
CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Code Quality
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any feedback?

2

pollev.com/tqm

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Administrivia

❖ HW02 Due Yesterday

▪ I *hope* it was less work than HW01

❖ HW03 posted after lecture

▪ Algorithmically more complex than HW02

▪ But you have the C++ standard library

▪ I *think* it is less work than HW02

❖ Check-in posted tomorrow

▪ “Finish” what we didn’t get to in lecture + 1 or 2 new short questions

3

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Pre-Semester Survey Results & Discussion

❖ Concerns

▪ Too much work

▪ Course may explode due to it being the first offering

▪ How has it been so far?

❖ Anonymous feedback form: https://forms.gle/2YzMuyC8kxCq1F2n8

4

https://forms.gle/2YzMuyC8kxCq1F2n8
https://forms.gle/2YzMuyC8kxCq1F2n8

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Pre-Semester Survey Results & Discussion

❖ Wants:

▪ Learn C++

▪ Prepare people for upper-level courses

▪ Take a course w/ me

▪ Can’t comment on second topic, but hopefully first one is going ok so far?
Third one is hopefully meeting expectations for those that wanted that

❖ Anonymous feedback form: https://forms.gle/2YzMuyC8kxCq1F2n8

5

https://forms.gle/2YzMuyC8kxCq1F2n8

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Lecture Outline

❖ C++ Aside: namespaces

❖ Idioms

❖ Reasoning About Code

❖ Clang-tidy and Cognitive complexity

6

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

C++ Namespaces: Motivation

❖ Let’s say we wanted to define our own implementation for string

❖ How do we differentiate
between which string
we want to use?

▪ My string or C++ string

❖ (other than changing
the name of our string)

7

class string {
public:
 // ctor
 string();

 // ...

private:
 // SECRETE PATENT PENDING MATERIAL
};

int main() {
 string x; // is this my string or the C++ string?
 // ...
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

C++ Namespaces: definition example

❖ Let’s say we wanted to define our own implementation for string

❖ We can put our string definition in
a namespace.

❖ Namespaces:

▪ A way to avoid name conflicts

▪ Usually a way to group various items from
the same module / library under one “name”

▪ Now this string is under the “travis_lib” name

8

namespace travis_lib {

class string {
public:
 // ctor
 string();

 // ...

private:
 // SECRETE PATENT PENDING MATERIAL
};

};

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

C++ Namespaces: definition example

❖ Let’s say we wanted to define our own implementation for string

❖ Can specify which string I want by explicitly
stating the namespace

9

namespace travis_lib {

class string {
public:
 // ctor
 string();

 // ...

private:
 // SECRETE PATENT PENDING MATERIAL
};

};

int main() {
 std::string x;
 travis_lib::string y;
 // ...
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

C++ Namespaces: using namespace

❖ Let’s say we wanted to define our own implementation for string

❖ Using namespace <namespace>
makes the specified namespace the
“default” assumed unless specified

10

namespace travis_lib {

class string {
public:
 // ctor
 string();

 // ...

private:
 // SECRETE PATENT PENDING MATERIAL
};

};

using namespace std;

int main() {
 std::string x;
 travis_lib::string y;
 string z;
 // ...
}

Assumes std::string

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

C++ Namespaces: using namespace

❖ Using statements related to namespaces are never used in .hpp files
(because it then applies to every file that #includes it)

❖ Using a whole namespace in .cpp file (like we have been doing with
using namespace std) is generally frowned on.

❖ Instead, you either

▪ always specify namespace
e.g. always type std::string instead of string

▪ specify at the top of the cpp file, the things
you are using from each any namespaces.

11

using std::string;
using std::vector;

int main() {
 string x;
 travis_lib::string y;
 string z;
 // ...
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Lecture Outline

❖ C++ Aside: namespaces

❖ Idioms

❖ Reasoning About Code

❖ Clang-tidy and Cognitive complexity

12

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Prelude:

❖ A lot of what I am stating is subjective, but I tried to keep it broadly acceptable

❖ A lot of this style stuff also depends on who you are coding with (e.g. the
company/lab you are working with)

▪ Different workplaces have different style guides

❖ You may not have access to more modern language features

13

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

What are programming idioms?

❖ A code idiom is just a piece of code / code pattern that shows up frequently
across code.

❖ Some idioms can even exist across multiple programming languages

❖ Very important!

14

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The for loop

❖ Basic for loop

❖ Does this work?

❖ Any complaints on it?

❖ Is this C++?
15

#include <vector>

using namespace std;

int product(const vector<int>& items) {
 int result = 1;
 for (int i = 0; i < items.size(); i++) {
 result *= items[i];
 }
 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The “raw” for loop

❖ GOTO loop
More similar
to asm

❖ Does this work?

