University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Classes
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

@ Poll Everywhere pollev.com/tqm

+» How is the workload going so far? Is it ok?

University of Pennsylvania LO2: Classes

Administrivia

% First Assignment (HWO0O cowsay)
= “Due” last week

= Extended to be due Tuesday the 9t (course selection period ends)
" Mostly a C refresher

= Don’t put it off, HWO1 is posted and you have to work on that too ©

« Pre semester Survey

" Anonymous
= Due Friday the 12t

+» HWO1 Posted tonight
= Due Yesterday the 9t
= More rigorous C refresher ©

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Administrivia

% First Check-in (Check-in00)
= “Due” before lecture today
= Extended to be due before lecture on Wednesday

= |t tells you when you are correct! Unlimited Attempts!

» Next HW (HWO02)

® Qut after class on Wednesday
" Due onthe 16t ©
" C++ Classes!

CIS 3990, Fall 2025

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Lecture Outline

» Integer types in C++
» Modern C++: std::string!
% Constructing, Destructing & Methods!

+» Copying
% Struct vs Class and “regular” types

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Integer Types in C++

+ Anyone remember how big an int is?

» |s a char signed or unsigned?

» How big is an unsigned long?
What about an unsigned long long?

» For many of the base primitive types C++ leaves things ambiguous. So for the
most part we will prefer other integer types

" Int and char are still fine in some cases, just be sure that you know what you are doing!

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Fixed Width Integers

+~ For when you want to be specific about memory size, you should use fixed
with integers specified in <cstdint>
= Some people/workplaces will always use these instead of “plain types”
(especially embedded related projects)
+ E.g.
" int8 t signed 8 bit integer
" uint8 t unsigned 8 bit integer
" intlo t
" uintlo6 t
" Int32 t
" ulnt32 t
" Intod t
" uinto4d t

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

size_t

Defined in <cstddef> and other headers

» An unsigned integer size big enough to hold the size (in bytes) of any possible
object or array in memory.

0’0

Often used for indexes, loop counters, etc.
The C++ standard library uses it as the container specified size_type.

= Other libraries like may use a different size_type for their containers (QT for example just
uses int)

/
0‘0

/
0‘0

» ssize_tis a signed type (not part of C++ officially but is in Linux C)

= Same size as size_t but it is a signed type.
= Usually used only when a function could possibly return error, so -1 is returned.

X/
>

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Don’t mix and match

+~ Bad things happen, especially when you mix signed and unsignhed types

+» Some workplaces avoid using unsigned types altogether
= Some languages (e.g. Java) don’t have unsigned types to avoid these issues.

+ Preferred strategy:
= stick with one consistent type. Already dealing with size t’s?thenstickto size t
= Using unsigned types? Avoid subtraction (e.g. 1 < len - 1becomesi + 1 < len)

+ If need to have multiple types, keep it minimal. static_cast can be used to be
more explicit about the types you are using.

University of Pennsylvania

static_cast

+ statlic cast canconvert:
" casting void*to T*
" Non-pointer conversion
- e.g. floattoint

+~ |f you are doing a cast not related

to object inheritance, it will
most likely be this one.

+ There are other C++ casts, but this is the only one you need for now.

Don’t use C style casts anymore.

LO2: Classes

Any well-defined conversion

volid foo () {
int b = 3;
float c;

c = static cast<float>(b);

CIS 3990, Fall 2025

10

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Lecture Outline

» Integer types in C++
» Modern C++: std::string!
% Constructing, Destructing & Methods!

