University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

File I/0 and The Operating System

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania

LO7: Locality

Administrivia

+» HWO3 Due Tomorrow (was due Tuesday)

= We are grading this on style, so please try to clean up your code if you didn’t do any style.
® Can look at the rubric we had from HWO01 and code quality doc.

® (note that rubric for HWO03 will have more items then HWO01. HWO03 is C++, HWO01 is mostly
C)

+» HWO04 posted Yesterday
= Should be less work than HWO03 | hope?

" You implement some file reader objects

% Check-in Due posted tonight / tomorrow

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Lecture Outline

%~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching

University of Pennsylvania

LO7: Locality

Memory Hierarchy (So Far)

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

devices

L6:

storage |

LO:

Regs

L4: Main memory
(DRAM)

CPU registers hold words retrieved

retrieved from main memory.

Main memory holds disk blocks

Local secondary storage
(local disks)

retrieved from local disks.

Local disks hold files

Remote secondary storage
(e.g., Web servers)

Bryant and O’Hallaron. Computer Systems: A Programmer’s Perspective, Third Edition

retrieved from disks
on remote servers.

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Principle of Locality

+ The tendency for the Programs to access the same set of memory locations
over a short period of time

< TwO0 main types:

» Temporal Locality: If we access data in memory/storage,
we will likely reference it again soon.

= Spatial Locality: If we access data in memory/storage,
we will likely reference data close to it soon.

+ Data that is accessed frequently can be stored in hardware that is quicker to
access.

University of Pennsylvania LO7: Locality

CIS 3990, Fall 2025

Locality Analogy

+ If we are at home and we are hungry, where do we get food from?
= We get it from our refrigerator!
= |f the refrigerator is empty, we go to the grocery store
= When at the grocery store, we don’t just get what we want right now, but also get other
things we think we want in the near future (so that it will be in our fridge when we want it)

University of Pennsylvania

CIS 3990, Fall 2025

LO7: Locality

Numbers Everyone Should Know

There is a set of numbers that called “numbers everyone you should know”

From Jeff Dean in 2009

Numbers are out of date
but the relative orders of
magnitude are

about the same

More up to date numbers:

Numbers Everyone Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk

Send packet CA->Netherlands->CA

10,

20,

250,
500,
10,000,
10,000,
30,000,
150,000,

0.5 ns

5 ns

7 ns
100 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

GO qle

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Lecture Outline

<~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching

LO7: Locality CIS 3990, Fall 2025

University of Pennsylvania

%+ Which function implementation do you think is faster?

string read file() { string read file() {
char c; char c;
int fd = open("war_and peace.txt", O RDONLY); ifstream reader("war_and peace.txt");

ssize t res = read(fd, &c, 1); = reader.get();
string data; string data;
// © means EOF // © means EOF
while (res != 0) { while (reader) {
data += c; data += c;
res = read(fd, &c, 1); = reader.get();

}

close(fd);
return data; return data;

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Experiment Results

Reading war_and_peace.txt Char by Char

2.5E+08
2E+09

1.5E+09

Time (ns)

1E+09

500000000

0 |

W fstreamread M fstreamwrite M posixread W posixwrite

11

University of Pennsylvania LO7: Locality

C & C++ streams vs POSIX

+ Why are we getting these different outputs?

+» Both use different ways of writing to standard out.

= C++ iostream: user level portable library for input/output streams. Should work on any
environment that has the C++ standard library

- E.g. cout, operator<x, endl, cin, operator>>, getline, etc.

= POSIX C API: Portable Operating System Interface. Functions that are supported by many

operating systems to support many OS-level concepts (Input/Output, networking,
processes, pipes, threads...)

