line buffered: it will flush when on newline

cerr is unbuffered 39
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Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" | oss of computer power = loss of data

= “Completion” of a write (i.e. return from £write () ) does not mean the data has actually
been written

+» Performance — buffering takes time
" Copying data into the stdio buffer consumes CPU cycles and memory bandwidth

= Can potentially slow down high-performance applications, like a web server or database
(“zero-copy”)

« When is buffering faster? Slower?

D)

Or only writing a little

40
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Lecture Outline

<~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching

41
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+ Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a std::list (LinkedList) or a std::vector (ArrayList)

work better?
= What if we need to use Linear search?

e.g. if | have sequence [5, 9, 23] and | randomly
generate 12, | will insert 12 between 9 and 23

+» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a std::list (LinkedList) or a std::vector (ArrayList)?

= What if we need to use Linear search? a2
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Answer:

C++ vector vs list (insert)

3500

% | ran this in C++
on this laptop: % 00

.
’:’ Te r m | n O I Ogy 100000 200000 300000 400000 500000

Number of Elements

" Vector == ArraylList [ .

® |ist == LinkedList

C++ vector vs list (remove)

3500
3000
2500
_'E‘
S 2000

© 1500

« On Element size from 7 oo
100,000 -> 500,000 ~

100000 200000 300000 400000 200000

Element Size
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Data Access Time

+» Data is stored on a physical piece of hardware

+ The distance data must travel on hardware affects how
long it takes for that data to be processed

+» Example: data stored closer to the CPU is quicker to access

= We see this already with registers. Data in registers is stored on the chip and is faster to
access than registers

44
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Processor Memory Gap

100,000

10,000 —|roinesvsossssorss osiassssmessemmmm s o s s s ave

L 10700 O U

100_. ......................................................................................................... Vi e 4 p e WA S s S

Performance

10.. ...............................................................................................................................

1 T
1980 1985

1995 2000 2005 2010
Year

+» Processor speed kept growing ~55% per year

1990

+ Time to access memory didn’t grow as fast ~7% per year

+» Memory access would create a bottleneck on performance
= |t is important that data is quick to access to get better CPU utilization

CIS 3990, Fall 2025
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Memory Hierarchy so far

+~ So far, we know of three places where we store data
" CPU Registers
- Small storage size
« Quick access time
= Physical Memory
 In-between registers and disk
= Disk
- Massive storage size
- Long access time

+ (Generally) as we go further from the CPU, storage space goes up, but access
times increase

46
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Cache

« Pronounced “cash”

» English: A hidden storage space for equipment, weapons, valuables, supplies,
etc.

+» Computer: Memory with shorter access time used for the storage of data for
increased performance. Data is usually either something frequently and/or
recently used.

® Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of
going to disk, we can go to physical memory which is quicker to access)

47
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Memory (as we know it now)

+» The CPU directly uses an address to access a location in

memory

addregs (OX3)

data

ook Wy BQ

48
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Virtual Address Translation

» Programs don’t know about many of things going on
under the hood with memory. they send an address to
the MMU, and the MMU will help get the data

RAM
. 0:
Virtual address Physical address
(0x300) (0x3) 1:
2:
Memory Also checks 3:
Management Caches 4.
Unit
Caches 5-

data

49



CIS 3990, Fall 2025

University of Pennsylvania

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

devices

storage |s5.

L4:

LO7: Locality

LO:
Regs

L3:

L2 cache
(SRAM)

L3 cache
(SRAM)

Main memory
(DRAM)

CPU registers hold words retrieved

from the L1 cache.
L1: / Llcache \
{SRAM) L1 cache holds cache lines retrieved

from the L2 cache.

Each layer can be thonght of as
a “cache” of the layer below

L2 cache holds cache lines
retrieved from L3 cache.

L3 cache holds cache lines

Main memory holds disk blocks

Local secondary storage
(local disks)

retrieved from local disks.

Local disks hold files

Remote secondary storage
(e.g., Web servers)

ive, Third Edition

retrieved from disks
on remote servers.
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Cache vs Memory Relative Speed

+~ Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.
" https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
® Animation starts at 30:30, ends 31:07 ish

The Battle of North Bridge -

51
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Cache Performance

+~ Accessing data in the cache allows for much better utilization of the CPU

% Accessing data not in the cache can cause a bottleneck: CPU would have to
wait for data to come from memory.

«+ How is data loaded into a Cache?

