University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Code Quality

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any feedback?

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Administrivia

» HWO2 Due Yesterday

" | *hope* it was less work than HWO01

+» HWO3 posted after lecture

= Algorithmically more complex than HW02
" But you have the C++ standard library
= | *think* it is less work than HWO02

% Check-in posted tomorrow

= “Finish” what we didn’t get to in lecture + 1 or 2 new short questions

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Pre-Semester Survey Results & Discussion

+ Concerns
" Too much work

® Course may explode due to it being the first offering

" How has it been so far?

<+ Anonymous feedback form: https://forms.gle/2YzMuyC8kxCgl1F2n8

https://forms.gle/2YzMuyC8kxCq1F2n8
https://forms.gle/2YzMuyC8kxCq1F2n8

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Pre-Semester Survey Results & Discussion

+» Wants:
" Learn C++
= Prepare people for upper-level courses
= Take a course w/ me

® Can’t comment on second topic, but hopefully first one is going ok so far?
Third one is hopefully meeting expectations for those that wanted that

<+ Anonymous feedback form: https://forms.gle/2YzMuyC8kxCglF2n8

https://forms.gle/2YzMuyC8kxCq1F2n8

University of Pennsylvania LO5: Code Quality

Lecture Outline

+» C++ Aside: namespaces

+» ldioms

+» Reasoning About Code

+» Clang-tidy and Cognitive complexity

CIS 3990, Fall 2025

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

C++ Namespaces: Motivation

+ Let’s say we wanted to define our own implementation for string

class string {

+» How do we differentiate public:

. . // ctor
between which string string();
we want to use?
= My string or C++ string [

private:
// SECRETE PATENT PENDING MATERIAL

}s

. int main() {
A (other than Changmg string x; // is this my string or the C++ string?

the name of our string) /] ...
}

University of Pennsylvania LO5: Code Quality

CIS 3990, Fall 2025

C++ Namespaces: definition example

+ Let’s say we wanted to define our own implementation for string

+» We can put our string definition in
a hamespace.

«» Namespaces:
= A way to avoid name conflicts

= Usually a way to group various items from
the same module / library under one “name”

= Now this string is under the “travis_lib” name

namespace travis lib {

class string {
public:
// ctor
string();

/] ...

private:
// SECRETE PATENT PENDING MATERIAL

s
s

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

C++ Namespaces: definition example

+ Let’s say we wanted to define our own implementation for string

namespace travis lib {
+ Can specify which string | want by explicitl
P y 5 Y P Y class string {

stating the namespace public:

// ctor
string();

int main() {
std::string Xx;
travis lib::string y;

/] ...
/] ...

}

private:
// SECRETE PATENT PENDING MATERIAL

s
s

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

C++ Namespaces: using namespace

+ Let’s say we wanted to define our own implementation for string

namespace travis lib {
+ Using namespace <namespace> ,
. class string {
makes the specified namespace the public:

“default” assumed unless specified /é ?to'g)
string();

using namespace std; //

int main() {
std::string x;
travis_lib::string y;

private:
// SECRETE PATENT PENDING MATERIAL

s
s

string z;
/] ...
}

10

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

C++ Namespaces: using namespace

+» Using statements related to namespaces are never used in .hpp files
(because it then applies to every file that #includes it)

+ Using a whole namespace in .cpp file (like we have been doing with
using namespace std) is generally frowned on.

+ Instead, you either using std::string;

= always specify namespace using std::vector;

e.g. always type std: :stringinstead of string
{0t mai
= specify at the top of the cpp file, the things lnst??i;(i;{

you are using from each any namespaces. travis_lib::string y;
string z;

11

University of Pennsylvania LO5: Code Quality

Lecture Outline

% C++ Aside: namespaces

+» ldioms

+» Reasoning About Code

+» Clang-tidy and Cognitive complexity

CIS 3990, Fall 2025

12

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Prelude:

%+ Alot of what | am stating is subjective, but | tried to keep it broadly acceptable

+ A lot of this style stuff also depends on who you are coding with (e.g. the
company/lab you are working with)

= Different workplaces have different style guides

» You may not have access to more modern language features

13

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

What are programming idioms?

+» A code idiom is just a piece of code / code pattern that shows up frequently
across code.

%+ Some idioms can even exist across multiple programming languages

+ Very important!

14

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

The for loop

+ Basic for loop

#include <vector>
using namespace std;

int product(const vector<int>& items) {
int result = 1;

for (int 1 = @0; i < items.size(); i++) {
result *= items[i];

}

return result;

}

« Does this work?
+» Any complaints on it?
« |s this C++7

15

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

The “raw” for loop

» GOTO loop int product_raw(const vector<int>& items) ({
More similar int result = 1;

int 1 = 0;
to asm LOOP: ;
if (i >= items.size()) goto END;

result *= items[i];

1 =1+ 1;

goto LOOP;
END:;

return result;

« Does this work?
« Is this faster?
+» Any complaints on it?