CIS 3990, Fall 2025

12

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered writing
+ By default, C++ iostream usually uses buffering on top of POSIX:

" When one writes with cout, the data being written is copied into a buffer allocated by
C++ iostream inside your process’ address space

= As some point, once enough data has been written, the buffer will be “flushed” to the

operating system.
- When the buffer fills (often 1024 or 4096 bytes)

" This prevents invoking the write system call and going to the filesystem too often

13

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
mmpPp s+d::0fstream fout ("hi.txt");

// read "hi" one char at a time
fout.put (msg.at(0));

fout.put(msg.at(1l));

return EXIT SUCCESS;))
- hi.txt (disk/OS)

14

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Buffered Writing Example

int main(int argc, char** argv) {
string msg {"hi"};
std::ofstream fout ("hi.txt");

// read "hi" one char at a time
=y Ffout.put (msg.at(0));

fout.put(msg.at(1l));

return EXIT SUCCESS;
}

Arrow signifies what
will be executed next

Store ‘N’ vto
buffer, so that
we do vot oo to

filesystem yet
buf

ho |

<C++ buffer

hi.txt (disk/OS)

15

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Writing Example Arrow signifies what

will be executed next

Store I' nto

buffer, so that
we do ot go to
filesystem yet

buf
int main(int argc, char** argv) h i
string msg {"hi"}; ~,
std::ofstream fout ("hi.txt"); >
// read "hi" one char at a time C++ buffer
fout.put (msg.at(0)); h

= fout.put (msg.at(l));

return EXIT SUCCESS;

| hi.txt (disk/OS)

16

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) { h i
string msg {"hi"};
std::ofstream fout ("hi.txt");
// read "hi" one char at a time C++ bufter
fout.put (msg.at(0)); h [
fout.put (msg.at (1)) ; whewn we call destruct the stream,
we deallocate and flush +he buffer
to disk
return EXIT SUCCESS;])
} - hi.txt (disk/OS)

17

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
std::ofstream fout ("hi.txt");

// read "hi" one char at a time
fout.put (msg.at(0));

fout.put(msg.at(1l));

m—gp rcturn EXIT SUCCESS;

| hi.txt (disk/OS)

h [

18

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string buf[2] = {'h', '1'};
map int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &buf, sizeof (char));

write (fd, &buf+l, sizeof (char));

close (fd) ;

return EXIT SUCCESS;))
- hi.txt (disk/OS)

19

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
=l write (fd, & (msg.at(0)), sizeof (char));

write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
return EXIT SUCCESS;

) hi.txt (disk/OS)

20

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &(msg.at(0)), sizeof (char));

= write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
return EXIT SUCCESS; h

} ‘

txt (disk/OS)

21

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) h i
string msg {"hi"};
int fd = open("hi.txt", O WRONLY | O CREAT);

// read "hi" one char at a time
write (fd, &(msg.at(0)), sizeof (char));

write (fd, &(msg.at(l)), sizeof (char));

_> close (fd) ;

return EXIT SUCCESS;
}

hi.txt (diik/OS)
h [

22

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Unbuffered Writing Example Arrow signifies what

will be executed next

buf
int main(int argc, char** argv) { h i
string msg {"hi"};
int fd = open ("hi.txt", O WRONLY | O CREAT);
// read "hi" one char at a time 'me(DSHWWEﬂﬁ+6W

write (fd, &(msg.at(0)), sizeof (char)); aaw5565W5+@adoFomc()

write (fd, &(msg.at(l)), sizeof (char));

close (fd) ;
el cturn EXIT SUCCESS;

) hi.txt (disk/OS)

h [

23

University of Pennsylvania LO7: Locality

Buffered Reading
+ By default, C++ £ stream uses buffering on top of POSIX:

" When one reads with £stream, a lot of data is copied into a buffer allocated by the
fstream inside your process’ address space

"= Next time you read data, it is retrieved from the buffer
« This avoids having to invoke a system call again

= As some point, the buffer will be “refreshed”:
- When you process everything in the buffer (often 1024 bytes)

= Similar thing happens when you write to a file

CIS 3990, Fall 2025

24

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Reading Example Arrow signifies what

will be executed next

arr

int main(int argc, char** argv) {
std::array<char, s> buf {};
e std::ifstream fin ("hi.txt");

// read "hi" one char at a time
fout.get (arr.at(0));

fout.get (arr.at(l));

return EXIT SUCCESS;))
- hi.txt (disk/OS)

h [

25

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Reading Example Arrow signifies what

will be executed next

Copy out what
arr Was requested

int main(int argc, char** argv) {
std::array<char, s> buf {};
std::ifstream fin("hi.txt");

// read "hi" one char at a time C++ buffer
= fout.get(arr.at(0)); "h R
fout.get (arr.at(l)); PRead as wuch as
yout cam from +he
return EXIT SUCCESS; fﬂ@ .
} - hi.txt (disk/OS)
h [