+» Copying
% Struct vs Class and “regular” types

11

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

use_string.cpp example walkthrough

#include <string>

int main() {
// construct a string
string hi{"hello there"};

// this also works:
string hi2 = "hello there";

cout << hi << endl; // print the string

// both of these work to get the length
size t len = hi.size();
len = hi.length();

// get/set the first character

char ¢ = hi.at(1);

hi.at(5) = ' ';

// char oops = hi.at(3000); // throws out of range exception

// char oops2 = hi[3000]; // Unchecked access: does not throw, do not use

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

use_string.cpp example walkthrough

int main() {
// construct a string
string hi{"hello there"};

// two ways to iterate over each character
for (char c : hi) {
cout << c << endl;

}

for (size t 1 = 0; 1 < hi.size(); ++1i) {
cout << hi.at(i) << endl;

}

// find and substr
size t index = hi.find("t");
if (index == string::npos) {
// not found
cerr << "\"t\" not found" << endl;
} else {
// first param is starting offset.
// second param is the length NOT the ending index.
string sub = hi.substr(1, 4);

}

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Objects!

» In C++ we have objects!
+» See how this is easier to use than SimpleString?
» Notice that it handled the memory for us! Both allocating and deallocating ©

+» We will show you how to make classes in C++, but first we will show you how
to make better structs

14

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Lecture Outline

» Integer types in C++
» Modern C++: std::string!
+» Constructing, Destructing & Methods!

+» Copying
% Struct vs Class and “regular” types

15

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Demo: Adding Constructors

+ Lets build off of SimpleString from HWO0O
» Previously we had: [tk

char* data;
size t len;

}s

int main() {
SimpleString str = SimpleString From("Hello");

}

« Lets add a constructor!

16

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Demo: Adding Constructors

« Lets add a constructor!

struct SimpleString {
char* data; Structs can have both:

s In hpp size t len; - data membersl
— Member functions

// declare a constructor
SimpleString(char* cstr);

}s

SimpleString::
declares the function as a member of the SimpleString struct

¢,|r].Cpr Constryctor function signature

SimpleString::SimpleString(char* cstr) {

17

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Demo: Adding Constructors

« Lets add a constructor!

struct SimpleString {
char* data;

< |n hpp size t len;

// declare a constructor
SimpleString(char* cstr);

Initialize data members in an "initializer list"
should be in the same order they are declared in the struct
these are run before body of constructor

< In .Cpp: member name (expression)

SimpleString::SimpleString(char* cstr) : data(new char[strlen(cstr) + 1]), len(strlen(cstr)) {
for (size_ t i = 0; 1 <= len; ++1i) {
data[i] = cstr[i];
}

}

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Destructors & RAIl

+» When are we done with the variables st r and howdy?

void print_str(string input) {
cout << input << endl;

}

void func(int input) {

if (input % 2 == 0) {
string howdy{"howdy: "};
cout << howdy;

}

cout << input << endl;

}

When they fall out of scope (hit the closing brace that ends the scope they are declared in)

19

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

Destructors

% C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out of scope, etc.
(even via exceptions or other causes!)

QPlace to put your cleanup code — free any dynamic storage or other resources owned by
the object
= Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAIl)

- Part of the object design (e.g. object invariant) is to hold ownership of some resource
(char* pointing to the heap in our case). That resource is acquired at construction and held until
destruction.

tilde No parameters
4 ‘v ‘/ ™
MyObj: :~MyObj () { // destructor whew a destructor is invoked:
// do any cleanup needed when a "MyObj'" object goes away 1. run destructor body
} 2. Call destructor of any data members
\ J

20

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Demo: Adding Destructors

struct SimpleString {
char* data;
size t 1len;

% In .hpp:

// declare a constructor
SimpleString(char* cstr);

// decare a destructor
~SimpleString();

« In .cpp:

SimpleString::~SimpleString() {
delete[] data;

}

21

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Destructor In Practice

+ Destructor calls are inserted for us automatically whenever a function falls out
of scope:

int main() {
SimpleString str("Hello!");

22

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Demo: Adding Methods

+» Adding a normal member function

struct SimpleString {
char* data;

e In hpp size t len;

SimpleString(char* cstr);

~SimpleString();

char& at(size t index); Like java, we can use this to refer to the “object”
}; B we are calling the function on.

« In .cpp: Usually it is optional we could also do return data[index];

char& SimpleString::at(size t index) {
return this->data[index]; If it helps, you can think of every function as having a secret

} parameter (T * const this) that points to the “object”
we called the function on.