52
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Cache Lines

+~ Imagine memory as a big array of data:

T All data in the same line is also brought into the cache
Access this data

%~ We can split memory into contiguous non-overlapping 64-byte “lines” or
“blocks” (64 bytes on most architectures)

+ When we access data at an address, we bring the whole cache line (cache
block) into the L1 Cache

= Data next to address access is thus also brought into the cache!

53
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What about other languages?

» In C++ (and C, Rust, Zig ...) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

» In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer

to an object on the heap

54
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ArraylList in Java Memory Model

+ InJava, the memory model is slightly different. all object variables are object

references, that refer to an object on the heap
stack:

main’s stack frame

class MemoryModel { : :
static void main(String[] args) { ArrayList (object ref)
ArrayList 1 = ArrayList ({1, 2, 31});

am \

}

}

\
1
heap: Length = 3
) Capacity =3
Data =
-
/

55



University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Does Caching apply to Java?

+ | believe so, yes. Doing the same experiment in java got:

vector vs list (both insert & remove)

S0
80
70

« Note: did this on
smaller number of a0

elements. .
50’000 -> 100’000 50000 60000 F0000 30000 S0000 100000

Number of Elements

Seconds

lava ArrayList Java LinkedList
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+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integersin it

+ Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

" column:-wise (access all elements of the first column, ...)

11 | 2 6 |9
14 112 |3 7

57



University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integersin it

+ Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

" column:-wise (access all elements of the first column, ...)

Hint: Memory Representation in C & C++

11 | 2 6 |9
14 112 |3 7

1 |5 [8 10 | 11 | 2 6 |9 14 |12 | 3 7 |0 15113 (4
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Experiment Results

« | ran thisin C:

1200000
1600000
1400000

o 1200000
= 1000000
200000
600000
400000
200000
0

Axis T

Matrix Traversal

__——

100 200 300 400 500 600 700 800 9S00 1000 1100 1200
Single Dimension. (100 -> 100 x 100 matrix)

——— Cache Traversal Row Cache Traversal Col

« Row traversal is better since it means you can take advantage of the cache
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| randomly generate 1,000,000 doubles that | want to keep unique.
| insert them into a container to make sure there are no duplicates.

Which container do you think | should use?

- Part 2: Let’s say we take the container from part 1, | then need to iterate over
all of the values and set them to their inverse square root (x = 1.0 / sqrt(x))
= Which container would work best?
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Results

1.2E+09

1E+09
—. 800000000
E; 600000000
= 400000000

200000000

LO7: Locality

Inserting

G - ___________________________________________________________________________________________|

20000 60000 /70000

e nordered set

80000 90000

Number Of elements

s flat hash_set

0 ted vector

100000

CIS 3990, Fall 2025
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Aside: Swiss Hash Table (abesil flat_hash_map/set)

+~ Arrays are great, but not everything.

A great talk that goes through many topics related to performance, memory
and caching.

+ How to take advantage of systems knowledge to make better data structures

+» CppCon 2017: Matt Kulukundis “Designing a Fast, Efficient, Cache-friendly
Hash Table, Step by Step”

= https://www.youtube.com/watch?v=ncHmEUmMIJZf4
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Results

Inserting Inserting
1.2E+09 10000000
1E+03 8000000
— 800000000 —
0 © 5000000
Eg 600000000 Eg —
= .= 4000000
= 400000000 =
200000000 2000000
G ] O
50000 60000 70000 80000 90000 100000 50000 60000 70000 80000 90000 100000
Number Of elements Number Of elements
o fordered_set == flgt hash_set —e-——-ortedvector o NOrdered_set — esflat hash_set
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Results
Isqrt
1400000
1200000
1000000
£ 800000
£ 600000
=
400000 /\_\
200000 ___—-—————__——
0
50000 60000 70000 80000 90000 100000
Number Of Elements

o nordered set —==flgt hash _set —e———-ortedvector
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Choosing a Data Structure & Such

+» Choosing a data structure /algorithm is not just thinking about minimizing CPU
computation (Big O analysis)

+» Keeping in mind:
" Hardware Utilization & Data Locality
- Caching memory
- Mindful of I/O operations
" Memory allocations

= Other things we haven’t gotten to yet

+ This systems knowledge applies beyond this course. (Example: training LLMs)

CIS 3990, Fall 2025
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That’s all for now!

+ Next time:

" Performance wrapup
= Git!

+ Hopefully you are doing well ©

LO7: Locality

CIS 3990, Fall 2025
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