❖ Is this faster?

❖ Any complaints on it?
16

int product_raw(const vector<int>& items) {
 int result = 1;
 int i = 0;
 LOOP:;
 if (i >= items.size()) goto END;
 result *= items[i];
 i = i + 1;
 goto LOOP;
 END:;
 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The “modern” for loop

❖ “modern” for loop

❖ Does this work?

❖ How readable is this?

❖ Is this better?

❖ Any complaints on it?

17

int product(const std::vector<int>& items) {
 int result{1};
 for (std::size_t idx{}; idx != items.size(); ++idx) {
 result *= items[idx];
 }
 return result;
}

int x = 5;
int a = ++x;

int y = 5;
int b = y++;
// final values: x,y,a = 6. b = 5

// y++ makes a temporary value
// that is often unecessary

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The “auto” for loop

❖ Some people believe “use auto everywhere”

❖ Does this work? (resolve to the correct types)

❖ How readable is this?

❖ Is this better?

❖ Any complaints on it?

18

int product(const std::vector<int>& items) {
 auto result{1};
 for (auto idx{0uz}; idx != items.size(); ++idx) {
 result *= items[idx];
 }
 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The “efficient” for loop

❖ Simplify the
for loop to
combine
update and
check into one
step.

❖ Does this work?

❖ Is this faster?

❖ Any complaints on it?

19

int product(const std::vector<int>& items) {
 int result{1};
 for (auto idx{items.size()}; idx--;) {
 result *= items[idx];
 }
 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

The range-for loop

❖ Use a range-for loop

❖ Does this work?

❖ Any complaints on it?

20

int product(const std::vector<int>& items) {
 int result{1};
 for (int item : items) {
 result *= item;
 }
 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Removing the loop

❖ Use <algorithm> and take a functional approach

❖ Does this work?

❖ How readable is this?

❖ Any complaints on it?
21

#include <algorithm>
#include <functional>

using std::reduce;
using std::vector;
using std::multiplies;

int product(const vector<int>& items) {
 return reduce(items.begin(), items.end(), 1, multiplies);
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Idioms

❖ Code can be written in many ways that do the same thing

▪ Many ways that generate the same assembly, near the same assembly, or have negligible
difference in performance

❖ While writing code, you should make sure that the code expresses intent to
your audience (co-workers, the compiler, yourself, etc.)

▪ What an idiom is will depend on your audience. What practices have they seen before?
What coding style do you and your co-workers work with?

▪ In other words: “the best code is as self-documenting as possible”. Comments are great,
but people have the habit of not fully reading those.

❖ Following idioms generally makes code easier to reason about

▪ Similar for “simplifying” the code as much as possible.
The less there is, the less there is to think about 22

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Other C++ idioms: const ref

❖ Parameters for anything that isn’t a primitive is a const reference
▪ Some exceptions to this (e.g. string_view) but mostly true.

❖ Why?

▪ Avoids making a copy

▪ Avoids modifying data that we don’t want a function to modify

23

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Other C++ idioms: in/out parameters

❖ Which parameters are inputs? Which are outputs?

❖ Hard to tell based off of usage :(
(not very self documenting)

24

int main() {
 string x = "hello";
 string y = "bye";
 string z = mystery(x, y);

}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Other C++ idioms: in/out parameters

❖ Which parameters are inputs? Which are outputs?

❖ Some places (like google) will use pointers to indicate a parameter
is intended to be used for output:

❖ We aren’t
enforcing this.
This idiom is
pretty varied
in adoption.

25

string mystery(string* a, const string& b) {
 *a += b;
 return *a;

}

int main() {
 string x = "hello";
 string y = "bye";
 string z = mystery(&x, y);

}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Other C++ idioms: naming conventions

❖ Which variables here are Globals? Constants? Member variables?

26

string Object::function(const string& input) {
 counter += 1;
 return storage[counter * factor];

}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Other C++ idioms: naming conventions

❖ Which variables here are Globals? Constants? Member variables?

❖ Some C++ programmers prefix variable names to self-document

▪ g_ -> global variable

▪ k_ -> constant

▪ m_ -> non-public member variable

❖ Again, this idiom varies in usage.

27

string Object::function(const string& input) {
 g_counter += 1;
 return m_storage[g_counter * k_factor];

}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Lecture Outline

❖ C++ Aside: namespaces

❖ Idioms

❖ Reasoning About Code

❖ Clang-tidy and Cognitive complexity

28

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code

❖ Our computers are automata

❖ It follows a sequence of operations to transition from one state to another.

❖ We can reason about our code like:

▪ Program is in some state

▪ Some assembly/line of code is executed

▪ We are in a different state

29

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code

❖ Consider this example. We star by assuming there is some int w that has a
value greater than 0.