Just a function.
All we have to add is SimpleString:: to indicate it is a member of the SimpleString struct

23

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Ed Discussion

% Finish writing the Vec struct. A Vec (short for vector) is a dynamically resizable
array (like ArrayList in Java).

+» Vectors start with allocating an array and put the elements of their “list” in
that array. When there isn’t enough space in the array, it allocates a new array

and copies elements over.

24

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Lecture Outline

» Integer types in C++
» Modern C++: std::string!
% Constructing, Destructing & Methods!

+» Copying
% Struct vs Class and “regular” types

25

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Raise Your Hands

%+ What do you think happens in this case?

Yes, this code compiles void ALL_CAPS(string str) {
for (size t 1 = 0; 1 < str.length(); ++i) {
str.at(i) = toupper(str.at(i));
}
}

int main() {
string mf = "doom";
ALL CAPS(mf);

cout << mf << endl;

¥

26

University of Pennsylvania

LO2: Classes CIS 3990, Fall 2025

Raise Your Hands

What do you think happens in this case?

Yes, this code compiles

It prints “doom”

C++ objects try to mimic
“pass by value” like
primtives do.

The strin ALL_CAPS
is an intendent copy of
mf

How does this work?

void ALL_CAPS(string str) {
for (size t 1 = 0; 1 < str.length(); ++i) {
str.at(i) = toupper(str.at(i));
}
}

int main() {
string mf = "doom";
ALL CAPS(mf);

cout << mf << endl;

¥

27

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Copy Constructors

% C++ has the notion of a copy constructor, which constructs a new struct that is
an independent copy of an already existing struct:

struct SimpleString {
char* data;

« In hpp size_t len;

// declare copy constructor (cctor)
SimpleString(const SimpleString& other);

SimpleString::SimpleString(const SimpleString& other) : data(new char[other.len + 1]), len(other.len) {
for (size t 1 = 0; i <= len; ++i) {

this->data[i] = other.datal[i];

}
}

University of Pennsylvania

When Do Copies Happen?

LO2: Classes

+ The copy constructor is invoked if:

" You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

Point x; // default ctor
Point y(x); // copy ctor
Point z = vy; // copy ctor

(void foo(Point x) { ... }
Point vy; // default ctor
foo (y) ; // copy ctor

\

.

Point foo () {
Point y; // default ctor

return y; // copy ctor

U

CIS 3990, Fall 2025

29

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Why Copying is an issue: Depending on the type

+» Copying means we have to make an independent copy of a variable.
" This requires iterating over the elements

= This requires dynamic memory allocation.

» The cost to make a copy varies on what type we are copying.

" Do you think this “point” struct takes a lot to copy? struct Point {
« No: low time complexity and no memory allocation

" What about a Hash Map?

private:

int x_;
- Yes: need to reallocate all key/value pairs and iterate int y_;
over the original hash map. }s

30

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Const reference most parameters

+~ To avoid creating copies, we pass most things in as a const references to the
function.
= References make it so we do not copy the object

® Const makes it so that we do not accidentally modify the value if we do not need it to be
modified

. e ey void print_str(const string& input) {
+ For primitive types cout << input << endl;
(other cheap types) }

PassINg a Copy IS fine void func(int input) {

and possibly faster. if (input % 2 == @) {
string howdy{"howdy: "};
cout << howdy;

}

cout << input << endl;

}

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

Assignment != Construction

+» “="is the assignment operator

= Assigns values to an existing, already constructed object

[Point W; // default ctor)
Point x(1, 2); // two-ints—-argument ctor
Point vy (x); // copy ctor
Point z = w; // copy ctor

v = x; // assignment operator)

C\JW&Wwdoperator:()

equivalent code:
y.operator=(x) ;

32

University of Pennsylvania

LO2: Classes

Overloading the “=" Operator

% You can choose to define the “=" operator

Here checking against
yourself is not
important, but v
other types I+ can
matter

" But there are some rules you should follow:

Point& Point::operator=(const Pointé& rhs) {
if (this != &rhs) { // (1) always check against this

= rhs.x ; Wore important when data
rhs.y ; mewmbers are Dynamic memory
*this; // (2) always return *this from op=

Should be a reference
to *this to allow chainivg

Point a; // default constructor

ba = b = ¢c; // works because = return *this

Explicit eduivalent:
a.operator=(b.operator=(c)) ;

CIS 3990, Fall 2025

33

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Ed Discussion

+» Lets say we don’t check for assigning to self in operator=

+» What line has a crash/memory error?

