University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

File I/0 and The Operating System

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Administrivia

+ HWO3 Due Thursday (was due Tomorrow) *****

" Free extension till the end of Thursday due to Rosh Hashanah

= Please feel free to reach out if there is anything we forget, any holidays not explicitly in the
university policy or anything else that comes up.

+» HWO04 posted tomorrow
= Should be less work than HWO03 | hope?
" You implement some file reader objects

>

+ Check-in Due before lecture

= Expect the re-opens to be processed during lecture

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Lecture Outline

% C++: file streams
+» Whatis an OS & a System Call
+» POSIX /O

CIS 3990, Fall 2025

University of Pennsylvania LO6: File 10 and the OS

Aside: File I/O & Disk

+ File System:
" Provides long term storage of data:

- Persist after a program terminates
- Persists after computer turns off

= Data is organized into files & directories
- Adirectory is pretty much a “folder”

" |nteraction with the file system is
handled by the operating system
and hardware. (To make sure a
program doesn’t put the entire
file system into an invalid state)

University of Pennsylvania LO6: File 10 and the OS

C++ fstream

« C++ gives programmers access to the file system via the £stream class.

- fstreamis a high-level abstraction for accessing files, that supports
formatted input/output operations.

+ Supports both reading and writing

» Formatted input and output is done through operator>> and
operator<< respectively.

CIS 3990, Fall 2025

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

fStrea m exam ple | am not expecting you to memorize this

#tinclude <fstream>

int main() {
fstream file("example.txt");

int i{};
string str, line;

file >> str;

if (!file) {
cerr << "ERROR ENCOUNTERED" << endl;
}

file >> 1i;
getline(file, line);

file.close();
file.open("other.md", ios base::out | ios _base::app);

file << "can also write to a file" << endl;

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Access Mode, ifstream, ofstream

+» Can pass an optional parameter to the constructor or open() to specify access
type. By default gives read & write permissions:

Ll fstream file("example.txt", ios base::in | ios base::out);

% Variants on fstream exist that are dedicated to just reading (ifstream) or
writing (ofstream).
" Mostly the same thing, just specific to

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

What is a stream?

+~ Any guesses? We've seen it before...

" The concept of a stream is kinda vague.

+» A “stream” is a sequence of bytes that can be accessed sequentially.
Over time a stream may continue “producing” or “consuming” an unlimited
number of bytes.

= Sort of like the idea of a real-world “stream” (a continuous body of flowing water).

+ Streams provide a nice interface: a sequential access of bytes. However, it may
be a lot of work to maintain this abstraction/interface.

+» We most commonly apply the idea of streams to files, but could be applied to
the network and strings as well 9

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Example: String Stream

#include <sstream>
using namespace std;

int main() {
// extracting substrings from a string
stringstream ss{"Hello! How are you?"};
string token;

while (ss >> token) {
cout << token << endl;

¥

// building up a string, sorta like stringbuilder
stringstream other{};

other << "blah blah\n";

other << "luvsic pt.";
other << 3;

cout << other.str() << endl;

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Ed Discussion

%~ Some programming with fstream!

11

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Lecture Outline

% C++: file streams
<~ What is an OS & a System Call
+» POSIX /O

12

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

How is File I/O done?

+» We know how programs work on hardware from 2400, right? (hopefully)

+» We know how our program translates to assembly. ASM mostly involves
interacting with registers and memory.

" Files are outside of memory, how do we interact with that?

+» The OS provides us a way to interact with things that are “outside” of our
program.

+ There are many programs running on your computer right now, and your

computer does a lot more than edit memory and registers. The OS supports
thic 13

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

What’s an OS?

%+ The programs we write (for the most part) are “user-level” and usually only
have basic permissions. The OS has enhanced permissions.

