University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Objects Continued, STL Start

Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Q Poll Everywhere pollev.com/tqm

+» How are you? Any questions?

CIS 3990, Fall 2025

University of Pennsylvania LO3: Classes Cont. & STL Start

Administrivia

<+ HWOO0O & HWO01
" Due yesterday night

+» Pre semester Survey

" Anonymous
= Due Friday the 12th

+» HWO2 posted after lecture today
= | *think* it will be less word than HWO01
= Autograder posted later in the day or tomorrow

+ Next Check-in posted tomorrow
= Can request a re-open for HWO1 or HWOO in it

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

2 Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
« std::list

University of Pennsylvania

Aside: auto

LO3: Classes Cont. & STL Start

% In C++ (and C23 onwards) you can declare a variable with the keyword "auto”
which tells the compiler to automatically deduce the type.

+ This only works if there is enough context

for the compiler to deduce a type.

(

(// Calculate and return a vector
// containing all factors of n
L vector<int> Factors(int n);

void foo(void) {
// Manually identified type

\\ vector<int> factsl = Factors(324234);
Compller knows

// Inferred type return value of
auto facts?2 Factors (12321) ;e— Factors()

// Compiler error here

auto facts3; P27
—

} No information +o

wfer type

CIS 3990, Fall 2025

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: inline member functions

+» You can put the definition for member functions in the class/struct declaration.

+ This is usually reserved for very simple 1-liner member functions like getters

and setters. class Point {

public:
. i Point(int x, int y); // constructor
% Larger functions can be in here int GetX() { return m_x; }

int GetY() { return m_y; }

but stylistically should not be. double DotProd(Point p):

void SetlLocation(int x, int y);

private:
int m_x; // data member
int m_y; // data member
}; // class Point

University of Pennsylvania

LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: operator overload

In C++ we can define how language operators work on different types.

These can be member or non-member (e.g. “norma

III

) functions

= Prefer non-member functions. Only make something a member if it NEEDS to be.

Usually you only comparison operators are implemented (if any)

operator<
operator==
operator>
operator<=
operator >=
operator !=

operator<=>

Only defining < is normal. Only one needed for ordering things
Also nice to define in some cases

class Point {
public:
bool operator==(const Point& other);

bool Point::operator==(const Point& other) {
}; reutrn this->m_x == other.m_x && this->m_y == other.m_y;

}

Only came in C++20, acts more like the CompareTo function where it
returns -1, 0, or 1. Defining this is sufficient to support all comparisons

7

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: operator overload

% In C++ we can define how language operators work on different types.
%+ These can be member or non-member (e.g. “normal”) functions

= Prefer non-member functions. Only make something a member if it NEEDS to be.

+» Other operator overloads exist, but usually only make sense for data
structures/iterators or “fundamental” types .hpp

class Point {

public:
int GetX() { return m_x;
int GetY() { return m_y;

" operator|[]
" operator*

" operator++

pﬁlzate:. /7 dat b int operator*(const Point& lhs, const Point& rhs) {
" operator+ i:t 2_?) dztz mbiﬁ return lhs.GetX() * rhs.GetX() + lhs.GetY() * rhs.GetY();
m Operator% Ys // class Point ;

u operator<< int operator*(const Point& lhs, const Point& rhs);

" operator, and many more g

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: range for loop

% Syntactic sugar similar to Java’s foreach

/for (declaration : expression) f{ A
statements
J y,
" declaration defines the loop variable
" expressionisan object representing a sequence
. Strings, and most STL containers work with this
\

(étring str("hello");
// prints out each character
for (char c¢c : str) {

cout << ¢ << endl;

U y

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

+» Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
« std::list

10

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Const objects

+ Just like with primitive types and structs, we can have a const object

+ A const object cannot change its int main() { |
data members* } const Point p(3, 2);

+ A const object cannot call a non-const member functions

= Consider how we previously declared the point object:
class Point {

public:

Point(int x, int y);

= |f we left it as this, then this code would not compile

int GetX() { return m_x; }
int GetY() { return m_y; }

int main() {
const Point p(3, 2);

cout << p.GetX() << endl;
}

11

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Const objects

We need to mark member functions that do not modify any data members as
const.

class Point {

public:
Point(int x, int y);
int GetX() { return m_x; }
int GetY() { return m_y; }

This tells the compiler that it is ok for const objects to call these member
functions.

