
CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

File I/O and The Operating System
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Administrivia

❖ HW03 Due Thursday (was due Tomorrow) *****

▪ Free extension till the end of Thursday due to Rosh Hashanah

▪ Please feel free to reach out if there is anything we forget, any holidays not explicitly in the
university policy or anything else that comes up.

❖ HW04 posted tomorrow

▪ Should be less work than HW03 I hope?

▪ You implement some file reader objects

❖ Check-in Due before lecture

▪ Expect the re-opens to be processed during lecture

3

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Lecture Outline

❖ C++: file streams

❖ What is an OS & a System Call

❖ POSIX I/O

4

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Aside: File I/O & Disk

❖ File System:

▪ Provides long term storage of data:

• Persist after a program terminates

• Persists after computer turns off

▪ Data is organized into files & directories

• A directory is pretty much a “folder”

▪ Interaction with the file system is
handled by the operating system
and hardware. (To make sure a
program doesn’t put the entire
file system into an invalid state)

5

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

C++ fstream

❖ C++ gives programmers access to the file system via the fstream class.

❖ fstream is a high-level abstraction for accessing files, that supports
formatted input/output operations.

❖ Supports both reading and writing

❖ Formatted input and output is done through operator>> and
operator<< respectively.

6

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

fstream example

7

#include <fstream>

int main() {
 fstream file("example.txt");

 int i{};
 string str, line;

 file >> str;

 if (!file) {
 cerr << "ERROR ENCOUNTERED" << endl;
 }

 file >> i;
 getline(file, line);

 file.close();
 file.open("other.md", ios_base::out | ios_base::app);

 file << "can also write to a file" << endl;
}

Construct an fstream open to “example.txt”
for reading and writing

Reads a string. Stops at whitespace.
Skips any whitespace till a string is hit.

Can treat the fstream as a bool to see if an error occurred

Reads an integer from the file!

Gets a line from the file

Close a file explicitly (destructor would have also closed it)
Re-open a file, and be explicit
about which “modes” it is open in.

Write to the file

I am not expecting you to memorize this

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Access Mode, ifstream, ofstream

❖ Can pass an optional parameter to the constructor or open() to specify access
type. By default gives read & write permissions:

▪ f

❖ Variants on fstream exist that are dedicated to just reading (ifstream) or
writing (ofstream).

▪ Mostly the same thing, just specific to

8

fstream file("example.txt", ios_base::in | ios_base::out);

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

What is a stream?

❖ Any guesses? We’ve seen it before…

▪ The concept of a stream is kinda vague.

❖ A “stream” is a sequence of bytes that can be accessed sequentially.
Over time a stream may continue “producing” or “consuming” an unlimited
number of bytes.

▪ Sort of like the idea of a real-world “stream” (a continuous body of flowing water).

❖ Streams provide a nice interface: a sequential access of bytes. However, it may
be a lot of work to maintain this abstraction/interface.

❖ We most commonly apply the idea of streams to files, but could be applied to
the network and strings as well 9

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Example: String Stream

10

#include <sstream>

using namespace std;

int main() {
 // extracting substrings from a string
 stringstream ss{"Hello! How are you?"};
 string token;

 while (ss >> token) {
 cout << token << endl;
 }

 // building up a string, sorta like stringbuilder
 stringstream other{};

 other << "blah blah\n";
 other << "luvsic pt.";
 other << 3;

 cout << other.str() << endl;
}

Interface behaves very similar to fstream!
Except the source is a string instead of a file

Include is sstream not stringstream

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Ed Activity

❖ Some programming with fstream!

11

Ed Discussion

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Lecture Outline

❖ C++: file streams

❖ What is an OS & a System Call

❖ POSIX I/O

12

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

How is File I/O done?

❖ We know how programs work on hardware from 2400, right? (hopefully)

❖ We know how our program translates to assembly. ASM mostly involves
interacting with registers and memory.

▪ Files are outside of memory, how do we interact with that?

❖ The OS provides us a way to interact with things that are “outside” of our
program.

❖ There are many programs running on your computer right now, and your
computer does a lot more than edit memory and registers. The OS supports
this. 13

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

What’s an OS?

❖ The programs we write (for the most part) are “user-level” and usually only
have basic permissions. The OS has enhanced permissions.

❖ The OS is Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not (user programs may mess it up)

• OS must be ported to new hardware; user-level programs are portable

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs have permission to access which files, memory locations, pixels on the
screen, etc. and when

15

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

16

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

OS provides access to many

services on the computer:

• File System

• Network Stack

• Virtual Memory

• Process Management
• Threads

• …

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

What are system calls?

