
CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Objects Continued, STL Start
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any questions?

2

pollev.com/tqm

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Administrivia

❖ HW00 & HW01

▪ Due yesterday night

❖ Pre semester Survey

▪ Anonymous

▪ Due Friday the 12th

❖ HW02 posted after lecture today

▪ I *think* it will be less word than HW01

▪ Autograder posted later in the day or tomorrow

❖ Next Check-in posted tomorrow

▪ Can request a re-open for HW01 or HW00 in it 3

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

4

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: auto

❖ In C++ (and C23 onwards) you can declare a variable with the keyword "auto“
which tells the compiler to automatically deduce the type.

❖ This only works if there is enough context
for the compiler to deduce a type.

5

// Calculate and return a vector

// containing all factors of n

vector<int> Factors(int n);

void foo(void) {

 // Manually identified type

 vector<int> facts1 = Factors(324234);

 // Inferred type

 auto facts2 = Factors(12321);

 // Compiler error here

 auto facts3;

}

Compiler knows

return value of

Factors()

?????????

No information to

infer type

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: inline member functions

❖ You can put the definition for member functions in the class/struct declaration.

❖ This is usually reserved for very simple 1-liner member functions like getters
and setters.

❖ Larger functions can be in here
but stylistically should not be.

6

class Point {
public:
 Point(int x, int y); // constructor
 int GetX() { return m_x; }
 int GetY() { return m_y; }
 double DotProd(Point p);
 void SetLocation(int x, int y);

private:
 int m_x; // data member
 int m_y; // data member
}; // class Point

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: operator overload

❖ In C++ we can define how language operators work on different types.

❖ These can be member or non-member (e.g. “normal”) functions

▪ Prefer non-member functions. Only make something a member if it NEEDS to be.

❖ Usually you only comparison operators are implemented (if any)
▪ operator< Only defining < is normal. Only one needed for ordering things

▪ operator== Also nice to define in some cases

▪ operator>

▪ operator<=

▪ operator >=

▪ operator !=

▪ operator<=> Only came in C++20, acts more like the CompareTo function where it
 returns -1, 0, or 1. Defining this is sufficient to support all comparisons

7

class Point {
public:
 bool operator==(const Point& other);

 ...
}; // class Point

bool Point::operator==(const Point& other) {
 reutrn this->m_x == other.m_x && this->m_y == other.m_y;
}

.hpp

.cpp

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: operator overload

❖ In C++ we can define how language operators work on different types.

❖ These can be member or non-member (e.g. “normal”) functions

▪ Prefer non-member functions. Only make something a member if it NEEDS to be.

❖ Other operator overloads exist, but usually only make sense for data
structures/iterators or “fundamental” types
▪ operator[]

▪ operator*

▪ operator++

▪ operator+

▪ operator%

▪ operator<<

▪ operator, and many more 8

class Point {
public:
 int GetX() { return m_x; }
 int GetY() { return m_y; }

private:
 int m_x; // data member
 int m_y; // data member
}; // class Point

int operator*(const Point& lhs, const Point& rhs);

int operator*(const Point& lhs, const Point& rhs) {
 return lhs.GetX() * rhs.GetX() + lhs.GetY() * rhs.GetY();
}

.hpp

.cpp

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: range for loop

❖ Syntactic sugar similar to Java’s foreach

▪ declaration defines the loop variable

▪ expression is an object representing a sequence

• Strings, and most STL containers work with this

9

for (declaration : expression) {

 statements

}

string str("hello");

// prints out each character

for (char c : str) {

 cout << c << endl;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

10

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Const objects

❖ Just like with primitive types and structs, we can have a const object

❖ A const object cannot change its
data members*

❖ A const object cannot call a non-const member functions

▪ Consider how we previously declared the point object:

▪ If we left it as this, then this code would not compile

11

int main() {
const Point p(3, 2);

}

class Point {
public:
 Point(int x, int y);
 int GetX() { return m_x; }
 int GetY() { return m_y; }
 …

int main() {
const Point p(3, 2);
cout << p.GetX() << endl;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Const objects

❖ We need to mark member functions that do not modify any data members as
const.

❖ This tells the compiler that it is ok for const objects to call these member
functions.

❖ Compiler will give error if you try to declare a function const that modifies
the data members.