❖ By reasoning through our code, we can guarantee z is > 37 (assuming our initial
assumption holds)

30

// Assume w is > 0

// x == 5 && w > 0
int x = 5;

// x == 5 && y == 32 && w > 0
int y = 32

// x == 5 && y == 32 && w > 0 && z >37
int z = x + y + w;

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code (backwards)

❖ We can also go backwards to see “what must be true for what I want to be
true”

31

int y = 2;

int z = 32;

int a = x * y + z;

// want a == 4562

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code (backwards)

❖ We can also go backwards to see “what must be true for what I want to be
true”

32

int y = 2;

int z = 32;

// x * y + z = 4562
int a = x * y + z;

// want a == 4562

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code (backwards)

❖ We can also go backwards to see “what must be true for what I want to be
true”

33

int y = 2;

// x * y = 4530
int z = 32;

// x * y + z = 4562
int a = x * y + z;

// want a == 4562

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about code (backwards)

❖ We can also go backwards to see “what must be true for what I want to be
true”

34

// x = 2265
int y = 2;

// x * y = 4530
int z = 32;

// x * y + z = 4562
int a = x * y + z;

// want a == 4562

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about If

❖ We need to reason through all possible
conditions to see what assumptions
we can make before/after

❖ State is a logical OR of all
possible branches

35

// assume x >= 0

int z = 0;

// z == 0 && x >= 0
if (x != 0) {
// z == 0 && x > 0
z = x;
// z == x && x > 0 && z > 0

} else {
// z == 0 && x == 0
z = x + 1;
// x == 0 && z == 1

}

// (x > 0 && z == x)
// OR
// (x == 0 && z == 1)

// another way to look at it:
// x >= 0 && z > 0

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about loops

❖ We can apply this logic to loops.

❖ Loops should maintain some invariant (something that is true before each
iteration)

36

int product(const vector<int>& items) {
 int result = 1;

 for (int i = 0; i < items.size(); i++) {
 // i < items.size()
 // result = 1 * product(items[0], ... items[i - 1])
 result *= items[i];
 }

 // result = 1 * product(items[0], items[items.size() - 1])

 return result;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about objects

❖ Classes are designed usually to implement some abstraction.
To implement that abstraction, the class’s member variables must maintain
some property between each other.

❖ These properties are the class’s invariant

❖ This invariant should be held before and after every function called on an
object until it is deleted or moved

37

// data points to `capacity` number of integers on the heap
// length <= capacity
// data[0 .. length - 1] are valid integers for a user to access
// data[length ... capacity - 1] should not be accessed
class Vec {
 int* data;
 size_t capacity;
 size_t length;
};

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Reasoning about objects

❖ Generally if there is no (or minimal) invariant to maintain, then you make a
struct.

▪ (inner helper-structs can have invariants since those are already "private")

38

// no invariant
struct StringAndInt {
 string str;
 int integer;
};

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Debugging

❖ Backwards reasoning model is how I debug.

▪ Find where the error is occurring

• (e.g. I am looking up a key that doesn’t exist in a map)

▪ What assumptions does my code expect to be true

• (e.g. state of the key and map)

▪ Work backwards from there

• what needs to happen for my assumption to hold true.
Do those assumptions still hold true?

39

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Ed Discussion

❖ Go there ☺

40

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Lecture Outline

❖ C++ Aside: namespaces

❖ Idioms

❖ Reasoning About Code

❖ Clang-tidy and Cognitive complexity

41

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Clang-tidy

❖ Static analyzer

❖ Does something like how we reasoned about code to try and notice bugs

❖ Also checks to enforce some amount of idioms

42

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity

❖ Most errors are straight forward enough just from reading what the error says.

▪ e.g.

❖ There is one that is not clear and shows up enough to be worth going over
now: “Cognitive complexity”

▪ The tool calculates “cognitive complexity” of your code and will complain about anything
that is too complex. This means you should think about how to break your code into
helpers, because if you don’t, clang-tidy will complain and you will face a deduction.

43

error: parameter name 'i' is too short, expected at least 3 characters
[readability-identifier-length,-warnings-as-errors]
 size_t i,

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity

❖ This function has Cognitive Complexity of 3.