❖ System calls are how we invoke the functionality of the operating system.

▪ Boils down to assembly

▪ We put a special number in a register to specify what “function” we want the OS to run.

▪ Put arguments in correct registers

▪ Then run a special instruction similar to calling a function, except transfer is controlled to
the OS.

• X86/64 – syscall

• ARM – svc #0

• riscv – ecall

• LC4 – TRAP

❖ When the OS runs, our program runs in a special “protected/higher-privilege”
mode. It takes time for these abstractions to work. 17

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

How are they implemented?

❖ Well, we can always invoke our systemcall via in-line assembly!

▪ Yes, this is legal C and C++, though your machine may use a different ASM ISA

18

int main() {
 int fd = -1;
 int mode = O_RDONLY;
 int flags = 0;
 const char* fname = "example.txt";

 __asm__("movl $2, %%eax\n"
 "movq %1, %%rdi\n"
 "movl %2, %%esi\n"
 "movl %3, %%edx\n"
 "syscall\n"
 "movl %%eax, %0"
 : "=r" (fd)
 : "r"(fname), "r"(flags), "r"(mode)
 : "rax", "rbx", "rdi", "rsi", "rdx");

movl $-1, -16(%rbp)
 movl $0, -20(%rbp)
 movl $0, -24(%rbp)
 leaq .L.str(%rip), %rax
 movq %rax, -32(%rbp)
 movq -32(%rbp), %rcx
 movl -24(%rbp), %r8d
 movl -20(%rbp), %r9d
 #APP
 movl $2, %eax
 movq %rcx, %rdi
 movl %r8d, %esi
 movl %r9d, %edx
 syscall
 movl %eax, %ecx
 #NO_APP

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

System Call Portability

❖ There are many different assembly architectures. Whenever someone wants
to interact with the OS, do they need to write asm specific to that
architecture?

❖ In the past: yes!

▪ In the past (1970s and prior) ASM was how you programmed many things.
C was considered a “high level” language.

❖ In the present: no!

▪ To help make an OS more portable, there is a nice C level interface available to user level
programs that serves as a very thin wrapper around the assembly: POSIX API

19

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Lecture Outline

❖ C++: file streams

❖ What is an OS & a System Call

❖ POSIX I/O

20

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file access APIs: POSIX –
Portable Operating System Interface (for Unix)
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their C and C++ std lib counterparts

• Also less convenient

• Better than using assembly!

▪ C and C++ stdlib doesn’t provide everything POSIX does

• You will have to use these to read file system directories and for network I/O, so we might as
well learn them now

21

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

C++ Standard Library I/O

❖ We’ve seen the C++ standard library to access files

▪ Uses a stream abstraction

▪ fstream, ifstream, ofstream, getline(), etc.

❖ These are convenient and portable

▪ They are buffered*

▪ They are implemented using lower-level OS calls

22

ALL FILE I/O IS BUILT ON TOP OF LOWER-LEVEL OS CALLS

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

– Returns -1 to indicate error

• Must manually close file when done 

23

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

Used to identify

a file w/ the OS

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Function is written in C: follows C design

• Takes in a file descriptor

• Takes in an array and length of where to store the results of the read

• Returns number of bytes read* (see next slide)

▪ EVERY TIME we read from a file,
this function is getting called somewhere

• Even in Java or Python

• There are wrappers around this, but
they are all implemented on top of
these system calls

• The OS doesn’t speak java or python, it “speaks” assembly and C
so all languages must have a way to invoke these C functions.

24

ssize_t read(int fd, void* buf, size_t count);

Number of bytes
Stores read

result in buf

signed

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

• Advances forward in the file by number
of bytes read

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!!)

• EAGAIN: resource temporarily unavailable, please try again

• And many others… 25

ssize_t read(int fd, void* buf, size_t count);

Number of bytes

Defined

 in

cerrno

Stores read

result in buf

errno

==

EINTR

Return Value

0-1 > 0

read()

other

errno

==

count

<

count

You’re

done!

Keep

reading

Error msg,

exit

Try

again!

eof

signed

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Example Naïve Read Code

26

int fd = open(filename, O_RDONLY);

array<char, 1024> buf {}; // buffer of appropriate size

ssize_t result = read(fd, buf.data(), 1024); // data() gets a pointer to underlying data

// No error Checking!!!!!