Compiler will give error if you try to declare a function const that modifies

the data members. int main() {
const Point p(3, 2);

cout << p.GetX() << endl;
This code becomes OK now: @ "

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Const for non-inline functions

% For functions that aren’t only in the header: If we wanted to make them const,
we need to do it in the cpp and hpp files:

Point::Point(int x, int y) {
mXx = X;

my =y;
class Point { } =

public:

Point(int x, int y); // constructor double Point::dot_prod(Point p)
int GetX() const { return m_x; } double prod = m x * D.Mm_X;
int GetY() const { return m_y; } prod += (m_y * B,m y); B
double DotProd(Point p) 5 return ppoa; a

void SetlLocation(int x, int y); }

private: void Point::SetlLocation(int x, int y) {
int m_x; // data member mx = x:
—_ - J

int m_y; // data member my = y;
}; // class Point y ’

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
« std::list

14

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

C++ Documentation

+» As said, there is a LOT to C++
" There are a lot of functions, objects, features, etc
= We will NOT have time to talk about them all

+ We highly recommend you make use of a C++ reference

= cplusplus.com

« Most find this one easier to read
« Probably has the information you need

" cppreference.com

« Much more detailed (in Travis’ opinion)
- Isin various languages (scroll to the bottom)

15

http://www.cplusplus.com/
http://www.cplusplus.com/
https://en.cppreference.com/w/
https://en.cppreference.com/w/

University of Pennsylvania

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

STL Containers ©

%+ A container is an object that stores (in memory) a collection of other objects
(elements)

" Implemented as class templates, so hugely flexible
" More info in C++ Primer §9.2, 11.2

«» Several different classes of container

= Seguence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap, bitset, ...)
= Differ in algorithmic cost and supported operations

16

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

vector C++ equivalent of Arraylist

+~ A generic, dynamically resizable array

" https://cplusplus.com/reference/vector/vector/

" Elements are store in contiguous memory locations
« Can index into it like an array
- Random access is O(1) time

= Adding/removing from the end is cheap (amortized constant time)
" |nserting/deleting from the middle or start is expensive (linear time)

+ Most common member function: push _back ()

= Adds an element to the end of the vector

+ Probably the most important data structure

= More on this later

17

https://cplusplus.com/reference/vector/vector/
https://cplusplus.com/reference/vector/vector/

University of Pennsylvania

LO3: Classes Cont. & STL Start

Vector example

/@include <lostream>
#include <vector> <=

t+he same name

using namespace std;

vector<int> vec {6, 5, 4}; three nitial elements

vec.push back (3) ; .
vec.push back (2); +—— Addthree integers to the vector
vec.push back (1) ;

cout << "vec.at(0)" << endl << vec.at(0) << endl;
cout << "vec.at(l)" << endl << wvec.at(l) << endl;

// iterates through all elements
for (size t 1 = 0U; 1 < vec.size(); ++1i) {
cout << vec.at(i) << endl;

\ Print all +he values v the array
return EXIT SUCCESS;

Wost contaivers are in a wmodule o

int main(int argc, char* argv[]) Constructs a vector with

A

J

CIS 3990, Fall 2025

18

University of Pennsylvania

LO3: Classes Cont. & STL Start

Vector iterator

flnt main(int argc, char* argv([]) {

Can get an iterator fo the
/ beainning of the vector

vector<int>::iterator it = vec.begin();
it = vec.insert(it, 3); +—— Insert?3 //§3,0,5, 4}

vector<int> vec {6, 5, 4};

++it; p Advances iterator +o index 4

1t = vec.insert(it, 1)je Twserts 4 to ndex 1 {3,1, ¢, 5, 43
it = vec.end(); « Sets iterator to the end

it = vec.insert(it, 2

)2
S~ Same as push_back(2);

cout << "Iterating:" << endl;
for (it = vec.begin(); it < vec.end(); ++it) {
cout << *it << endl;

N Accesses the current element of the iterator

return EXIT SUCCESS;

CIS 3990, Fall 2025

19

University of Pennsylvania

LO3: Classes Cont. & STL Start

range for loop vector example

+ If you need to iterate over every element in a sequence, you should use a

range for loop.
= Why? It is harder to mess it up that way

nt main(int argc, char* argvl[]) {
vector<int> vec {6, 5, 4};
vec.push back (3);
vec.push back (2);
vec.push back (1) ;

// lterates through all elements
for (int element : wvec) {

cout << element << endl;
}

return EXIT_SUCCESS;

CIS 3990, Fall 2025

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Other vector functions

% pop_back()
= Removes the last element of the vector
» empty()
= Returns true if the vector is empty
% clear()
= Removes all elements currently in the vector

+ erase(iterator position)

" Erases from the element at the specified position

« A bunch more:

" https://www.cplusplus.com/reference/vector/vector/

21

https://www.cplusplus.com/reference/vector/vector/
https://www.cplusplus.com/reference/vector/vector/

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Temporal Safety

+~ A concern in systems programming is that we can sometimes still try to
access/use some data after it no longer exists
= After the data is deallocated from the heap
= After the data is popped off of the stack
" The object is destructed
" Etc.