SimpleString& SimpleString::operator=(const SimpleString& rhs) {
if (this != &rhs) {
delete[] this->data;

this->data = new char[rhs.len + 1];
this->len = rhs.len;

for (size t i1 = 0; i <= len; ++1i) {
data[i] = other.data[i];
}
}

return *this;

¥

University of Pennsylvania LO2: Classes CIS 3990, Fall 2025

Ed Discussion

+» Add a copy constructor and an assignment operator to our Vec struct from the
previous poll

35

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Ed Discussion

» How many strings are made? (RS G
string res{};

res = input;
for (size_t i = @; i < input.length(); ++i) {
res.at(i) = input.at((input.length - 1) - 1i);

+ |f you have time:

" How many times is a string ¥
5 return res;
destructor run-

" What does this print?

int main() {
string nums {"3192"};
string result = prefix_sum(nums);
for (char c : pre_sum) {
cout << 1 << endl;

}
}

CIS 3990, Fall 2025

University of Pennsylvania LO2: Classes

Lecture Outline

» Integer types in C++
» Modern C++: std::string!
% Constructing, Destructing & Methods!

+» Copying
% Struct vs Class and “regular” types

37

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Access Modifiers

+» Typically we want our data members to be private, and we can make this

happen with access modifiers: Note: access modifier applies to all following
members until a new modifier is specified

struct SimpleString {
public:
// declare a constructor
SimpleString(char* cstr);

struct SimpleString {
char* data;
size t len;

// declare a constructor

SimpleString(char* cstr); // decare a destructor

~SimpleString();

// member function (method)
char& at(size t index);

// decare a destructor
~SimpleString();

private:
char* data;
size t len;

s

// member function (method)
char& at(size t index);

}s

38

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Class vs Struct (Functionality)

% A class is the same thing as a struct. Only difference is if you don’t specify an
access modifier, class assumes private, structs assume public. THAT'S IT

struct SimpleString { class SimpleString {
public: public:

// declare a constructor
SimpleString(char* cstr);

// decare a destructor
~SimpleString();

// member function (method)
char& at(size t index);

private:
char* data;
size t len;

// declare a constructor
SimpleString(char* cstr);

// decare a destructor
~SimpleString();

// member function (method)
char& at(size t index);

private:

char* m_data;
size t m_len;

| teach it this way because
this is how objects are at
their core. They are pretty
much just structs that
have a bit more.

They are laid out in

memory the same way
structs are

39

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Class vs Struct (Style)

/
’0

>

A class is the same thing as a struct. Only difference is if you don’t specify an
access modifier, class assumes private, structs assume public. THAT'S IT

class SimpleString {

.] public:

Our SimpleString (and Vec) would be better // declare a constructor
as a class stylistically. SimpleString(char® cstr);
Typically, we only use and define struct’s // decare a destructor

: : : ~SimpleStri ;
as we would in C: just a collection of impleString();
data members (with only a few simple // member function (method)
member functions if any) char& at(size_t index);

private:
. _ char* m_data;

Common C++ style: prefix non-public data size t m_len;

members with m_ }s

40

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Synthesized Copying

+ If you don’t define the copy constructor, assignment operator, C++ will
synthesize one for you
= |t will do a shallow copy of all of the data members (i.e. fields)
= Sometimes the right thing; sometimes the wrong thing