«» The OS is Software that:

= Directly interacts with the hardware
- OS is trusted to do so; user-level programs are not (user programs may mess it up)
« OS must be ported to new hardware; user-level programs are portable

= Abstracts away messy hardware devices

« Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

= Manages (allocates, schedules, protects) hardware resources

- Decides which programs have permission to access which files, memory locations, pixels on the
screen, etc. and when

15

CIS 3990, Fall 2025

University of Pennsylvania LO6: File 10 and the OS

OS: Abstraction Provider

%+ The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

a process running

your program OS provides access to many
services on the computer:

"« File System
* Network Stack
* Virtual Memory

* Process Management
 Threads

network stack

=
Q
=
(V)]
>
(V)]
Q
G

virtual memory
process mgmt.

... etc ...

lo

16

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

What are system calls?

+» System calls are how we invoke the functionality of the operating system.
" Boils down to assembly

= We put a special number in a register to specify what “function” we want the OS to run.
® Put arguments in correct registers

" Then run a special instruction similar to calling a function, except transfer is controlled to
the OS.

- X86/64 —syscall
« ARM—-svc #0

e riscv—ecall

- LC4-TRAP

%+ When the OS runs, our program runs in a special “protected/higher-privilege”
mode. It takes time for these abstractions to work. 17

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

How are they implemented?

+» Well, we can always invoke our systemcall via in-line assembly!
" Yes, this is legal C and C++, though your machine may use a different ASM ISA

int main() { mov1l $-1, -16(%rbp)
int fd = -1; mov1 $0, -20(%rbp)
int mode = O_RDONLY; mov1l $0, -24(%rbp)
int flags = 0; leaq .L.str(%rip), %rax
const char* fname = "example.txt"; mov(q %rax, -32(%rbp)
movq -32(%rbp), %rcx
asm__ ("movl $2, %%eax\n" mov1 -24(%rbp), %r8d
"movq %1, %%rdi\n" mov1l -20(%rbp), %rod
"movl %2, %%»esi\n" #APP
"movl %3, %%edx\n" mov1l $2, %eax
"syscall\n" mov(q %rcx, xrdi
"movl %%eax, 7%0" mov 1 %r8d, %esi
"=r" (fd) mov1l %rod, %edx
“r"(fname), "r"(flags), "r"(mode) syscall
"rax", "rbx", "rdi", "rsi", "rdx"); mov1 %eax, %ecx
#NO_APP

University of Pennsylvania

LO6: File 10 and the OS

CIS 3990, Fall 2025

System Call Portability

+» There are many different assembly architectures. Whenever someone wants

to interact with the OS, do they need to write asm specific to that
architecture?

+ In the past: yes!

" |n the past (1970s and prior) ASM was how you programmed many things.
C was considered a “high level” language.

% In the present: no!

" To help make an OS more portable, there is a nice C level interface available to user level
programs that serves as a very thin wrapper around the assembly: POSIX API

19

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Lecture Outline

% C++: file streams
+» Whatis an OS & a System Call
+» POSIX1/0

20

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

From C to POSIX

%+ Most UNIX-en support a common set of lower-level file access APIs: POSIX —
Portable Operating System Interface (for Unix)
" open(), read(),write(),close (), 1seek()
« Similar in spirit to their £* () counterparts from the C std lib

- Lower-level and unbuffered compared to their C and C++ std lib counterparts
 Also less convenient

- Better than using assembly!
® Cand C++ stdlib doesn’t provide everything POSIX does

« You will have to use these to read file system directories and for network 1/0, so we might as
well learn them now

21

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

C++ Standard Library 1/O

+» We've seen the C++ standard library to access files

= Uses a stream abstraction

" fstream, ifstream ofstream, getline (), etc.