+ An important part of understanding how our basic data structures work, is so
that we know how these issues can come up.

22

University of Pennsylvania

Temporal Safety

«+ What is the issue in this code?

LO3: Classes Cont. & STL Start

(, .
#include <jiostream>
#include <vector>

using namespace std;

int& first = v.front ()
cout << first << endl;

v.push back(6);

cout << first << endl;

int main(int argc, char** argv) {
vector<int> v {3, 4, 5};

.
4

cout << wv.size () << endl;

CIS 3990, Fall 2025

23

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Lifetimes & Reference Invalidation

+ |f you read the documentation for many C++ classes, there will be sections on
iterator / reference invalidation.

%~ An example from push_back:

= |f after the operation the new size() is greater than old capacity() a reallocation takes
place, in which case all iterators (including the end() iterator) and all references to the
elements are invalidated.

« Even if we don’t have to allocate and deallocate things ourselves much in C++,
we must still be aware of it.

24

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

«» On Ed there are a bunch of functions from the vector class and their
description. Decide which ones should be const

25

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

<~ What does this code print?

int main() {
vector<int> v {3, 5};
v.push_back(2);

vector<int> plato = v;
plato.push _back(16);

for (int i : v) {
i *= 2;

¥

for (int 1 : v) {
cout << 1i;

¥

¥

26

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

+ How many times is a copy made (for either vec or string)?

vector<string> make_subs(const string input) {
vector<string> output{};
// assume initial capacity is 1
int main() { // capacity is doubled on resize
string name = "ILMC";
vector<string> subs = make subs(name); size t 1 = 0;

while (i < input.size()) {
for (string sub : subs) { string sub = input.substr(i);
cout << sub << endl; output.push_back(sub);
} i += 1;
} }

string& first = output.at(o);
return output;

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

+ Implement the function rect() which takes in a vector of vector of integers. The
function modifies the vector of vectors so that all rows are extended to be the
same length (by adding 0’s to the rows).

(void rect (vector<vector<int>>& m);)

For example, the following input

/
0‘0

(vector<vector<int>> m {) (// what it should look)
{3, 4, 5}, // like after calling rect
{2, 11}, vector<vector<int>> m {
{}I {31 4/ 5’ OI O}I
{OI 1’ 2/ OI O}I {21 :I-I OI OI O}I
}; {OI OI OI OI O}I
{OI :I-I 2/ OI O}I
rect (m) ; }
\, J . J

28

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

+ Implement the function intersect () which takes in two vector<int>s
and returns a vector<int> that has all the integers that can be found in
both vectors (no duplicates). The order of the elements in the result do not
matter.

vector<int> intersect(const vector<int>& v1, const vector<int>& v2) {

29

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
« std::list

30

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Exceptions are things in C++

+» | do not like exceptions
" They are gross

= Often used incorrectly.

-« Exceptions should truly only be used for “exceptional” behaviour. E.g. behaviour that is truly not
intended to happen during run time.
E.g. new will throw an exception if it cannot perform an allocation.

« Rust does not have exceptions :)))))))))
If an error happensit calls panic ("error message") which exits the program

| like this!

= Exceptions aren’t always the best for readability:

- What exception(s) does this function throw?
Does it even throw an exception?

string Queue: :remove () ;

- Need to read the comment usually, easier to mess up :’(
- Unfortunately constructors don’t “return” anything so exceptions are the norm there.