❖ This code becomes OK now: 12

class Point {
public:
 Point(int x, int y);
 int GetX() const { return m_x; }
 int GetY() const { return m_y; }
 …

int main() {
const Point p(3, 2);
cout << p.GetX() << endl;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Const for non-inline functions

❖ For functions that aren’t only in the header: If we wanted to make them const,
we need to do it in the cpp and hpp files:

13

class Point {
public:
 Point(int x, int y); // constructor
 int GetX() const { return m_x; }
 int GetY() const { return m_y; }
 double DotProd(Point p) const;
 void SetLocation(int x, int y);

private:
 int m_x; // data member
 int m_y; // data member
}; // class Point

Point::Point(int x, int y) {
 m_x = x;
 m_y = y;
}

double Point::dot_prod(Point p) const {
 double prod = m_x * p.m_x;
 prod += (m_y * p.m_y);
 return prod;
}

void Point::SetLocation(int x, int y) {
 m_x = x;
 m_y = y;
}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

14

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

C++ Documentation

❖ As said, there is a LOT to C++

▪ There are a lot of functions, objects, features, etc

▪ We will NOT have time to talk about them all

❖ We highly recommend you make use of a C++ reference

▪ cplusplus.com

• Most find this one easier to read

• Probably has the information you need

▪ cppreference.com

• Much more detailed (in Travis’ opinion)

• Is in various languages (scroll to the bottom)

15

http://www.cplusplus.com/
http://www.cplusplus.com/
https://en.cppreference.com/w/
https://en.cppreference.com/w/

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

STL Containers ☺

❖ A container is an object that stores (in memory) a collection of other objects
(elements)

▪ Implemented as class templates, so hugely flexible

▪ More info in C++ Primer §9.2, 11.2

❖ Several different classes of container
▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap, bitset, ...)

▪ Differ in algorithmic cost and supported operations

16

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

vector

❖ A generic, dynamically resizable array

▪ https://cplusplus.com/reference/vector/vector/

▪ Elements are store in contiguous memory locations

• Can index into it like an array

• Random access is O(1) time

▪ Adding/removing from the end is cheap (amortized constant time)

▪ Inserting/deleting from the middle or start is expensive (linear time)

❖ Most common member function: push_back()

▪ Adds an element to the end of the vector

❖ Probably the most important data structure

▪ More on this later
17

C++ equivalent of ArrayList

https://cplusplus.com/reference/vector/vector/
https://cplusplus.com/reference/vector/vector/

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Vector example

18

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[]) {

 vector<int> vec {6, 5, 4};

 vec.push_back(3);

 vec.push_back(2);

 vec.push_back(1);

 cout << "vec.at(0)" << endl << vec.at(0) << endl;

 cout << "vec.at(1)" << endl << vec.at(1) << endl;

 // iterates through all elements

 for (size_t i = 0U; i < vec.size(); ++i) {

 cout << vec.at(i) << endl;

 }

 return EXIT_SUCCESS;

}

Most containers are in a module of

the same name

Constructs a vector with

three initial elements

Add three integers to the vector

Print all the values in the array

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Vector iterator

19

int main(int argc, char* argv[]) {

 vector<int> vec {6, 5, 4};

 vector<int>::iterator it = vec.begin();

 it = vec.insert(it, 3);

 ++it;

 it = vec.insert(it, 1);

 it = vec.end();

 it = vec.insert(it, 2);

 cout << "Iterating:" << endl;

 for (it = vec.begin(); it < vec.end(); ++it) {

 cout << *it << endl;

 }

 return EXIT_SUCCESS;

}

Can get an iterator to the

beginning of the vector

Insert 3 // {3, 6, 5, 4}

Advances iterator to index 1

Inserts 1 to index 1 {3, 1, 6, 5, 4}
Sets iterator to the end

Same as push_back(2);

Accesses the current element of the iterator

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

range for loop vector example

❖ If you need to iterate over every element in a sequence, you should use a
range for loop.