+» These are convenient and portable
" They are buffered*
" They are implemented using lower-level OS calls

N

ALL FILE 1/O IS BUILT ON TOP OF LOWER-LEVEL OS CALLS

22

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

open () /close ()

+~ To open a file:
= Pass in the filename and access mode

= Get back a “file descriptor”
 Similar to FILE* from fopen (), butisjustan/int

Used to identify
a file w/ the OS

— Returns -1 toindicate error

- Must manually close file when done ®

(#include <fcntl.h> // for open()
#include <unistd.h> // for close /()

int fd = open("foo.txt", O RDONLY) ;
1t (fd == -1) {

perror ("open failed");

exit (EXIT FAILURE) ;

}

close (fd) ;

23

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Reading from a File siec reud

result in buf Number of bytes

~:~[§size_t read (int fd, void* buf, size t count);]

slaved
a) Function is written in C: follows C design

- Takes in a file descriptor

- Takes in an array and length of where to store the results of the read

- Returns number of bytes read™ (see next slide)

= EVERY TIME we read from a file,
this function is getting called somewhere
- Even in Java or Python
- There are wrappers around this, but
they are all implemented on top of
these system calls

- The OS doesn’t speak java or python, it “speaks” assembly and C

so all languages must have a way to invoke these C functions. e

University of Pennsylvania LO6: File 10 and the OS

Reading from a File Stores read

result in buf

Number of bytes

22 [ggize_t read (int fd, void* buf, size t count);]

sigved
= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)
- Returns O if you're already at the end-of-file
- Returns =1 on error (and sets errno)

- Advances forward in the file by number
of bytes read

Try
again!

" There are some surprising error modes (check errno)

Defined ° EBADE: bad file descriptor
1 « EFAULT: output bufferis not a valid address

Cerrno ., pINTR: read was interrupted, please try again (ARGH!!!! () &)

« EAGAIN: resource temporarily unavailable, please try again

- And many others...

read ()
Return Value
eof
| errno other == <
== errno count count
EINTR
Error mso), Mou're Keep
exit donel readivg

CIS 3990, Fall 2025

25

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Example Naive Read Code

int fd = open(filename, O RDONLY) ;
array<char, 1024> buf {}; // buffer of appropriate size

ssize t result = read(fd, buf.data(), 1024); // data() gets a pointer to underlying data

// If we want to construct a string from the bytes read
// we need to say how many bytes to take from the array.
string data read(buf.data(), result);

// Whenever we are done with the file, we must close it
close (fd) ;

26

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Ed Discussion

+» Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

farray<char, n> buf {}; // buffer h
int bytes left = n;
int result; // result of read()
while (bytes left > 0) { A.
result = read(fd, , bytes left);
of restie = =1 A B. buf.data() + bytes_left
1f (errno != EINTR && -
errno != EAGAIN) {
// a real error happened, C. buf.data() + bytes_left - n
// so return an error result
) D. buf.data() + n - bytes_left
// EINTR happened, o
// so do nothing and try again
continue; Keyword that jumps E. We’re IOSt...
} to beginivg of loop
bytes left -= result;
U y, 27

University of Pennsylvania LO6: File 10 and the OS

CIS 3990, Fall 2025

Ed Discussion

+» Let’s say we want to read ‘n’ bytes. Which is the correct

completion of the blank below?

if first read ovly reads w/4 bytes

farray<char, n> buf {}; // buffer
int bytes left = n;
int result; // result of read()

while (bytes left > 0) {

result = read(fd, , bytes left);
1f (result == -1) {
1f (errno != EINTR &&
errno != EAGAIN) {

// a real error happened,

// so return an error result
}
// EINTR happened,

// so do nothing and try again
continue:; K@%WOM fr\/mﬂmvmps
} to beginnivg of loop

bytes left -= result;

\ buf
Want to start reading here
buf + v/4
bytes_left =wn* 3/4
= buf + v - bytes_left
A.

B. buf.data() + bytes_left
C. buf.data() + bytes_left - n

D. buf.data() + n - bytes_left

E. We're lost...

28

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Ed Discussion

+ Go to Ed and program the “wrapped_read” function ©

29

LO6: File IO and the OS CIS 3990, Fall 2025

University of Pennsylvania

One method to read () n bytes

(int fd = open(filename, O RDONLY) ;

array<char, 1024> buf {}; // buffer of appropriate size
int bytes left = 1024;

int result;

while (bytes left > 0) {
result = read(fd, buf.data() + (1024 - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR && errno != EAGAIN) {
// a real error happened, so exit the program
// print out some error message to cerr
exit (EXIT FAILURE) ;
}
// EINTR happened, so do nothing and try again
continue; Keyword that jumps to beginming of loop
} else 1if (result == 0) {
// EOF reached, so stop reading
break; Toprevent an infinite loop