16

University of Pennsylvania LO5: Code Quality

CIS 3990, Fall 2025

The “modern” for loop

+» “modern” for loop

int product(const std::vector<int>& items) {
int result{1};
for (std::size t idx{}; idx != items.size(); ++idx) {
result *= items[idx];

}

return result;

}

. int x
« Does this work? int a
+ How readable is this? ,

int y

« Is this better? int b

final values: Xx,y,a
+» Any complaints on it? / !

// y++ makes a temporary value
// that is often unecessary

17

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

The “auto” for loop

+» Some people believe “use auto everywhere”

int product(const std::vector<int>& items) {
auto result{l};
for (auto idx{@uz}; idx != items.size(); ++idx) {
result *= items[idx];

}

return result;

}

+ Does this work? (resolve to the correct types)
+» How readable is this?

+ Is this better?

» Any complaints on it?

18

University of Pennsylvania LO5: Code Quality

The “efficient” for loop

+» Simplify the
for loop to

combine

update and int product(const std::vector<int>& items) {
heck i int result{1};
checkinto one for (auto idx{items.size()}; idx--;) {

step. result *= items[idx];

¥

return result;

}

« Does this work?
« Is this faster?
+» Any complaints on it?

CIS 3990, Fall 2025

19

University of Pennsylvania LO5: Code Quality

The range-for loop

» Use a range-for loop

int product(const std::vector<int>& items) {
int result{1l};
for (int item : items) {
result *= item;

¥

return result;

+ Does this work?
+» Any complaints on it?

CIS 3990, Fall 2025

20

University of Pennsylvania LO5: Code Quality

Removing the loop

% Use <algorithm> and take a functional approach

#include <algorithm>
#include <functional>

using std: :reduce;
using std::vector;
using std::multiplies;

int product(const vector<int>& items) {

return reduce(items.begin(), items.end(), 1, multiplies);

¥

« Does this work?
«+ How readable is this?
+» Any complaints on it?

CIS 3990, Fall 2025

21

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Idioms

+» Code can be written in many ways that do the same thing

" Many ways that generate the same assembly, near the same assembly, or have negligible
difference in performance

While writing code, you should make sure that the code expresses intent to
your audience (co-workers, the compiler, yourself, etc.)

" What an idiom is will depend on your audience. What practices have they seen before?
What coding style do you and your co-workers work with?

/
0‘0

" |n other words: “the best code is as self-documenting as possible”. Comments are great,
but people have the habit of not fully reading those.

Following idioms generally makes code easier to reason about

= Similar for “simplifying” the code as much as possible.
The less there is, the less there is to think about 22

R/
0’0

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Other C++ idioms: const ref

+» Parameters for anything that isn’t a primitive is a const reference
= Some exceptions to this (e.g. string view) but mostly true.

« Why?
= Avoids making a copy
= Avoids modifying data that we don’t want a function to modify

23

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Other C++ idioms: in/out parameters

+» Which parameters are inputs? Which are outputs?

int main() A
string x "hello";

string y = "bye";
string z = mystery(x, y);
}

+» Hard to tell based off of usage :(
(not very self documenting)

24

University of Pennsylvania

Other C++ idioms: in/out parameters

+» Which parameters are inputs? Which are outputs?

+ Some places (like google) will use pointers to indicate a parameter

LO5: Code Quality

is intended to be used for output:

+» We aren’t
enforcing this.
This idiom is
pretty varied
in adoption.

string mystery(string* a, const string& b) {

*a += b;
return *a;

¥

int main()
string x
string vy
string z

}

"hello";
llbyell;
mystery(&x, y);

CIS 3990, Fall 2025

25

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Other C++ idioms: naming conventions

« Which variables here are Globals? Constants? Member variables?

string Object::function(const string& input) {
counter += 1;

return storage[counter * factor];

¥

26

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Other C++ idioms: naming conventions

« Which variables here are Globals? Constants? Member variables?

string Object::function(const string& input) {
g counter += 1;

return m_storage[g counter * k factor];

¥

+» Some C++ programmers prefix variable names to self-document
= g ->global variable
= k_->constant
" m_ ->non-public member variable

+» Again, this idiom varies in usage.

27

University of Pennsylvania LO5: Code Quality

Lecture Outline

% C++ Aside: namespaces

+» ldioms

+» Reasoning About Code

+» Clang-tidy and Cognitive complexity

CIS 3990, Fall 2025

28

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about code

«» Our computers are automata

+ It follows a sequence of operations to transition from one state to another.

+» We can reason about our code like:
" Program is in some state
= Some assembly/line of code is executed
= We arein a different state

29

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about code

+» Consider this example. We star by assuming there is some int w that has a
value greater than O.