▪ Why? It is harder to mess it up that way

20

int main(int argc, char* argv[]) {

 vector<int> vec {6, 5, 4};

 vec.push_back(3);

 vec.push_back(2);

 vec.push_back(1);

 // iterates through all elements

 for (int element : vec) {

 cout << element << endl;

 }

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Other vector functions

❖ pop_back()

▪ Removes the last element of the vector

❖ empty()

▪ Returns true if the vector is empty

❖ clear()

▪ Removes all elements currently in the vector

❖ erase(iterator position)

▪ Erases from the element at the specified position

❖ A bunch more:

▪ https://www.cplusplus.com/reference/vector/vector/

21

https://www.cplusplus.com/reference/vector/vector/
https://www.cplusplus.com/reference/vector/vector/

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Temporal Safety

❖ A concern in systems programming is that we can sometimes still try to
access/use some data after it no longer exists

▪ After the data is deallocated from the heap

▪ After the data is popped off of the stack

▪ The object is destructed

▪ Etc.

❖ An important part of understanding how our basic data structures work, is so
that we know how these issues can come up.

22

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Temporal Safety

❖ What is the issue in this code?

23

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int& first = v.front();

 cout << first << endl;

 v.push_back(6);

 cout << v.size() << endl;

 cout << first << endl;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lifetimes & Reference Invalidation

❖ If you read the documentation for many C++ classes, there will be sections on
iterator / reference invalidation.

❖ An example from push_back:

▪ If after the operation the new size() is greater than old capacity() a reallocation takes
place, in which case all iterators (including the end() iterator) and all references to the
elements are invalidated.

❖ Even if we don’t have to allocate and deallocate things ourselves much in C++,
we must still be aware of it.

24

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

C++ Programming Refresher

❖ On Ed there are a bunch of functions from the vector class and their
description. Decide which ones should be const

25

Ed Discussion

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Poll:

❖ What does this code print?

26

int main() {
 vector<int> v {3, 5};
 v.push_back(2);

 vector<int> plato = v;
 plato.push_back(16);

 for (int i : v) {
 i *= 2;
 }

 for (int i : v) {
 cout << i;
 }
}

Ed Discussion

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

❖ How many times is a copy made (for either vec or string)?

27

Ed Discussion

vector<string> make_subs(const string input) {
 vector<string> output{};
 // assume initial capacity is 1
 // capacity is doubled on resize

 size_t i = 0;

 while (i < input.size()) {
 string sub = input.substr(i);
 output.push_back(sub);
 i += 1;
 }

 string& first = output.at(0);
 return output;
}

int main() {
 string name = "ILMC";
 vector<string> subs = make_subs(name);

 for (string sub : subs) {
 cout << sub << endl;
 }
}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

C++ Programming Refresher

❖ Implement the function rect() which takes in a vector of vector of integers. The
function modifies the vector of vectors so that all rows are extended to be the
same length (by adding 0’s to the rows).

❖ For example, the following input

28

vector<vector<int>> m {

 {3, 4, 5},

 {2, 1},

 {},

 {0, 1, 2, 0, 0},

};

rect(m);

// what it should look

// like after calling rect

vector<vector<int>> m {

 {3, 4, 5, 0, 0},

 {2, 1, 0, 0, 0},

 {0, 0, 0, 0, 0},

 {0, 1, 2, 0, 0},

};

void rect(vector<vector<int>>& m);

Ed Discussion

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

C++ Programming Refresher

❖ Implement the function intersect() which takes in two vector<int>s
and returns a vector<int> that has all the integers that can be found in
both vectors (no duplicates). The order of the elements in the result do not
matter.

29

Ed Discussion

vector<int> intersect(const vector<int>& v1, const vector<int>& v2) {

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

30

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Exceptions are things in C++

❖ I do not like exceptions

▪ They are gross

▪ Often used incorrectly.

• Exceptions should truly only be used for “exceptional” behaviour. E.g. behaviour that is truly not
intended to happen during run time.
E.g. new will throw an exception if it cannot perform an allocation.

• Rust does not have exceptions :)))))))))
If an error happens it calls panic("error message") which exits the program
I like this!

▪ Exceptions aren’t always the best for readability:

• What exception(s) does this function throw?
Does it even throw an exception?

