
CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Classes
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Poll: how are you?

❖ How is the workload going so far? Is it ok?

2

pollev.com/tqm

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 cowsay)

▪ “Due” last week

▪ Extended to be due Tuesday the 9th (course selection period ends)

▪ Mostly a C refresher

▪ Don’t put it off, HW01 is posted and you have to work on that too ☺

❖ Pre semester Survey

▪ Anonymous

▪ Due Friday the 12th

❖ HW01 Posted tonight

▪ Due Yesterday the 9th

▪ More rigorous C refresher ☺
3

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Administrivia

❖ First Check-in (Check-in00)

▪ “Due” before lecture today

▪ Extended to be due before lecture on Wednesday

▪ It tells you when you are correct! Unlimited Attempts!

❖ Next HW (HW02)

▪ Out after class on Wednesday

▪ Due on the 16th ☺

▪ C++ Classes!

4

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Lecture Outline

❖ Integer types in C++

❖ Modern C++: std::string!

❖ Constructing, Destructing & Methods!

❖ Copying

❖ Struct vs Class and “regular” types

5

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Integer Types in C++

❖ Anyone remember how big an int is?

❖ Is a char signed or unsigned?

❖ How big is an unsigned long?
What about an unsigned long long?

❖ For many of the base primitive types C++ leaves things ambiguous. So for the
most part we will prefer other integer types

▪ Int and char are still fine in some cases, just be sure that you know what you are doing!

6

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Fixed Width Integers

❖ For when you want to be specific about memory size, you should use fixed
with integers specified in <cstdint>

▪ Some people/workplaces will always use these instead of “plain types”
(especially embedded related projects)

❖ E.g.
▪ int8_t signed 8 bit integer

▪ uint8_t unsigned 8 bit integer

▪ int16_t

▪ uint16_t

▪ int32_t

▪ uint32_t

▪ int64_t

▪ uint64_t
7

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

size_t

❖ Defined in <cstddef> and other headers

❖ An unsigned integer size big enough to hold the size (in bytes) of any possible
object or array in memory.

❖ Often used for indexes, loop counters, etc.

❖ The C++ standard library uses it as the container specified size_type.

▪ Other libraries like may use a different size_type for their containers (QT for example just
uses int)

❖ ssize_t is a signed type (not part of C++ officially but is in Linux C)

▪ Same size as size_t but it is a signed type.

▪ Usually used only when a function could possibly return error, so -1 is returned.
8

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Don’t mix and match

❖ Bad things happen, especially when you mix signed and unsigned types

❖ Some workplaces avoid using unsigned types altogether

▪ Some languages (e.g. Java) don’t have unsigned types to avoid these issues.

❖ Preferred strategy:
▪ stick with one consistent type. Already dealing with size_t’s? then stick to size_t

▪ Using unsigned types? Avoid subtraction (e.g. i < len - 1 becomes i + 1 < len)

❖ If need to have multiple types, keep it minimal. static_cast can be used to be
more explicit about the types you are using.

9

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

static_cast

❖ static_cast can convert:

▪ casting void* to T*

▪ Non-pointer conversion

• e.g. float to int

❖ If you are doing a cast not related
to object inheritance, it will
most likely be this one.

❖ There are other C++ casts, but this is the only one you need for now.
Don’t use C style casts anymore.

10

Any well-defined conversion

void foo() {

 int b = 3;

 float c;

 c = static_cast<float>(b);

}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Lecture Outline

❖ Integer types in C++

❖ Modern C++: std::string!

❖ Constructing, Destructing & Methods!

❖ Copying

❖ Struct vs Class and “regular” types

11

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

use_string.cpp example walkthrough

12

#include <string>

int main() {
 // construct a string
 string hi{"hello there"};

 // this also works:
 string hi2 = "hello there";

 cout << hi << endl; // print the string

 // both of these work to get the length
 size_t len = hi.size();
 len = hi.length();

 // get/set the first character
 char c = hi.at(1);
 hi.at(5) = '_';
 // char oops = hi.at(3000); // throws out_of_range exception
 // char oops2 = hi[3000]; // Unchecked access: does not throw, do not use

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

use_string.cpp example walkthrough

13

int main() {
 // construct a string
 string hi{"hello there"};

 // two ways to iterate over each character
 for (char c : hi) {
 cout << c << endl;
 }

 for (size_t i = 0; i < hi.size(); ++i) {
 cout << hi.at(i) << endl;
 }

 // find and substr
 size_t index = hi.find("t");
 if (index == string::npos) {
 // not found
 cerr << "\"t\" not found" << endl;
 } else {
 // first param is starting offset.
 // second param is the length NOT the ending index.
 string sub = hi.substr(1, 4);
 }
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Objects!