26

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Reading Example Arrow signifies what

will be executed next

Get vext char
from buffer

arr
int main(int argc, char** argv) { h -
std::array<char, s> buf {};
std::ifstream fin("hi.txt");
C++ buffer
// read "hi" one char at a time
fout.get(arr.at(0)); h TR

=l £out.get(arr.at(l));
No need +o go +o file!

return EXIT SUCCESS;

) hi.txt (disk/OS)

h [

27

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Reading Example Arrow signifies what

will be executed next

arr
int main(int argc, char** argv) { h i
std::array<char, s> buf {};
std::ifstream fin("hi.txt");
C++ buffer
// read "hi" one char at a time
fout.get(arr.at(0)); h TR
fout.get (arr.at(l));
#
return EXIT SUCCESS; .]
} - hi.txt (disk/OS)
h [

28

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Buffered Reading Example Arrow signifies what

will be executed next

arr

int main(int argc, char** argv) { h i
std::array<char, s> buf {};
std::ifstream fin("hi.txt");

// read "hi" one char at a time
fout.get (arr.at(0));

fout.get (arr.at(l));

mmtdp rcturn EXIT SUCCESS;

) hi.txt (disk/OS)

h [

29

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

%+ Which function implementation do you think is faster?

string read file() { string read file() {
char c; array<char, 1024> buf{};

int fd = open("war_and peace.txt", O _RDONLY); int fd = open("war_and peace.txt", O RDONLY);

ssize t res = read(fd, &c, 1); ssize t res = read(fd, buf.data(), 4096);
string data; string data;
// © means EOF // © means EOF
while (res != 0) { while (res != 0) {
data += c; data += string(buf.data(), res);
res = read(fd, &c, 1); res = read(fd, buf.data(), 4096);

} }

close(fd); close(fd);
return data; return data;

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

%+ Which function implementation do you think is faster?

string read file() { string read file() {
array<char, 1024> buf{}; array<char, 1024> buf{};
ifstream reader("war_and_peace.txt"); int fd = open("war_and peace.txt", O RDONLY);

reader.read(buf, 4096); ssize t res = read(fd, buf.data(), 4096);
string data; string data;
// © means EOF // © means EOF
while (reader) { while (res != 0) {
data += string(buf.data()); data += string(buf.data(), res);
reader.read(buf, 4096); res = read(fd, buf.data(), 4096);

} }

close(fd);
return data; return data;

University of Pennsylvania

LO7: Locality CIS 3990, Fall 2025

Experiment Results

2.5E+05

All Results 2E+09

1.5E+09

1E+0S

Time (ns)

200000000

reading & writing war_and_peace.txt

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Experiment Results

reading & writing war_and_peace.txt

After removing 60000000
char by char posix
50000000
40000000
)
L
a 30000000
&
=
20000000
10000000
0 _] _ - _ [
fstream fstream posix pOsix mmap mmap fstream fstream
read write read write read write read write
(chunks) (chunks) (chunks) (chunks) (char) (char)

33

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

This is just war_and_peace

Expe riment Resu Its difference can amplify as we have more data to handle

can also a vary a lot from machine to machine

reading & writing war_and_peace.txt

3500000
After removing

char by char posix 3000000

and 2500000

char by char stream
£ 2000000
£ 1500000
1000000
500000
. B B B

fstreamread fstream posixread posixwrite mmapread mmap write
{chunks) write (chunks) (chunks)
Difference between fstream & posix:

fstream makes extra copies od the data.
Copying data is a very fast thing to do though, so difference is not as big. a4

ns)

Time

University of Pennsylvania LO7: Locality

Optional Aside: what is mmap?

» mmap() is a posix system call that directly maps memory to a file.
(among other things)

= Reading/writing to memory will read/write to the file

" Once the mapping is setup, no need to go through the OS or make extra copies of the
data, just access it directly.

= Can take some time to setup the mapping initially.

+» Not enough time to talk about it in detail now.
Take OS or ask how it works after class (if you want to know more)

CIS 3990, Fall 2025

35

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» What gets printed here?

int main() {
int* x = nullptr;

// write to file, and clear the log when we open it
fstream log("log.txt", ios base::out | ios base::trunc);

log << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

log << "I'm alive?" << endl;

return EXIT_FAILURE;

36

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

endl

+» endlis more than just “newline”. It also “flushes” the buffer

+ Flush the buffer: "take everything we have accumulated things in the buffer
and send it to the destination”.