}
bytes left -= result;

}
\close(fd); J 30

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

Other Low-Level Functions

+» Read man pages to learn about:
" write () —write data
« #include <unistd.h>
c@(lseek () — reposition and/or get file offset
« #include <unistd.h>

" opendir (), readdir (), closedir () —deal with directory listings
- Make sure you read the section 3 version (e.g. man 3 opendir)
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

31

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

University of Pennsylvania LO6: File 10 and the OS

“Library calls” on x86/Linux

+» A more accurate picture of what happens
when we invoke a function

% The C++ standard library and POSIX
are written as “user-level” code.

+» The OS has both code that depends on
which architecture we are on, and codes
that is independent of that.

| C/C++
| standard
|
|

lib .
ibrary glle

Linux
system calls

architecture-independent code

architecture-dependent code

Linux kernel

CIS 3990, Fall 2025

32

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

“Library calls” on x86/Linux: Option 1

% Some routines your program invokes may
be entirely handled by gl ibc without

involving the kernel C/CH+

|
| standard
|
|

" e.g.strcmp () from stdio.h library alibe

architecture-independent code

architecture-dependent code

Linux kernel

33

% University of Pennsylvania

LO6: File 10 and the OS

CIS 3990, Fall 2025

“Library calls” on x86/Linux: Option 2

+» Some routines may be handled by glibc, %
but they in turn invoke Linux system calls > T ________

(070 S —
standard AL

= e.g. POSIX wrappers around Linux syscalls library o 1ip
glibc

- POSIX readdir () invokes the underlying Linux
readdir ()

-~
I
I
I
I

= e.g. C stdio functions that read and write from
files

architecture-independent code

- fopen (), fclose (), fprintf () willinvoke
POSIX, which invokes underlying Linux open (),

architecture-dependent code
close (),write (), etc.

Linux kernel

34

University of Pennsylvania LO6: File 10 and the OS

“Library calls” on x86/Linux: Option 3

+» We can also do the gross “direct” system
call via assembly.

+» Has its uses, but you don’t want to do this
99.999999% of the time

C/C++
standard
library

glibc

architecture-dependent code

Linux kernel

CIS 3990, Fall 2025

35

University of Pennsylvania LO6: File 10 and the OS CIS 3990, Fall 2025

That’s all for now!

+ Next time:

" Why would we ever use posix read when we have fstream?

+ Hopefully you are doing well ©

36

	Default Section
	Slide 1: File I/O and The Operating System Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Aside: File I/O & Disk
	Slide 6: C++ fstream
	Slide 7: fstream example
	Slide 8: Access Mode, ifstream, ofstream
	Slide 9: What is a stream?
	Slide 10: Example: String Stream
	Slide 11: Ed Activity
	Slide 12: Lecture Outline
	Slide 13: How is File I/O done?
	Slide 15: What’s an OS?
	Slide 16: OS: Abstraction Provider
	Slide 17: What are system calls?
	Slide 18: How are they implemented?
	Slide 19: System Call Portability
	Slide 20: Lecture Outline
	Slide 21: From C to POSIX
	Slide 22: C++ Standard Library I/O
	Slide 23: open()/close()
	Slide 24: Reading from a File
	Slide 25: Reading from a File
	Slide 26: Example Naïve Read Code
	Slide 27
	Slide 28: One way to read() n bytes
	Slide 29
	Slide 30: One method to read() n bytes
	Slide 31: Other Low-Level Functions
	Slide 32: “Library calls” on x86/Linux
	Slide 33: “Library calls” on x86/Linux: Option 1
	Slide 34: “Library calls” on x86/Linux: Option 2
	Slide 35: “Library calls” on x86/Linux: Option 3
	Slide 36: That’s all for now!