// If we want to construct a string from the bytes read

// we need to say how many bytes to take from the array.

string data_read(buf.data(), result);

// Whenever we are done with the file, we must close it

close(fd);

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

27

array<char, n> buf {}; // buffer

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR &&

 errno != EAGAIN) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

A. buf.data()

B. buf.data() + bytes_left

C. buf.data() + bytes_left - n

D. buf.data() + n - bytes_left

E. We’re lost…Keyword that jumps

to beginning of loop

Ed Discussion

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

A. buf.data()

B. buf.data() + bytes_left

C. buf.data() + bytes_left - n

D. buf.data() + n - bytes_left

E. We’re lost…

One way to read() 𝑛 bytes

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

28

array<char, n> buf {}; // buffer

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR &&

 errno != EAGAIN) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

Keyword that jumps

to beginning of loop

buf

if first read only reads n/4 bytes

Want to start reading here

buf + n/4

bytes_left = n * 3/4

= buf + n - bytes_left

Ed Discussion

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

❖ Go to Ed and program the “wrapped_read” function ☺

29

Ed Discussion

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

One method to read() 𝑛 bytes

30

int fd = open(filename, O_RDONLY);

array<char, 1024> buf {}; // buffer of appropriate size

int bytes_left = 1024;

int result;

while (bytes_left > 0) {

 result = read(fd, buf.data() + (1024 - bytes_left), bytes_left);

 if (result == -1) {

 if (errno != EINTR && errno != EAGAIN) {

 // a real error happened, so exit the program

 // print out some error message to cerr

 exit(EXIT_FAILURE);

 }

 // EINTR happened, so do nothing and try again

 continue;

 } else if (result == 0) {

 // EOF reached, so stop reading

 break;

 }

 bytes_left -= result;

}

close(fd);

To prevent an infinite loop

Keyword that jumps to beginning of loop

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ lseek() – reposition and/or get file offset

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory listings

• Make sure you read the section 3 version (e.g. man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

31

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

“Library calls” on x86/Linux

❖ A more accurate picture of what happens
when we invoke a function

❖ The C++ standard library and POSIX
are written as “user-level” code.

❖ The OS has both code that depends on
which architecture we are on, and codes
that is independent of that.

32

architecture-independent code

architecture-dependent code

glibc

C/C++
standard

library

POSIX

Linux
system calls

Linux kernel

Your program

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 1

❖ Some routines your program invokes may
be entirely handled by glibc without
involving the kernel

▪ e.g. strcmp() from stdio.h

33

architecture-independent code

architecture-dependent code

glibc

C/C++
standard

library

POSIX

Linux kernel

Your program

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled by glibc,
but they in turn invoke Linux system calls

▪ e.g. POSIX wrappers around Linux syscalls

• POSIX readdir() invokes the underlying Linux
readdir()

▪ e.g. C stdio functions that read and write from
files

• fopen(), fclose(), fprintf() will invoke
POSIX, which invokes underlying Linux open(),
close(), write(), etc.

34

architecture-independent code

architecture-dependent code

glibc

C/C++
standard

library

POSIX

Linux kernel

Your program

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 3

❖ We can also do the gross “direct” system
call via assembly.

❖ Has its uses, but you don’t want to do this
99.999999% of the time

35

architecture-independent code

architecture-dependent code

glibc

C/C++
standard

library

POSIX

Linux kernel

Your program

CIS 3990, Fall 2025L06: File IO and the OSUniversity of Pennsylvania

That’s all for now!

❖ Next time:

▪ Why would we ever use posix read when we have fstream?

❖ Hopefully you are doing well ☺

36

	Default Section
	Slide 1: File I/O and The Operating System Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Aside: File I/O & Disk
	Slide 6: C++ fstream
	Slide 7: fstream example
	Slide 8: Access Mode, ifstream, ofstream
	Slide 9: What is a stream?
	Slide 10: Example: String Stream
	Slide 11: Ed Activity
	Slide 12: Lecture Outline
	Slide 13: How is File I/O done?
	Slide 15: What’s an OS?
	Slide 16: OS: Abstraction Provider
	Slide 17: What are system calls?
	Slide 18: How are they implemented?
	Slide 19: System Call Portability
	Slide 20: Lecture Outline
	Slide 21: From C to POSIX
	Slide 22: C++ Standard Library I/O
	Slide 23: open()/close()
	Slide 24: Reading from a File
	Slide 25: Reading from a File
	Slide 26: Example Naïve Read Code
	Slide 27
	Slide 28: One way to read() n bytes
	Slide 29
	Slide 30: One method to read() n bytes
	Slide 31: Other Low-Level Functions
	Slide 32: “Library calls” on x86/Linux
	Slide 33: “Library calls” on x86/Linux: Option 1
	Slide 34: “Library calls” on x86/Linux: Option 2
	Slide 35: “Library calls” on x86/Linux: Option 3
	Slide 36: That’s all for now!