« Quick: Which is faster?

int main() {
fstream log("log.txt");

int main() {
fstream log("log.txt");

log << "I\n";
log << "am\n";

log << "I" << endl;
log << "am" << endl;

log << "ok" << endl; log << "ok" << endl;

return EXIT_FAILURE; return EXIT_FAILURE;

+ A flush is another system call to write to the destination...

37

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» What gets printed here?

int main() {
int* x = nullptr;

cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

cout << "I'm alive?" << endl;

return EXIT_FAILURE;

38

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» What gets printed here?

int main() {
int* x = nullptr;

cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

cout << "I'm alive?" << endl;

return EXIT_FAILURE;

Cout is line buffered: it will flush when on newline

cerr is unbuffered 39

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" | oss of computer power = loss of data

= “Completion” of a write (i.e. return from £write ()) does not mean the data has actually
been written

+» Performance — buffering takes time
" Copying data into the stdio buffer consumes CPU cycles and memory bandwidth

= Can potentially slow down high-performance applications, like a web server or database
(“zero-copy”)

« When is buffering faster? Slower?

D)

Or only writing a little

40

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Lecture Outline

<~ Memory Hierarchy Overview
+~ Buffering
+» Memory Locality & Caching

41

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+ Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a std::list (LinkedList) or a std::vector (ArrayList)

work better?
= What if we need to use Linear search?

e.g. if | have sequence [5, 9, 23] and | randomly
generate 12, | will insert 12 between 9 and 23

+» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a std::list (LinkedList) or a std::vector (ArrayList)?

= What if we need to use Linear search? a2

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Answer:

C++ vector vs list (insert)

3500

% | ran this in C++
on this laptop: % 00

.
’:’ Te r m | n O I Ogy 100000 200000 300000 400000 500000

Number of Elements

" Vector == ArraylList [.

® |ist == LinkedList

C++ vector vs list (remove)

3500
3000
2500
_'E‘
S 2000

© 1500

« On Element size from 7 oo
100,000 -> 500,000 ~

100000 200000 300000 400000 200000

Element Size

43

University of Pennsylvania

LO7: Locality

CIS 3990, Fall 2025

Data Access Time

+» Data is stored on a physical piece of hardware

+ The distance data must travel on hardware affects how
long it takes for that data to be processed

+» Example: data stored closer to the CPU is quicker to access

= We see this already with registers. Data in registers is stored on the chip and is faster to
access than registers

44

University of Pennsylvania LO7: Locality

Processor Memory Gap

100,000

10,000 —|roinesvsossssorss osiassssmessemmmm s o s s s ave

L 10700 O U

100_. ... Vi e 4 p e WA S s S

Performance

10.. ...

1 T
1980 1985

1995 2000 2005 2010
Year

+» Processor speed kept growing ~55% per year

1990

+ Time to access memory didn’t grow as fast ~7% per year

+» Memory access would create a bottleneck on performance
= |t is important that data is quick to access to get better CPU utilization

CIS 3990, Fall 2025

45

University of Pennsylvania

LO7: Locality

CIS 3990, Fall 2025

Memory Hierarchy so far

+~ So far, we know of three places where we store data
" CPU Registers
- Small storage size
« Quick access time
= Physical Memory
 In-between registers and disk
= Disk
- Massive storage size
- Long access time

+ (Generally) as we go further from the CPU, storage space goes up, but access
times increase

46

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Cache

« Pronounced “cash”

» English: A hidden storage space for equipment, weapons, valuables, supplies,
etc.

+» Computer: Memory with shorter access time used for the storage of data for
increased performance. Data is usually either something frequently and/or
recently used.

® Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of
going to disk, we can go to physical memory which is quicker to access)

47

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Memory (as we know it now)

+» The CPU directly uses an address to access a location in

memory

addregs (OX3)

data

ook Wy BQ

48

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Virtual Address Translation

» Programs don’t know about many of things going on
under the hood with memory. they send an address to
the MMU, and the MMU will help get the data

RAM
. 0:
Virtual address Physical address
(0x300) (0x3) 1:
2:
Memory Also checks 3:
Management Caches 4.
Unit
Caches 5-

data

49

CIS 3990, Fall 2025

University of Pennsylvania

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

devices

storage |s5.