// Assume w 1is > ©

// X ==5 && w > 0
int X 5;

// X ==5 & & y == 32 && w > ©
int y = 32

// X ==58& % y == 32 & w > 0 && z >37
int z =X +y + w;

+ By reasoning through our code, we can guarantee z is > 37 (assuming our initial
assumption holds)

30

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about code (backwards)

+ We can also go backwards to see “what must be true for what | want to be
true”

31

CIS 3990, Fall 2025

University of Pennsylvania LO5: Code Quality

Reasoning about code (backwards)

+ We can also go backwards to see “what must be true for what | want to be
true”

int y

int z

// X *y + z = 4562
int a=x*y + z;

// want a == 4562

32

CIS 3990, Fall 2025

University of Pennsylvania LO5: Code Quality

Reasoning about code (backwards)

+ We can also go backwards to see “what must be true for what | want to be
true”

int y = 2;

// X *y = 4530
int z = 32;

// X *y + z = 4562
int a=x*y + z;

// want a == 4562

33

University of Pennsylvania LO5: Code Quality

Reasoning about code (backwards)

+ We can also go backwards to see “what must be true for what | want to be
true”

// X = 2265
int y = 2;

// X *y = 4530
int z = 32;

// X *y + z = 4562
int a=x*y + z;

// want a == 4562

CIS 3990, Fall 2025

34

CIS 3990, Fall 2025

University of Pennsylvania LO5: Code Quality

Reasoning about If

+» We need to reason through all possible
conditions to see what assumptions
we can make before/after

+ State is a logical OR of all
possible branches

// assume X >=
int z = 9;

// z == 0 && X >=

if (x 1= 0) {

// z == 0 && X > ©

Z = X;

// z == X && X > 0 && z > 0
} else {

// z == 0 && 0

0
X 1;
// X == 0
}

&& 1

/] (x > 0 8& z

// OR
// (x == 0 && z == 1)

// another way to look at i
// X >= 0 & z > ©

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about loops

+» We can apply this logic to loops.

+ Loops should maintain some invariant (something that is true before each
iteration)

int product(const vector<int>& items) {
int result = 1;

for (int 1 = 0; 1 < items.size(); i++) {
// 1 < items.size()
// result = 1 * product(items[0], ... items[i - 1])
result *= items[i];

}

// result = 1 * product(items[@], items[items.size() - 1])

return result;

36

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about objects

+» Classes are designhed usually to implement some abstraction.
To implement that abstraction, the class’s member variables must maintain
some property between each other.

+ These properties are the class’s invariant

% This invariant should be held before and after every function called on an
object until it is deleted or moved

// data points to "~capacity number of integers on the heap

// length <= capacity

// data[@ .. length - 1] are valid integers for a user to access
// data[length ... capacity - 1] should not be accessed

class Vec {
int* data;
size t capacity;
size t length;
}s5

37

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Reasoning about objects

+» Generally if there is no (or minimal) invariant to maintain, then you make a
struct.

® (inner helper-structs can have invariants since those are already "private")

struct StringAndInt {
string str;

int integer;

s

38

University of Pennsylvania LO5: Code Quality

Debugging

+» Backwards reasoning model is how | debug.

" Find where the error is occurring

 (e.g.lam looking up a key that doesn’t exist in a map)

" What assumptions does my code expect to be true
 (e.g. state of the key and map)

= Work backwards from there

- what needs to happen for my assumption to hold true.

Do those assumptions still hold true?

CIS 3990, Fall 2025

39

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Ed Discussion

+ Go there ©

40

University of Pennsylvania LO5: Code Quality

Lecture Outline

% C++ Aside: namespaces

+» ldioms

+» Reasoning About Code

+» Clang-tidy and Cognitive complexity

CIS 3990, Fall 2025

41

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Clang-tidy

+ Static analyzer
+» Does something like how we reasoned about code to try and notice bugs

« Also checks to enforce some amount of idioms

42

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity

+» Most errors are straight forward enough just from reading what the error says.

" eg. : parameter name 'i' is too short, expected at least 3 characters
[readability-identifier-length,-warnings-as-errors]

size t 1i,

% There is one that is not clear and shows up enough to be worth going over
now: “Cognitive complexity”

" The tool calculates “cognitive complexity” of your code and will complain about anything
that is too complex. This means you should think about how to break your code into
helpers, because if you don’t, clang-tidy will complain and you will face a deduction.