31

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Exceptions are things in C++

» Exception stuff are in <exception>and <stdexcept>

+ Throw syntax (string Queue::remove () {
1f (this->size () <= 0U) {
throw out of range("Error!");

}

. J

/étring result;)
try |

result = g.remove()
} catch (const exception& err) {

// handle error

string res = err.what();

// above gets an explanation

\J /
Yucky :face_vomiting:

» Try/catch syntax

/
>

*

32

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Exceptions are not free

L)

Exceptions have a (sometimes ignorable) runtime cost

Compiler doesn’t have to store extra things in your function so that at runtime
your program can handle an exception being thrown

Most code *can™ throw an exception tho.
By far the most common: if your code directly or indirectly calls new. new will
throw an exception when Out Of Memory

Functions that cannot throw an exception should be declared noexcept
int add(int x, int y) noexcept;

int add(int x, int y) noexcept {

return x + vy,

} 33

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
« std::list

34

University of Pennsylvania

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

Minimizing Allocations

+» Memory allocations require time, sometimes a lot of time to compute.

+ |f performance is our goal, we should minimize the number of allocations we
make. (this usually also means we minimize the number of copies made)

« This can include

= Making references instead of copies

= Using functions Iike[vector ::reserve(size t new capacity)]
- Java arraylist lets you specify capacity in the constructor.
- std::string also has a reserve function

® Using move semantics

35

CIS 3990, Fall 2025

University of Pennsylvania LO3: Classes Cont. & STL Start

Copy Semantics: close up look

. (int main (int argc, char **argv) {)
+ Internally a string std::string a{"bleg"};
manages a heap
allocated C string !)

and looks something like:

Stack heap
a m_data * b| 1| e | g|\O
m_len | 4

36

University of Pennsylvania

LO3: Classes Cont. & STL Start

Copy Semantics: close up look

+» When we copy
construct string b

we could get something like:

Stack

\.

-) .
int main(int argc,

}

std::string a{"bleg"};

std::string b{a};

char **argv)

{

\

J

heap

a m_data » b | 1| e \O
m_len | 2

b m_data » b | 1| e \O
m_len | 4

This is another memory allocation, and we
need to copy over the characters of the string

CIS 3990, Fall 2025

37

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Move Semantics (C++11)

“Move semantics”
move values from
one object to
another without
copying (“stealing”)

= A complex topic that
uses things called
“rvalue references”
- Mostly beyond the

scope of this
class

int main(int argc, char **argv) {

std::string a{"bleg"}; n

A.
// moves a to b b:"kﬂc@"
std::string b{std::move(a) };
std::cout << "a: " << a << std::endl;
std::cout << "b: " << b << std::endl;

return EXIT SUCCESS;

Note: we should NOT access ‘a’ after we move it. It is undefined
to do so, it just so happens it is set to the empty string

38

CIS 3990, Fall 2025

University of Pennsylvania LO3: Classes Cont. & STL Start

Move Semantics: close up look

. (int main (int argc, char **argv) {)
+ Internally a string std::string a{"bleg"};
manages a heap
allocated C string !)

and looks something like:

Stack heap

a m_data * | b| 1| e | g]|\O

m_len | 4

39

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Move Semantics: close up look

(int main (int argc, char **argv) {)
+~ When we use move std::string a{"bleg"};
to construct String b std::string b{std::move(a) };
}

we could get something like:

Stack heap

a m_data| nullptr b|1l|e|g]|\O
len_ . /
b m_data /

m_len | 4

40

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Move Semantics: Use Cases

+» Useful for optimizing away temporary copies

+» Preferred in cases where copying may be expensive

" Consider we had a vector of strings... we could transfer ownership of memory to avoid
copying the vector and each string inside of it.

% Can be used to help enforce uniqueness

+ Rust is a systems programming language that is gaining popularity and by
default it will move variables instead of copy them.

+» Optional demo: rust_move.rs

41

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Move Semantics: Details

+ Implement a “Move Constructor” with something like:

Point::Point (Point&& other) {
//

+ Implement a “Move assignment” with something like:

Point& Point::operator=(Point&& rhs) {

//
}

42

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Move Semantics: Details

+» “Move Constructor” example for a fake String class:

this—>len_
this->ptr

other.len
other.ptr

String::String (String&& other)

other.len ;
other.ptr ;

0;
nullptr;

{

43

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

std::move

+» Use std: :move to indicate that you want to move something and not copy it

(Point p {3, 2}; // constructor
Point a {p}:; // copy constructor

Point b {std::move(p)}; // move constructor

44

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

noexcept & std::move

+» Move assignment and move ctor are extra important to have as noexcept

% Cause some data structures (like std::vector) will only call them if they are no
except

» Why?
" Move constructors and move assignment should never really do anything that warrants
throwing an exception. No memory allocation happens in them. Delete doesn’t throw an

exception

45

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Demo: Verboselnteger.cpp

+» What happens when we resize a vector?