❖ Each if statement, loop, etc adds a +1. How “nested” it is can make it worth
more

44

int function3(bool var1, bool var2) {
 if(var1) { // +1, nesting level +1
 if(var2) // +2 (1 + current nesting level of 1), nesting level +1
 return 42;
 }

 return 0;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity

❖ Consider the code on the left

❖ It has a much higher complexity than the one on the right

45

bool foo(string param) {
 if (!error1) {
 if (!error2) {
 if (!error3){
 // do some computation
 return true;
 }
 }
 }
 return false;
}

bool foo(string param) {
 if (error1) {
 return false;
 }
 if (error2) {
 return false;
 }
 if (error3) {
 return false;
 }
 // do some computation
 return true;
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity & Reasoning

❖ Code that is more cognitively complex is said to be harder to reason about

❖ Many organizations and standards will mandate that code has a low
complexity score.

46

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity Example:

❖ What does this code do? Does it do it correctly?

47

void bar(const matrix<N, N>& m1, const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; i += r) {
 for (size_t j = 0; j < m2.cols; j += r) {
 for (size_t k = 0; k < N; k += r) {
 for (size_t ib = i; ib < i + r; ++ib) {
 for (size_t jb = j; jb < j + r; ++jb) {
 for (size_t kb = k; kb < k + r; ++kb) {
 out[ib, jb] += m1[ib, kb] * m2[kb, jb];
 }
 }
 }
 }
 }
 }
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity Example:

❖ What does this code do? Does it do it correctly?

48

void foo(const matrix<N, N>& m1, const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; ++i) {

 for (size_t j = 0; j < m2.cols; ++j) {

 for (size_t k = 0; k < m2.rows; ++k) {
 out[i, j] += m1[i, k] * m2[k, j];
 }

 }

 }
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Cognitive Complexity Solution

❖ Break your code out into reasonable functions

❖ The less you have to reason about at once, the easier it is to reason
(in my experience)

❖ Instead of the first matrix multiply, we can refactor it:

❖ (It would also make sense to change the names so that they aren’t “r”, “k”,
etc.) 49

void bar(const matrix<N, N>& m1, const matrix<N, N>& m2, matrix<N, N>& out) {
 for (size_t i = 0; i < m1.rows; i += r) {
 for (size_t j = 0; j < m2.cols; j += r) {
 for (size_t k = 0; k < N; k += r) {
 multiply_tile(m1, m2, out, i, j, k);
 }
 }
 }
}

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

Credits

❖ Big inspiration from:

▪ CSE 331 @ UW by Hal Perkins

▪ Comparing 'Classic C++' and 'Modern C++' Ways to Solve Programming Tasks - Roger Orr -
ACCU 2023

▪ Probably other things I am forgetting, Will add here if I find them :)

50

CIS 3990, Fall 2025L05: Code QualityUniversity of Pennsylvania

That’s all for now!

❖ Next time: talking about the OS :)

❖ Hopefully you are doing well ☺

51

	Default Section
	Slide 1: Code Quality Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Pre-Semester Survey Results & Discussion
	Slide 5: Pre-Semester Survey Results & Discussion
	Slide 6: Lecture Outline
	Slide 7: C++ Namespaces: Motivation
	Slide 8: C++ Namespaces: definition example
	Slide 9: C++ Namespaces: definition example
	Slide 10: C++ Namespaces: using namespace
	Slide 11: C++ Namespaces: using namespace
	Slide 12: Lecture Outline
	Slide 13: Prelude:
	Slide 14: What are programming idioms?
	Slide 15: The for loop
	Slide 16: The “raw” for loop
	Slide 17: The “modern” for loop
	Slide 18: The “auto” for loop
	Slide 19: The “efficient” for loop
	Slide 20: The range-for loop
	Slide 21: Removing the loop
	Slide 22: Idioms
	Slide 23: Other C++ idioms: const ref
	Slide 24: Other C++ idioms: in/out parameters
	Slide 25: Other C++ idioms: in/out parameters
	Slide 26: Other C++ idioms: naming conventions
	Slide 27: Other C++ idioms: naming conventions
	Slide 28: Lecture Outline
	Slide 29: Reasoning about code
	Slide 30: Reasoning about code
	Slide 31: Reasoning about code (backwards)
	Slide 32: Reasoning about code (backwards)
	Slide 33: Reasoning about code (backwards)
	Slide 34: Reasoning about code (backwards)
	Slide 35: Reasoning about If
	Slide 36: Reasoning about loops
	Slide 37: Reasoning about objects
	Slide 38: Reasoning about objects
	Slide 39: Debugging
	Slide 40: Ed Discussion
	Slide 41: Lecture Outline
	Slide 42: Clang-tidy
	Slide 43: Cognitive Complexity
	Slide 44: Cognitive Complexity
	Slide 45: Cognitive Complexity
	Slide 46: Cognitive Complexity & Reasoning
	Slide 47: Cognitive Complexity Example:
	Slide 48: Cognitive Complexity Example:
	Slide 49: Cognitive Complexity Solution
	Slide 50: Credits
	Slide 51: That’s all for now!

