
CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

File I/O and The Operating System
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Administrivia

❖ HW03 Due Tomorrow (was due Tuesday)

▪ We are grading this on style, so please try to clean up your code if you didn’t do any style.

▪ Can look at the rubric we had from HW01 and code quality doc.

▪ (note that rubric for HW03 will have more items then HW01. HW03 is C++, HW01 is mostly
C)

❖ HW04 posted Yesterday

▪ Should be less work than HW03 I hope?

▪ You implement some file reader objects

❖ Check-in Due posted tonight / tomorrow

3

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy Overview

❖ Buffering

❖ Memory Locality & Caching

4

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Memory Hierarchy (So Far)

5

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the Programs to access the same set of memory locations
over a short period of time

❖ Two main types:
▪ Temporal Locality: If we access data in memory/storage,

 we will likely reference it again soon.

▪ Spatial Locality: If we access data in memory/storage,
 we will likely reference data close to it soon.

❖ Data that is accessed frequently can be stored in hardware that is quicker to
access.

6

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Locality Analogy

❖ If we are at home and we are hungry, where do we get food from?
▪ We get it from our refrigerator!
▪ If the refrigerator is empty, we go to the grocery store
▪ When at the grocery store, we don’t just get what we want right now, but also get other

things we think we want in the near future (so that it will be in our fridge when we want it)

7

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

8

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy Overview

❖ Buffering

❖ Memory Locality & Caching

9

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

❖ Which function implementation do you think is faster?

10

Raise Hands

string read_file() {
 char c;
 ifstream reader("war_and_peace.txt");

 c = reader.get();
 string data;
 // 0 means EOF
 while (reader) {
 data += c;
 c = reader.get();
 }

 return data;
}

string read_file() {
 char c;
 int fd = open("war_and_peace.txt", O_RDONLY);

 ssize_t res = read(fd, &c, 1);
 string data;
 // 0 means EOF
 while (res != 0) {
 data += c;
 res = read(fd, &c, 1);
 }

 close(fd);
 return data;
}

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Experiment Results

11

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

C & C++ streams vs POSIX

❖ Why are we getting these different outputs?

❖ Both use different ways of writing to standard out.

▪ C++ iostream: user level portable library for input/output streams. Should work on any
environment that has the C++ standard library

• E.g. cout, operator<<, endl, cin, operator>>, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that are supported by many
operating systems to support many OS-level concepts (Input/Output, networking,
processes, pipes, threads…)

12

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered writing

❖ By default, C++ iostream usually uses buffering on top of POSIX:

▪ When one writes with cout, the data being written is copied into a buffer allocated by
C++ iostream inside your process’ address space

▪ As some point, once enough data has been written, the buffer will be “flushed” to the
operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the filesystem too often

13

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Writing Example

14

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Writing Example

15

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

Store ‘h’ into

buffer, so that

we do not go to

filesystem yet

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Writing Example

16

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

h

Store ‘i’ into

buffer, so that

we do not go to

filesystem yet

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Writing Example

17

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C++ buffer

h i

When we call destruct the stream,

we deallocate and flush the buffer

to disk

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Writing Example

18

int main(int argc, char** argv) {

 string msg {"hi"};

 std::ofstream fout("hi.txt");

 // read "hi" one char at a time

 fout.put(msg.at(0));

 fout.put(msg.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

19

int main(int argc, char** argv) {

 string buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

20

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

21

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

22

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

23

int main(int argc, char** argv) {

 string msg {"hi"};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &(msg.at(0)), sizeof(char));

 write(fd, &(msg.at(1)), sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

Two OS/File system

accesses instead of one 

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading

❖ By default, C++ fstream uses buffering on top of POSIX:

▪ When one reads with fstream, a lot of data is copied into a buffer allocated by the
fstream inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 bytes)

▪ Similar thing happens when you write to a file

24

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading Example

25

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

arr

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading Example

26

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

……

h i

arr

Arrow signifies what
will be executed next

h i

Read as much as

you can from the

file

Copy out what

was requested

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading Example

27

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

h i ……

h i

arr

h

Arrow signifies what
will be executed next

Get next char

from buffer

No need to go to file!

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading Example

28

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

}

C++ buffer

hi.txt (disk/OS)

h i ……

h i

arr

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffered Reading Example

29

int main(int argc, char** argv) {

 std::array<char, s> buf {};

 std::ifstream fin("hi.txt");

 // read "hi" one char at a time

 fout.get(arr.at(0));

 fout.get(arr.at(1));

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

arr

h i

Arrow signifies what
will be executed next

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

❖ Which function implementation do you think is faster?