• Need to read the comment usually, easier to mess up :’(

• Unfortunately constructors don’t “return” anything so exceptions are the norm there. 31

string Queue::remove();

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Exceptions are things in C++

❖ Exception stuff are in <exception> and <stdexcept>

❖ Throw syntax

❖ Try/catch syntax

❖ Yucky :face_vomiting:
32

string Queue::remove() {

 if (this->size() <= 0U) {

 throw out_of_range("Error!");

 }

string result;

try {

 result = q.remove();

} catch (const exception& err) {

 // handle error

 string res = err.what();

 // above gets an explanation

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Exceptions are not free

❖ Exceptions have a (sometimes ignorable) runtime cost

❖ Compiler doesn’t have to store extra things in your function so that at runtime
your program can handle an exception being thrown

❖ Most code *can* throw an exception tho.
By far the most common: if your code directly or indirectly calls new. new will
throw an exception when Out Of Memory

❖ Functions that cannot throw an exception should be declared noexcept

33

int add(int x, int y) noexcept;

int add(int x, int y) noexcept {
 return x + y;
}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

34

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Minimizing Allocations

❖ Memory allocations require time, sometimes a lot of time to compute.

❖ If performance is our goal, we should minimize the number of allocations we
make. (this usually also means we minimize the number of copies made)

❖ This can include

▪ Making references instead of copies

▪ Using functions like vec.reserve()

• Java arraylist lets you specify capacity in the constructor.

• std::string also has a reserve function

▪ Using move semantics

35

vector::reserve(size_t new capacity)

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Copy Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

36

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

m_data

m_len 4

b l e g \0

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Copy Semantics: close up look

❖ When we copy
construct string b

we could get something like:

37

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{a};

}

a

Stack heap

m_data

m_len 4

b l e g \0

b m_data

m_len 44

b l e g \0

This is another memory allocation, and we
need to copy over the characters of the string

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics (C++11)

❖ “Move semantics”
move values from
one object to
another without
copying (“stealing”)

▪ A complex topic that
uses things called
“rvalue references”

• Mostly beyond the
scope of this
class

38

int main(int argc, char **argv) {

 std::string a{"bleg"};

 // moves a to b

 std::string b{std::move(a)};

 std::cout << "a: " << a << std::endl;

 std::cout << "b: " << b << std::endl;

 return EXIT_SUCCESS;

}

a: ""

b: "bleg"

Note: we should NOT access ‘a’ after we move it. It is undefined
to do so, it just so happens it is set to the empty string

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

39

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

m_data

m_len 4

b l e g \0

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics: close up look

❖ When we use move
to construct string b

we could get something like:

40

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{std::move(a)};

}

a

Stack heap

m_data

len_ 0

b l e g \0

b m_data

m_len 4

nullptr

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics: Use Cases

❖ Useful for optimizing away temporary copies

❖ Preferred in cases where copying may be expensive

▪ Consider we had a vector of strings… we could transfer ownership of memory to avoid
copying the vector and each string inside of it.

❖ Can be used to help enforce uniqueness

❖ Rust is a systems programming language that is gaining popularity and by
default it will move variables instead of copy them.

❖ Optional demo: rust_move.rs

41

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics: Details

❖ Implement a “Move Constructor” with something like:

❖ Implement a “Move assignment” with something like:

42

Point& Point::operator=(Point&& rhs) {

 // ...

}

Point::Point(Point&& other) {

 // ...

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Move Semantics: Details

❖ “Move Constructor” example for a fake String class:

43

String::String(String&& other) {

 this->len_ = other.len_;

 this->ptr_ = other.ptr_;

 other.len_ = 0;

 other.ptr_ = nullptr;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

std::move

❖ Use std::move to indicate that you want to move something and not copy it

44

Point p {3, 2}; // constructor

Point a {p}; // copy constructor

Point b {std::move(p)}; // move constructor

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

noexcept & std::move

❖ Move assignment and move ctor are extra important to have as noexcept

❖ Cause some data structures (like std::vector) will only call them if they are no
except

❖ Why?

▪ Move constructors and move assignment should never really do anything that warrants
throwing an exception. No memory allocation happens in them. Delete doesn’t throw an
exception

45

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Demo: VerboseInteger.cpp

❖ What happens when we resize a vector?

❖ Note what happens when we make move operations noexcept

46

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

47

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Functions that sometimes fail

❖ It is pretty common to write functions that sometimes fail. Sometimes they
don’t return what is expected

❖ Consider we were building up a Queue data structure that held strings, that
could

▪ Add elements to the end of a sequence

• void

▪ Remove elements from the beginning of a sequence

▪ How do we design this function to handle the case where there are no strings in the queue
(e.g. it errors?)