+ Note what happens when we make move operations noexcept

46

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+» std::optional
« std::list

47

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Functions that sometimes fail

+ Itis pretty common to write functions that sometimes fail. Sometimes they
don’t return what is expected

+» Consider we were building up a Queue data structure that held strings, that
could

= Add elements to the end of a sequence
-|void add(string data);

= Remove elements from the beginning of a sequence
2?7?77 remove (??7?77);

" How do we design this function to handle the case where there are no strings in the queue
(e.g. it errors?)

48

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Previous ways to handle failing functions

+» Return an "invalid" value: e.g. if looking for an index, return -1 if it can’t be
found.

= \What if there is no nice "invalid" state?

// what i1is an invalid string?
string remove () ;

% C-style: return an error code or success/failure.
Real output returned through output param

bool remove (string* output);

49

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: Java “Object” variables

+» Does this java compile?

(public static String foo () {)
return null;
}
_ J
+~ What about this C++?
N

4 .
string foo () {
return nullptr;

50

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Aside: Java “Object” variables

+ In high level languages (like java), object variables don’t actually contain an
object, they contain a reference to an object.

= References in these languages can be null

String s = new String("Java");
String other = null;

main’s stack frame

other | null T

heap

S e ———

— IIJavall

51

University of Pennsylvania

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

Aside: Java “Object” variables

% In C++, a string variable is itself a string object

- .
string s{"C++"};

// does not do what you think it does
string other = nullptr;

-

main’s stack frame

S

IIC++II

52

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Previous ways to handle failing functions

+ Return a pointer to a heap allocated object, could return nullptxr on error

= Uses the heap when it is otherwise unnecessary ®
" Need to remember to delete the string

string* remove () ;

/étring* remove () {

1f (this->size () <= 0U) {
return nullptr;

\ return new string(..);)

53

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Previous ways to handle failing functions

+» “More Modern” Style: throw an exception in the case of an error
return the value as normal
= Exceptions can make your code a bit slower
= Exception catching not always the easiest to handle
= Exceptions aren’t always the best for readability:

- What exception(s) does this function throw? | string remove () ;

- Need to read the comment usually, easier to mess up :’(

fstring remove () { R (étring result; A
if (this->size () <= 0U) { try {
throw out of range ("Error!"); result = g.remove();
L) -) } catch (exception err) {
// handle error

+ Unfortunately constructors don’t “return” \J Y,
anything so exceptions are the norm there. 54

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

std::optional

+» optional<T> is a struct that can either:

" Have some value T
(optional<string> {"Hello!"})

= Have nothing
(nullopt)

+ optional<T> effectively extends the type T to have a "null" or "invalid"
state

(bptional<string> foo () {

if (/* some error */) {
return nullopt;

~

}

return "It worked!";

\} J 55

University of Pennsylvania

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

Using an optional

+ |f we call a function that returns an optional, we need to check to see if it has a

value or not

(bptional<string> foo () { A
1f (/* some error */) {
return nullopt;
}
return "It worked!";
}
int main () {
auto opt = foo();
if (!opt.has value()) {
return EXIT FAILURE;
}
string s = opt.value() ;
U J

56

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

Lecture Outline

+» Misc C++

% Const Objects
+» std::vector

+» Exceptions

+» std::move

+ std::optional
+ std::list

57

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

STL1ist

+~ A generic doubly-linked list

" http://www.cplusplus.com/reference/stl/list/

" Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannotdo 1ist [5])
= Some operations are much more efficient than vectors

- Constant time insertion, deletion anywhere in list
— push_front ()andpop front () now exist!
— Can iterate forward or backwards T+erote backward: ——

= Has a built-in sort member function Tterate forward: ++
= Doesn’t copy! Manipulates list structure instead of element values

58

http://www.cplusplus.com/reference/stl/list/
http://www.cplusplus.com/reference/stl/list/

LO3: Classes Cont. & STL Start

CIS 3990, Fall 2025

University of Pennsylvania

list Example

(#include <list>
#include <algorithm>
#include <string>

using namespace std;

void PrintOut (const string& p) |
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) { L
list<string> lst; Use case is similar to Vector, but

nternal implementation is different
lst.push back ("I wanna");

lst.push back ("f");

lst.push back("my computer"); Won't copy or move elements, just
cout << "sort:" << endl; modifies the vext and prev pointers
lst.sort () ; <

cout << "done sort!" << endl;

for each(lst.begin(), lst.end(), &PrintOut);

return 0O;

59

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

<+ How many memory allocations occur in each piece of code?
= Assume vector resizes will double capacity
= std::list is a linked list in C++

int main() {
vector nums {4, 8};
nums.push_back(5);
nums.push_back(9);

int main() {
list nums {4, 8};
nums.push_back(5);
nums.push_back(9);

nums.push_back(5);
nums.push _back(09);

nums.push_back(5);
nums.push_back(0);

60

University of Pennsylvania

% Given a linked list object:

" What does the copy constructor do?