Usually wrong whenever a class has dynamically allocated data

r#include "SimpleString.hpp"

int main(int argc, char** argv) {
SimpleString x;
SimpleString vy (x);
y = X; // invokes synthesized assignment operator
return EXIT SUCCESS;

}

41

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Synthesized Constructing/Destructing

+ If you don’t define any constructor, C++ will synthesize one for you

® Default initializes all member variables

+ If you don’t define any destructor, C++ will synthesize one for you

= Does nothing except call the destructor of any member variables

Usually wrong whenever a class has dynawically allocated data

42

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Explicitly ask for “default”

+ If the synthesized constructor/destructor/copy constructor/assignment
operator/etc. is something you want, then be explicit and declare them as
“default”

class SimplePoint {
public:
SimplePoint() = default;
~SimplePoint() = default;
SimplePoint(const SimplePoint other) = default;

SimplePoint& operator=(const SimplePoint rhs) = default;
private:

int m_x;

int m_y;

s

+» Don’t have to implement them in the .cpp file if they are default
+ Can also disable an operation by settingit= delete;

43

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Rule of three*

+ |f you want to define any of the following for a class:
" Destructor
" Copy constructor
" Assignment operator

+ It means there is some resource that needs to be properly handled/cleaned up,
and you should implement them all (or disable some of them)

« Thisis really a rule of 5, but we haven’t talked about the last two yet.

44

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Object Data Members

+» What if we had a class like the following.
What would the destructor for this class need to look like?
What about the copy constructor?

class Course {
public:

private:

SimpleString m_dept;
int m_number;

}s

45

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

Object Data Members

+» What if we had a class like the following.
What would the destructor for this class need to look like?
What about the copy constructor?

class Course {
public:

private:

SimpleString m_dept;
int m_number;

}s

As long as SimpleString has the destructor, copy constructor, etc. properly defined, then the default
destructor (empty destructor) and default copy constructor are fine.

46

LO2: Classes

CIS 3990, Fall 2025

University of Pennsylvania

Regular Types

+» Atypeis “regular” ifitis
= Copy constructable
= Default (0-arg) constructable
" Comparable (operator==

» More emphasis on the first two: If you have those then using your newly
defined object type will be much more compatible with the standard library

and other libraries.

47

University of Pennsylvania L02: Classes CIS 3990, Fall 2025

That’s all for now!

« Still out:
= HWO0O
= HWO1

= Pre-semester Survey

+» Hopefully you are doing well ©

48

	Default Section
	Slide 1: Classes Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Integer Types in C++
	Slide 7: Fixed Width Integers
	Slide 8: size_t
	Slide 9: Don’t mix and match
	Slide 10: static_cast
	Slide 11: Lecture Outline
	Slide 12: use_string.cpp example walkthrough
	Slide 13: use_string.cpp example walkthrough
	Slide 14: Objects!
	Slide 15: Lecture Outline
	Slide 16: Demo: Adding Constructors
	Slide 17: Demo: Adding Constructors
	Slide 18: Demo: Adding Constructors
	Slide 19: Destructors & RAII
	Slide 20: Destructors
	Slide 21: Demo: Adding Destructors
	Slide 22: Destructor In Practice
	Slide 23: Demo: Adding Methods
	Slide 24
	Slide 25: Lecture Outline
	Slide 26
	Slide 27
	Slide 28: Copy Constructors
	Slide 29: When Do Copies Happen?
	Slide 30: Why Copying is an issue: Depending on the type
	Slide 31: Const reference most parameters
	Slide 32: Assignment != Construction
	Slide 33: Overloading the “=” Operator
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Lecture Outline
	Slide 38: Access Modifiers
	Slide 39: Class vs Struct (Functionality)
	Slide 40: Class vs Struct (Style)
	Slide 41: Synthesized Copying
	Slide 42: Synthesized Constructing/Destructing
	Slide 43: Explicitly ask for “default”
	Slide 44: Rule of three*
	Slide 45: Object Data Members
	Slide 46: Object Data Members
	Slide 47: Regular Types
	Slide 48: That’s all for now!