48

void add(string data);

???? remove(????);

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return an "invalid" value: e.g. if looking for an index, return -1 if it can’t be
found.

▪ What if there is no nice "invalid" state?

❖ C-style: return an error code or success/failure.
 Real output returned through output param

49

// what is an invalid string?

string remove();

bool remove(string* output);

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: Java “Object” variables

❖ Does this java compile?

❖ What about this C++?

50

public static String foo() {

 return null;

}

string foo() {

 return nullptr;

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In high level languages (like java), object variables don’t actually contain an
object, they contain a reference to an object.

▪ References in these languages can be null

51

String s = new String("Java");

String other = null;

main’s stack frame

s

other null "Java"

heap

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In C++, a string variable is itself a string object

52

string s{"C++"};

// does not do what you think it does

string other = nullptr;

main’s stack frame

s "C++"

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return a pointer to a heap allocated object, could return nullptr on error

▪ Uses the heap when it is otherwise unnecessary 

▪ Need to remember to delete the string

53

string* remove();

string* remove() {

 if (this->size() <= 0U) {

 return nullptr;

 }

 …

 return new string(…);

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Previous ways to handle failing functions

❖ “More Modern” Style: throw an exception in the case of an error
 return the value as normal

▪ Exceptions can make your code a bit slower

▪ Exception catching not always the easiest to handle

▪ Exceptions aren’t always the best for readability:

• What exception(s) does this function throw?

• Need to read the comment usually, easier to mess up :’(

❖ Unfortunately constructors don’t “return”
anything so exceptions are the norm there. 54

string remove() {

 if (this->size() <= 0U) {

 throw out_of_range("Error!");

 }

string remove();

string result;

try {

 result = q.remove();

} catch (exception err) {

 // handle error

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

std::optional

❖ optional<T> is a struct that can either:

▪ Have some value T
(optional<string> {"Hello!"})

▪ Have nothing
(nullopt)

❖ optional<T> effectively extends the type T to have a "null" or "invalid"
state

55

optional<string> foo() {

 if (/* some error */) {

 return nullopt;

 }

 return "It worked!";

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Using an optional

❖ If we call a function that returns an optional, we need to check to see if it has a
value or not

56

optional<string> foo() {

 if (/* some error */) {

 return nullopt;

 }

 return "It worked!";

}

int main() {

 auto opt = foo();

 if (!opt.has_value()) {

 return EXIT_FAILURE;

 }

 string s = opt.value();

}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

Lecture Outline

❖ Misc C++

❖ Const Objects

❖ std::vector

❖ Exceptions

❖ std::move

❖ std::optional

❖ std::list

57

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

STL list

❖ A generic doubly-linked list

▪ http://www.cplusplus.com/reference/stl/list/

▪ Elements are not stored in contiguous memory locations

• Does not support random access (e.g. cannot do list[5])

▪ Some operations are much more efficient than vectors

• Constant time insertion, deletion anywhere in list

– push_front()and pop_front() now exist!

– Can iterate forward or backwards

▪ Has a built-in sort member function

▪ Doesn’t copy! Manipulates list structure instead of element values

58

Iterate backward: --

Iterate forward: ++

http://www.cplusplus.com/reference/stl/list/
http://www.cplusplus.com/reference/stl/list/

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

list Example

59

#include <list>

#include <algorithm>

#include <string>

using namespace std;

void PrintOut(const string& p) {

 cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {

 list<string> lst;

 lst.push_back("I wanna");

 lst.push_back("f");

 lst.push_back("my computer");

 cout << "sort:" << endl;

 lst.sort();

 cout << "done sort!" << endl;

 for_each(lst.begin(), lst.end(), &PrintOut);

 return 0;

}

Use case is similar to Vector, but

internal implementation is different

Won’t copy or move elements, just

modifies the next and prev pointers

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

❖ How many memory allocations occur in each piece of code?

▪ Assume vector resizes will double capacity

▪ std::list is a linked list in C++

60

int main() {
 vector nums {4, 8}; // size and capacity == 2
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

int main() {
 list nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

Ed Discussion

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

❖ Given a linked list object:

▪ What does the copy constructor do?