30

Raise Hands

string read_file() {
 array<char, 1024> buf{};
 int fd = open("war_and_peace.txt", O_RDONLY);

 ssize_t res = read(fd, buf.data(), 4096);
 string data;
 // 0 means EOF
 while (res != 0) {
 data += string(buf.data(), res);
 res = read(fd, buf.data(), 4096);
 }

 close(fd);
 return data;

}

string read_file() {
 char c;
 int fd = open("war_and_peace.txt", O_RDONLY);

 ssize_t res = read(fd, &c, 1);
 string data;
 // 0 means EOF
 while (res != 0) {
 data += c;
 res = read(fd, &c, 1);
 }

 close(fd);
 return data;
}

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

❖ Which function implementation do you think is faster?

31

Raise Hands

string read_file() {
 array<char, 1024> buf{};
 int fd = open("war_and_peace.txt", O_RDONLY);

 ssize_t res = read(fd, buf.data(), 4096);
 string data;
 // 0 means EOF
 while (res != 0) {
 data += string(buf.data(), res);
 res = read(fd, buf.data(), 4096);
 }

 close(fd);
 return data;

}

string read_file() {
 array<char, 1024> buf{};
 ifstream reader("war_and_peace.txt");

 reader.read(buf, 4096);
 string data;
 // 0 means EOF
 while (reader) {
 data += string(buf.data());
 reader.read(buf, 4096);
 }

 return data;
}

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Experiment Results

32

All Results

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Experiment Results

33

After removing
char by char posix

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Experiment Results

34

After removing
char by char posix
and
char by char stream

This is just war_and_peace
difference can amplify as we have more data to handle
can also a vary a lot from machine to machine

Difference between fstream & posix:
fstream makes extra copies od the data.
Copying data is a very fast thing to do though, so difference is not as big.

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Optional Aside: what is mmap?

❖ mmap() is a posix system call that directly maps memory to a file.
(among other things)

▪ Reading/writing to memory will read/write to the file

▪ Once the mapping is setup, no need to go through the OS or make extra copies of the
data, just access it directly.

▪ Can take some time to setup the mapping initially.

❖ Not enough time to talk about it in detail now.
Take OS or ask how it works after class (if you want to know more)

35

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffer & Data reliability

❖ What gets printed here?

36

int main() {
 int* x = nullptr;

 // write to file, and clear the log when we open it
 fstream log("log.txt", ios_base::out | ios_base::trunc);

 log << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

 *x = 5;

 log << "I'm alive?" << endl;

 return EXIT_FAILURE;
}

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

endl

❖ endl is more than just “newline”. It also “flushes” the buffer

❖ Flush the buffer: "take everything we have accumulated things in the buffer
and send it to the destination".

❖ Quick: Which is faster?

❖ A flush is another system call to write to the destination…
37

int main() {
 fstream log("log.txt");

 log << "I\n";
 log << "am\n";
 log << "ok" << endl;

 return EXIT_FAILURE;
}

int main() {
 fstream log("log.txt");

 log << "I" << endl;
 log << "am" << endl;
 log << "ok" << endl;

 return EXIT_FAILURE;
}

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffer & Data reliability

❖ What gets printed here?

38

int main() {
 int* x = nullptr;

 cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

 *x = 5;

 cout << "I'm alive?" << endl;

 return EXIT_FAILURE;
}

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Buffer & Data reliability

❖ What gets printed here?

39

int main() {
 int* x = nullptr;

 cout << "I'M GONNA DO IT, I'M GONNA DEREF NULLPTR\n";

 *x = 5;

 cout << "I'm alive?" << endl;

 return EXIT_FAILURE;
}

Cout is line buffered: it will flush when on newline
cerr is unbuffered

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not mean the data has actually
been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and memory bandwidth

▪ Can potentially slow down high-performance applications, like a web server or database
(“zero-copy”)

❖ When is buffering faster? Slower?

40

Many small writes

Or only writing a little
Large writes

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy Overview

❖ Buffering

❖ Memory Locality & Caching

41

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a std::list (LinkedList) or a std::vector (ArrayList)
work better?
▪ What if we need to use Linear search?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a std::list (LinkedList) or a std::vector (ArrayList)?
▪ What if we need to use Linear search? 42

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

43

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to access

▪ We see this already with registers. Data in registers is stored on the chip and is faster to
access than registers

44

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on performance

▪ It is important that data is quick to access to get better CPU utilization

45

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space goes up, but access
times increase

46

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, valuables, supplies,
etc.

❖ Computer: Memory with shorter access time used for the storage of data for
increased performance. Data is usually either something frequently and/or
recently used.