L4:

LO7: Locality

LO:
Regs

L3:

L2 cache
(SRAM)

L3 cache
(SRAM)

Main memory
(DRAM)

CPU registers hold words retrieved

from the L1 cache.
L1: / Llcache \
{SRAM) L1 cache holds cache lines retrieved

from the L2 cache.

Each layer can be thonght of as
a “cache” of the layer below

L2 cache holds cache lines
retrieved from L3 cache.

L3 cache holds cache lines

Main memory holds disk blocks

Local secondary storage
(local disks)

retrieved from local disks.

Local disks hold files

Remote secondary storage
(e.g., Web servers)

ive, Third Edition

retrieved from disks
on remote servers.

50

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Cache vs Memory Relative Speed

+~ Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.
" https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
® Animation starts at 30:30, ends 31:07 ish

The Battle of North Bridge -

51

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Cache Performance

+~ Accessing data in the cache allows for much better utilization of the CPU

% Accessing data not in the cache can cause a bottleneck: CPU would have to
wait for data to come from memory.

«+ How is data loaded into a Cache?

52

University of Pennsylvania LO7: Locality

CIS 3990, Fall 2025

Cache Lines

+~ Imagine memory as a big array of data:

T All data in the same line is also brought into the cache
Access this data

%~ We can split memory into contiguous non-overlapping 64-byte “lines” or
“blocks” (64 bytes on most architectures)

+ When we access data at an address, we bring the whole cache line (cache
block) into the L1 Cache

= Data next to address access is thus also brought into the cache!

53

LO7: Locality CIS 3990, Fall 2025

University of Pennsylvania

What about other languages?

» In C++ (and C, Rust, Zig ...) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

» In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer

to an object on the heap

54

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

ArraylList in Java Memory Model

+ InJava, the memory model is slightly different. all object variables are object

references, that refer to an object on the heap
stack:

main’s stack frame

class MemoryModel { : :
static void main(String[] args) { ArrayList (object ref)
ArrayList 1 = ArrayList ({1, 2, 31});

am \

}

}

\
1
heap: Length = 3
) Capacity =3
Data =
-
/

55

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Does Caching apply to Java?

+ | believe so, yes. Doing the same experiment in java got:

vector vs list (both insert & remove)

S0
80
70

« Note: did this on
smaller number of a0

elements. .
50’000 -> 100’000 50000 60000 F0000 30000 S0000 100000

Number of Elements

Seconds

lava ArrayList Java LinkedList

56

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integersin it

+ Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

" column:-wise (access all elements of the first column, ...)

11 | 2 6 |9
14 112 |3 7

57

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integersin it

+ Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

" column:-wise (access all elements of the first column, ...)

Hint: Memory Representation in C & C++

11 | 2 6 |9
14 112 |3 7

1 |5 [8 10 | 11 | 2 6 |9 14 |12 | 3 7 |0 15113 (4

58

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Experiment Results

« | ran thisin C:

1200000
1600000
1400000

o 1200000
= 1000000
200000
600000
400000
200000
0

Axis T

Matrix Traversal

__——

100 200 300 400 500 600 700 800 9S00 1000 1100 1200
Single Dimension. (100 -> 100 x 100 matrix)

——— Cache Traversal Row Cache Traversal Col

« Row traversal is better since it means you can take advantage of the cache

59

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

| randomly generate 1,000,000 doubles that | want to keep unique.
| insert them into a container to make sure there are no duplicates.

Which container do you think | should use?

- Part 2: Let’s say we take the container from part 1, | then need to iterate over
all of the values and set them to their inverse square root (x = 1.0 / sqrt(x))
= Which container would work best?

60

University of Pennsylvania

Results

1.2E+09

1E+09
—. 800000000
E; 600000000
= 400000000

200000000

LO7: Locality

Inserting

G - ___|

20000 60000 /70000

e nordered set

80000 90000

Number Of elements

s flat hash_set

0 ted vector

100000

CIS 3990, Fall 2025

61

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Aside: Swiss Hash Table (abesil flat_hash_map/set)

+~ Arrays are great, but not everything.

A great talk that goes through many topics related to performance, memory
and caching.