▪ What does the move constructor do?

61

class LinkedList {
public:
 LinkedList() : m_head(nullptr),
 m_tail(nullptr),
 m_len(0) { }

 LinkedList(const LinkedList& other) {
 // TODO: copy constructor
 }

 LinkedList(LinkedList&& other) {
 // TODO: move constructor
 }

private:
 node* m_head;
 node* m_tail;
 size_t m_len;
};

struct node {
 node* next;
 string value;
};

Ed Discussion

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

❖ How many copies are made? How many moves are made?

❖ Assume that there is noexcept move operations implemented for string
and for a vector itself

62

Ed Discussion

vector<string> make_subs(const string& input) {
 vector<string> output{};
 // assume initial capacity is 1
 ouptut.reserve(input.size());

 size_t i = 0;

 while (i < input.size()) {
 string sub = input.substr(i);
 output.push_back(std::move(sub));
 i += 1;
 }

 string& first = output.at(0);
 return output;
}

int main() {
 string name = "ILMC";
 vector<string> subs = make_subs(name);

 for (const string& sub : subs) {
 cout << sub << endl;
 }
}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

❖ Given the function strtoi, finish writing a version that uses an optional to
indicate success/failure

63

Ed Discussion

#include <optional>
#include <string>
#include <stdexcept>

using namespace std;

optional<int> StrToInt(const string& to_convert) {
 // Wrap around std::stoi. Read the documentation!
 // you can ignore the base and pos parameters to stoi
 // - https://cplusplus.com/reference/string/stoi/
 // - https://en.cppreference.com/w/cpp/string/basic_string/stoi
}

CIS 3990, Fall 2025L03: Classes Cont. & STL StartUniversity of Pennsylvania

That’s all for now!

❖ Out or soon to be out:

▪ HW02

▪ Check-in01

▪ Pre-semester Survey

❖ Hopefully you are doing well ☺

64

	Default Section
	Slide 1: Objects Continued, STL Start Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Aside: auto
	Slide 6: Aside: inline member functions
	Slide 7: Aside: operator overload
	Slide 8: Aside: operator overload
	Slide 9: Aside: range for loop
	Slide 10: Lecture Outline
	Slide 11: Const objects
	Slide 12: Const objects
	Slide 13: Const for non-inline functions
	Slide 14: Lecture Outline
	Slide 15: C++ Documentation
	Slide 16: STL Containers 
	Slide 17: vector
	Slide 18: Vector example
	Slide 19: Vector iterator
	Slide 20: range for loop vector example
	Slide 21: Other vector functions
	Slide 22: Temporal Safety
	Slide 23: Temporal Safety
	Slide 24: Lifetimes & Reference Invalidation
	Slide 25: C++ Programming Refresher
	Slide 26: Poll:
	Slide 27
	Slide 28: C++ Programming Refresher
	Slide 29: C++ Programming Refresher
	Slide 30: Lecture Outline
	Slide 31: Exceptions are things in C++
	Slide 32: Exceptions are things in C++
	Slide 33: Exceptions are not free
	Slide 34: Lecture Outline
	Slide 35: Minimizing Allocations
	Slide 36: Copy Semantics: close up look
	Slide 37: Copy Semantics: close up look
	Slide 38: Move Semantics (C++11)
	Slide 39: Move Semantics: close up look
	Slide 40: Move Semantics: close up look
	Slide 41: Move Semantics: Use Cases
	Slide 42: Move Semantics: Details
	Slide 43: Move Semantics: Details
	Slide 44: std::move
	Slide 45: noexcept & std::move
	Slide 46: Demo: VerboseInteger.cpp
	Slide 47: Lecture Outline
	Slide 48: Functions that sometimes fail
	Slide 49: Previous ways to handle failing functions
	Slide 50: Aside: Java “Object” variables
	Slide 51: Aside: Java “Object” variables
	Slide 52: Aside: Java “Object” variables
	Slide 53: Previous ways to handle failing functions
	Slide 54: Previous ways to handle failing functions
	Slide 55: std::optional
	Slide 56: Using an optional
	Slide 57: Lecture Outline
	Slide 58: STL list
	Slide 59: list Example
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: That’s all for now!