LO3: Classes Cont. & STL Start

= \What does the move constructor do?

struct node {

}s

node* next;
string value;

CIS 3990, Fall 2025

Ed Discussion

class LinkedList {
public:

LinkedList ()

: m_head(nullptr),

m _tail(nullptr),
m len(@) { }

LinkedList(const LinkedList& other) {

¥

LinkedList(LinkedList&& other) {

¥

private:

s

node* m_head;
node* m_tail;
size t m_len;

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

» How many copies are made? How many moves are made?

+ Assume that there is noexcept move operations implemented for string

and for a vector itself vector<string> make_subs(const string& input) {
vector<string> output{};
int main() { // assume initial capacity is 1
string name = "ILMC"; ouptut.reserve(input.size());
vector<string> subs = make_subs(name);
size t 1 = 0;

for (const string& sub : subs) { while (i < input.size()) {
cout << sub << endl; string sub = input.substr(i);
} output.push back(std::move(sub));
} i += 1;
}

string& first = output.at(0);
return output;

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

Ed Discussion

+ Given the function strtoi, finish writing a version that uses an optional to
indicate success/failure

#include <optional>
#include <string>
#include <stdexcept>

using namespace std;

optional<int> StrToInt(const string& to_convert) {

University of Pennsylvania LO3: Classes Cont. & STL Start CIS 3990, Fall 2025

That’s all for now!

«» Qut or soon to be out:
= HWO02
® Check-in01

= Pre-semester Survey

+» Hopefully you are doing well ©

64

	Default Section
	Slide 1: Objects Continued, STL Start Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Aside: auto
	Slide 6: Aside: inline member functions
	Slide 7: Aside: operator overload
	Slide 8: Aside: operator overload
	Slide 9: Aside: range for loop
	Slide 10: Lecture Outline
	Slide 11: Const objects
	Slide 12: Const objects
	Slide 13: Const for non-inline functions
	Slide 14: Lecture Outline
	Slide 15: C++ Documentation
	Slide 16: STL Containers 
	Slide 17: vector
	Slide 18: Vector example
	Slide 19: Vector iterator
	Slide 20: range for loop vector example
	Slide 21: Other vector functions
	Slide 22: Temporal Safety
	Slide 23: Temporal Safety
	Slide 24: Lifetimes & Reference Invalidation
	Slide 25: C++ Programming Refresher
	Slide 26: Poll:
	Slide 27
	Slide 28: C++ Programming Refresher
	Slide 29: C++ Programming Refresher
	Slide 30: Lecture Outline
	Slide 31: Exceptions are things in C++
	Slide 32: Exceptions are things in C++
	Slide 33: Exceptions are not free
	Slide 34: Lecture Outline
	Slide 35: Minimizing Allocations
	Slide 36: Copy Semantics: close up look
	Slide 37: Copy Semantics: close up look
	Slide 38: Move Semantics (C++11)
	Slide 39: Move Semantics: close up look
	Slide 40: Move Semantics: close up look
	Slide 41: Move Semantics: Use Cases
	Slide 42: Move Semantics: Details
	Slide 43: Move Semantics: Details
	Slide 44: std::move
	Slide 45: noexcept & std::move
	Slide 46: Demo: VerboseInteger.cpp
	Slide 47: Lecture Outline
	Slide 48: Functions that sometimes fail
	Slide 49: Previous ways to handle failing functions
	Slide 50: Aside: Java “Object” variables
	Slide 51: Aside: Java “Object” variables
	Slide 52: Aside: Java “Object” variables
	Slide 53: Previous ways to handle failing functions
	Slide 54: Previous ways to handle failing functions
	Slide 55: std::optional
	Slide 56: Using an optional
	Slide 57: Lecture Outline
	Slide 58: STL list
	Slide 59: list Example
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: That’s all for now!