❖ In C++ we have objects!

❖ See how this is easier to use than SimpleString?

❖ Notice that it handled the memory for us! Both allocating and deallocating ☺

❖ We will show you how to make classes in C++, but first we will show you how
to make better structs

14

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Lecture Outline

❖ Integer types in C++

❖ Modern C++: std::string!

❖ Constructing, Destructing & Methods!

❖ Copying

❖ Struct vs Class and “regular” types

15

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Demo: Adding Constructors

❖ Lets build off of SimpleString from HW00

❖ Previously we had:

❖ Lets add a constructor!

16

struct SimpleString {
 char* data;
 size_t len;
};

int main() {
 SimpleString str = SimpleString_From("Hello");
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Demo: Adding Constructors

❖ Lets add a constructor!

❖ In .hpp:

❖ In .cpp:

17

struct SimpleString {
 char* data;
 size_t len;

 // declare a constructor
 SimpleString(char* cstr);
};

SimpleString::SimpleString(char* cstr) {

}

SimpleString::

declares the function as a member of the SimpleString struct

Constructor function signature

Structs can have both:

- data members

- Member functions

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Demo: Adding Constructors

❖ Lets add a constructor!

❖ In .hpp:

❖ In .cpp:

18

struct SimpleString {
 char* data;
 size_t len;

 // declare a constructor
 SimpleString(char* cstr);
};

SimpleString::SimpleString(char* cstr) : data(new char[strlen(cstr) + 1]), len(strlen(cstr)) {
 for (size_t i = 0; i <= len; ++i) {
 data[i] = cstr[i];
 }
}

Initialize data members in an "initializer list"
should be in the same order they are declared in the struct
these are run before body of constructor
member_name(expression)

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Destructors & RAII

❖ When are we done with the variables str and howdy?

19

void print_str(string input) {
 cout << input << endl;
}

void func(int input) {
 if (input % 2 == 0) {
 string howdy{"howdy: "};
 cout << howdy;
 }
 cout << input << endl;
}

When they fall out of scope (hit the closing brace that ends the scope they are declared in)

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out of scope, etc.
(even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or other resources owned by
the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

• Part of the object design (e.g. object invariant) is to hold ownership of some resource
(char* pointing to the heap in our case). That resource is acquired at construction and held until
destruction.

20

MyObj::~MyObj() { // destructor

 // do any cleanup needed when a "MyObj" object goes away

}

tilde No parameters

When a destructor is invoked:

1. run destructor body

2. Call destructor of any data members

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Demo: Adding Destructors

❖ In .hpp:

❖ In .cpp:

21

struct SimpleString {
 char* data;
 size_t len;

 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();
};

SimpleString::~SimpleString() {
 delete[] data;
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Destructor In Practice

❖ Destructor calls are inserted for us automatically whenever a function falls out
of scope:

22

int main() {
 SimpleString str("Hello!");

 // compiler implicitly adds call to:
 // str.~SimpleString()
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Demo: Adding Methods

❖ Adding a normal member function

❖ In .hpp:

❖ In .cpp:

23

struct SimpleString {
 char* data;
 size_t len;

 SimpleString(char* cstr);

 ~SimpleString();

 // member function (method)
 char& at(size_t index);
};

char& SimpleString::at(size_t index) {
 return this->data[index];
}

Just a function.
All we have to add is SimpleString:: to indicate it is a member of the SimpleString struct

Like java, we can use this to refer to the “object”
we are calling the function on.

Usually it is optional we could also do return data[index];

If it helps, you can think of every function as having a secret
parameter (T * const this) that points to the “object”
we called the function on.

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ Finish writing the Vec struct. A Vec (short for vector) is a dynamically resizable
array (like ArrayList in Java).

❖ Vectors start with allocating an array and put the elements of their “list” in
that array. When there isn’t enough space in the array, it allocates a new array
and copies elements over.

24

Ed Discussion

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Lecture Outline

❖ Integer types in C++

❖ Modern C++: std::string!

❖ Constructing, Destructing & Methods!