+ How to take advantage of systems knowledge to make better data structures

+» CppCon 2017: Matt Kulukundis “Designing a Fast, Efficient, Cache-friendly
Hash Table, Step by Step”

= https://www.youtube.com/watch?v=ncHmEUmMIJZf4

62

CIS 3990, Fall 2025

University of Pennsylvania LO7: Locality

Results

Inserting Inserting
1.2E+09 10000000
1E+03 8000000
— 800000000 —
0 © 5000000
Eg 600000000 Eg —
= .= 4000000
= 400000000 =
200000000 2000000
G] O
50000 60000 70000 80000 90000 100000 50000 60000 70000 80000 90000 100000
Number Of elements Number Of elements
o fordered_set == flgt hash_set —e-——-ortedvector o NOrdered_set — esflat hash_set

63

University of Pennsylvania LO7: Locality CIS 3990, Fall 2025

Results
Isqrt
1400000
1200000
1000000
£ 800000
£ 600000
=
400000 /_\
200000 ___—-—————__——
0
50000 60000 70000 80000 90000 100000
Number Of Elements

o nordered set —==flgt hash _set —e———-ortedvector

64

University of Pennsylvania LO7: Locality

Choosing a Data Structure & Such

+» Choosing a data structure /algorithm is not just thinking about minimizing CPU
computation (Big O analysis)

+» Keeping in mind:
" Hardware Utilization & Data Locality
- Caching memory
- Mindful of I/O operations
" Memory allocations

= Other things we haven’t gotten to yet

+ This systems knowledge applies beyond this course. (Example: training LLMs)

CIS 3990, Fall 2025

65

University of Pennsylvania

That’s all for now!

+ Next time:

" Performance wrapup
= Git!

+ Hopefully you are doing well ©

LO7: Locality

CIS 3990, Fall 2025

66

	Default Section
	Slide 1: File I/O and The Operating System Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy (So Far)
	Slide 6: Principle of Locality
	Slide 7: Locality Analogy
	Slide 8: Numbers Everyone Should Know
	Slide 9: Lecture Outline
	Slide 10
	Slide 11: Experiment Results
	Slide 12: C & C++ streams vs POSIX
	Slide 13: Buffered writing
	Slide 14: Buffered Writing Example
	Slide 15: Buffered Writing Example
	Slide 16: Buffered Writing Example
	Slide 17: Buffered Writing Example
	Slide 18: Buffered Writing Example
	Slide 19: Unbuffered Writing Example
	Slide 20: Unbuffered Writing Example
	Slide 21: Unbuffered Writing Example
	Slide 22: Unbuffered Writing Example
	Slide 23: Unbuffered Writing Example
	Slide 24: Buffered Reading
	Slide 25: Buffered Reading Example
	Slide 26: Buffered Reading Example
	Slide 27: Buffered Reading Example
	Slide 28: Buffered Reading Example
	Slide 29: Buffered Reading Example
	Slide 30
	Slide 31
	Slide 32: Experiment Results
	Slide 33: Experiment Results
	Slide 34: Experiment Results
	Slide 35: Optional Aside: what is mmap?
	Slide 36: Buffer & Data reliability
	Slide 37: endl
	Slide 38: Buffer & Data reliability
	Slide 39: Buffer & Data reliability
	Slide 40: Why NOT Buffer?
	Slide 41: Lecture Outline
	Slide 42: Poll: how are you?
	Slide 43: Answer:
	Slide 44: Data Access Time
	Slide 45: Processor Memory Gap
	Slide 46: Memory Hierarchy so far
	Slide 47: Cache
	Slide 48: Memory (as we know it now)
	Slide 49: Virtual Address Translation
	Slide 50: Memory Hierarchy
	Slide 51: Cache vs Memory Relative Speed
	Slide 52: Cache Performance
	Slide 53: Cache Lines
	Slide 54: What about other languages?
	Slide 55: ArrayList in Java Memory Model
	Slide 56: Does Caching apply to Java?
	Slide 57: Poll: how are you?
	Slide 58: Poll: how are you?
	Slide 59: Experiment Results
	Slide 60: Poll: how are you?
	Slide 61: Results
	Slide 62: Aside: Swiss Hash Table (abesil flat_hash_map/set)
	Slide 63: Results
	Slide 64: Results
	Slide 65: Choosing a Data Structure & Such
	Slide 66: That’s all for now!