▪ Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of
going to disk, we can go to physical memory which is quicker to access)

47

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

48

CPU

0:

1:

2:

3:

4:

5:

...

data

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Virtual Address Translation
❖ Programs don’t know about many of things going on

under the hood with memory. they send an address to
the MMU, and the MMU will help get the data

49

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

RAM

Also checks
Caches

Caches

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Memory Hierarchy

50

Each layer can be thought of as

a “cache” of the layer below

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

51

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: CPU would have to
wait for data to come from memory.

❖ How is data loaded into a Cache?

52

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ We can split memory into contiguous non-overlapping 64-byte “lines” or
“blocks”(64 bytes on most architectures)

❖ When we access data at an address, we bring the whole cache line (cache
block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!

53

Access this data
All data in the same line is also brought into the cache

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer
to an object on the heap

54

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

55

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

56

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

57

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

58

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take advantage of the cache

59

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ I randomly generate 1,000,000 doubles that I want to keep unique.
I insert them into a container to make sure there are no duplicates.

▪ Which container do you think I should use?

❖ Part 2: Let’s say we take the container from part 1, I then need to iterate over
all of the values and set them to their inverse square root (x = 1.0 / sqrt(x))
▪ Which container would work best?

60

Raise Hands

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Results

61

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Aside: Swiss Hash Table (abesil flat_hash_map/set)

❖ Arrays are great, but not everything.
A great talk that goes through many topics related to performance, memory
and caching.

❖ How to take advantage of systems knowledge to make better data structures

❖ CppCon 2017: Matt Kulukundis “Designing a Fast, Efficient, Cache-friendly
Hash Table, Step by Step”

▪ https://www.youtube.com/watch?v=ncHmEUmJZf4

62

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Results

63

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Results

64

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

Choosing a Data Structure & Such

❖ Choosing a data structure /algorithm is not just thinking about minimizing CPU
computation (Big O analysis)

❖ Keeping in mind:

▪ Hardware Utilization & Data Locality

• Caching memory

• Mindful of I/O operations

▪ Memory allocations

▪ Other things we haven’t gotten to yet

❖ This systems knowledge applies beyond this course. (Example: training LLMs)

65

CIS 3990, Fall 2025L07: LocalityUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Performance wrapup

▪ Git!

❖ Hopefully you are doing well ☺

66

	Default Section
	Slide 1: File I/O and The Operating System Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy (So Far)
	Slide 6: Principle of Locality
	Slide 7: Locality Analogy
	Slide 8: Numbers Everyone Should Know
	Slide 9: Lecture Outline
	Slide 10
	Slide 11: Experiment Results
	Slide 12: C & C++ streams vs POSIX
	Slide 13: Buffered writing
	Slide 14: Buffered Writing Example
	Slide 15: Buffered Writing Example
	Slide 16: Buffered Writing Example
	Slide 17: Buffered Writing Example
	Slide 18: Buffered Writing Example
	Slide 19: Unbuffered Writing Example
	Slide 20: Unbuffered Writing Example
	Slide 21: Unbuffered Writing Example
	Slide 22: Unbuffered Writing Example
	Slide 23: Unbuffered Writing Example
	Slide 24: Buffered Reading
	Slide 25: Buffered Reading Example
	Slide 26: Buffered Reading Example
	Slide 27: Buffered Reading Example
	Slide 28: Buffered Reading Example
	Slide 29: Buffered Reading Example
	Slide 30
	Slide 31
	Slide 32: Experiment Results
	Slide 33: Experiment Results
	Slide 34: Experiment Results
	Slide 35: Optional Aside: what is mmap?
	Slide 36: Buffer & Data reliability
	Slide 37: endl
	Slide 38: Buffer & Data reliability
	Slide 39: Buffer & Data reliability
	Slide 40: Why NOT Buffer?
	Slide 41: Lecture Outline
	Slide 42: Poll: how are you?
	Slide 43: Answer:
	Slide 44: Data Access Time
	Slide 45: Processor Memory Gap
	Slide 46: Memory Hierarchy so far
	Slide 47: Cache
	Slide 48: Memory (as we know it now)
	Slide 49: Virtual Address Translation
	Slide 50: Memory Hierarchy
	Slide 51: Cache vs Memory Relative Speed
	Slide 52: Cache Performance
	Slide 53: Cache Lines
	Slide 54: What about other languages?
	Slide 55: ArrayList in Java Memory Model
	Slide 56: Does Caching apply to Java?
	Slide 57: Poll: how are you?
	Slide 58: Poll: how are you?
	Slide 59: Experiment Results
	Slide 60: Poll: how are you?
	Slide 61: Results
	Slide 62: Aside: Swiss Hash Table (abesil flat_hash_map/set)
	Slide 63: Results
	Slide 64: Results
	Slide 65: Choosing a Data Structure & Such
	Slide 66: That’s all for now!