43

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity

+ This function has Cognitive Complexity of 3.

int function3(bool varl, bool var2) {
if(varl) { // +1, nesting level +1
if(var2) // +2 (1 + current nesting level of 1), nesting level +1
return 42;

}

return 0;

}

+ Each if statement, loop, etc adds a +1. How “nested” it is can make it worth
more

44

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity

+» Consider the code on the left
+ It has a much higher complexity than the one on the right

bool foo(string param) { bool foo(string param) {
if (lerrorl) { if (errorl) {
if (lerror2) { return false;
if (lerror3){ }
// do some computation if (error2) {
return true; return false;

}

} if (error3) {
} return false;

return false; }
// do some computation

return true;

45

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity & Reasoning

+» Code that is more cognitively complex is said to be harder to reason about

+» Many organizations and standards will mandate that code has a low
complexity score.

46

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity Example:

+» What does this code do? Does it do it correctly?

void bar(const matrix<N, N>& ml, const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t i =0; 1 < ml.rows; i +=r) {
for (size t j =0; j < m2.cols; j +=r) {
for (size t k = 0; k < N; k +=r) {
for (size t ib = 1i; ib < 1 + r; ++ib) {
for (size t jb = j; jb < j + r; ++jb) {

for (size t kb = k; kb < k + r; ++kb) {
out[ib, jb] += ml[ib, kb] * m2[kb, jb];

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Cognitive Complexity Example:

+» What does this code do? Does it do it correctly?

void foo(const matrix<N, N>& ml, const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t 1 =0; 1 < ml.rows; ++1i) {

for (size t j = 0; j < m2.cols; ++j) {

for (size t k = 0; k < m2.rows; ++k) {
out[i, j] += mi[i, k] * m2[k, J];

University of Pennsylvania LO5: Code Quality

CIS 3990, Fall 2025

Cognitive Complexity Solution

+» Break your code out into reasonable functions

+ The less you have to reason about at once, the easier it is to reason
(in my experience)

% Instead of the first matrix multiply, we can refactor it:

void bar(const matrix<N, N>& ml, const matrix<N, N>& m2, matrix<N, N>& out) {
for (size t i =0; 1 < ml.rows; i +=r) {
for (size t j = 0; j < m2.cols; j +=r) {
for (size t k = 0; k < N; k +=r) {
multiply tile(ml, m2, out, i, j, k);

+ (It would also make sense to change the names so that they aren’t “r”, “k”,
EtC.) 49

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

Credits

+~ Big inspiration from:
= CSE 331 @ UW by Hal Perkins

= Comparing 'Classic C++' and 'Modern C++' Ways to Solve Programming Tasks - Roger Orr -
ACCU 2023

" Probably other things | am forgetting, Will add here if | find them :)

50

University of Pennsylvania LO5: Code Quality CIS 3990, Fall 2025

That’s all for now!

+» Next time: talking about the OS :)

+ Hopefully you are doing well ©

51

	Default Section
	Slide 1: Code Quality Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Pre-Semester Survey Results & Discussion
	Slide 5: Pre-Semester Survey Results & Discussion
	Slide 6: Lecture Outline
	Slide 7: C++ Namespaces: Motivation
	Slide 8: C++ Namespaces: definition example
	Slide 9: C++ Namespaces: definition example
	Slide 10: C++ Namespaces: using namespace
	Slide 11: C++ Namespaces: using namespace
	Slide 12: Lecture Outline
	Slide 13: Prelude:
	Slide 14: What are programming idioms?
	Slide 15: The for loop
	Slide 16: The “raw” for loop
	Slide 17: The “modern” for loop
	Slide 18: The “auto” for loop
	Slide 19: The “efficient” for loop
	Slide 20: The range-for loop
	Slide 21: Removing the loop
	Slide 22: Idioms
	Slide 23: Other C++ idioms: const ref
	Slide 24: Other C++ idioms: in/out parameters
	Slide 25: Other C++ idioms: in/out parameters
	Slide 26: Other C++ idioms: naming conventions
	Slide 27: Other C++ idioms: naming conventions
	Slide 28: Lecture Outline
	Slide 29: Reasoning about code
	Slide 30: Reasoning about code
	Slide 31: Reasoning about code (backwards)
	Slide 32: Reasoning about code (backwards)
	Slide 33: Reasoning about code (backwards)
	Slide 34: Reasoning about code (backwards)
	Slide 35: Reasoning about If
	Slide 36: Reasoning about loops
	Slide 37: Reasoning about objects
	Slide 38: Reasoning about objects
	Slide 39: Debugging
	Slide 40: Ed Discussion
	Slide 41: Lecture Outline
	Slide 42: Clang-tidy
	Slide 43: Cognitive Complexity
	Slide 44: Cognitive Complexity
	Slide 45: Cognitive Complexity
	Slide 46: Cognitive Complexity & Reasoning
	Slide 47: Cognitive Complexity Example:
	Slide 48: Cognitive Complexity Example:
	Slide 49: Cognitive Complexity Solution
	Slide 50: Credits
	Slide 51: That’s all for now!