❖ Copying

❖ Struct vs Class and “regular” types

25

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ What do you think happens in this case?
Yes, this code compiles

26

Raise Your Hands

void ALL_CAPS(string str) {
 for (size_t i = 0; i < str.length(); ++i) {
 str.at(i) = toupper(str.at(i));
 }
}

int main() {
 string mf = "doom";
 ALL_CAPS(mf);

 cout << mf << endl;
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ What do you think happens in this case?
Yes, this code compiles

❖ It prints “doom”

❖ C++ objects try to mimic
“pass by value” like
primtives do.

❖ The str in ALL_CAPS
is an intendent copy of
mf

❖ How does this work?

27

Raise Your Hands

void ALL_CAPS(string str) {
 for (size_t i = 0; i < str.length(); ++i) {
 str.at(i) = toupper(str.at(i));
 }
}

int main() {
 string mf = "doom";
 ALL_CAPS(mf);

 cout << mf << endl;
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Copy Constructors

❖ C++ has the notion of a copy constructor, which constructs a new struct that is
an independent copy of an already existing struct:

❖ In .hpp

❖ In .cpp:

28

struct SimpleString {
 char* data;
 size_t len;

 // declare copy constructor (cctor)
 SimpleString(const SimpleString& other);

};

SimpleString::SimpleString(const SimpleString& other) : data(new char[other.len + 1]), len(other.len) {
 for (size_t i = 0; i <= len; ++i) {
 this->data[i] = other.data[i];
 }
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

29

void foo(Point x) { ... }

Point y; // default ctor

foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

Point foo() {

 Point y; // default ctor

 return y; // copy ctor

}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Why Copying is an issue: Depending on the type

❖ Copying means we have to make an independent copy of a variable.

▪ This requires iterating over the elements

▪ This requires dynamic memory allocation.

❖ The cost to make a copy varies on what type we are copying.

▪ Do you think this “point” struct takes a lot to copy?

• No: low time complexity and no memory allocation

▪ What about a Hash Map?

• Yes: need to reallocate all key/value pairs and iterate
over the original hash map.

30

struct Point {
 ...
private:
 int x_;
 int y_;
};

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Const reference most parameters

❖ To avoid creating copies, we pass most things in as a const references to the
function.

▪ References make it so we do not copy the object

▪ Const makes it so that we do not accidentally modify the value if we do not need it to be
modified

❖ For primitive types
(other cheap types)
passing a copy is fine
and possibly faster.

31

void print_str(const string& input) {
 cout << input << endl;
}

void func(int input) {
 if (input % 2 == 0) {
 string howdy{"howdy: "};
 cout << howdy;
 }
 cout << input << endl;
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

32

Point w; // default ctor

Point x(1, 2); // two-ints-argument ctor

Point y(x); // copy ctor

Point z = w; // copy ctor

y = x; // assignment operator

Method operator=()

equivalent code:

y.operator=(x);

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

33

Point& Point::operator=(const Point& rhs) {

 if (this != &rhs) { // (1) always check against this

 x_ = rhs.x_;

 y_ = rhs.y_;

 }

 return *this; // (2) always return *this from op=

}

Point a; // default constructor

a = b = c; // works because = return *this

Explicit equivalent:

a.operator=(b.operator=(c));

More important when data

members are Dynamic memory

Should be a reference

to *this to allow chaining

Here checking against

yourself is not

important, but in

other types it can

matter

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ Lets say we don’t check for assigning to self in operator=

❖ What line has a crash/memory error?

34

Ed Discussion

SimpleString& SimpleString::operator=(const SimpleString& rhs) {
 if (this != &rhs) {
 delete[] this->data;

 this->data = new char[rhs.len + 1];
 this->len = rhs.len;

 for (size_t i = 0; i <= len; ++i) {
 data[i] = other.data[i];
 }
 }
 return *this;
}

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ Add a copy constructor and an assignment operator to our Vec struct from the
previous poll

35

Ed Discussion

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

❖ How many strings are made?

❖ If you have time:

▪ How many times is a string
destructor run?

▪ What does this print?

36

string reverse(string input) {
 string res{};
 res = input;
 for (size_t i = 0; i < input.length(); ++i) {
 res.at(i) = input.at((input.length - 1) - i);
 }
 return res;
}

int main() {
 string nums {"3192"};
 string result = prefix_sum(nums);
 for (char c : pre_sum) {
 cout << i << endl;
 }
}

Ed Discussion

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Lecture Outline

❖ Integer types in C++

❖ Modern C++: std::string!

❖ Constructing, Destructing & Methods!

❖ Copying

❖ Struct vs Class and “regular” types

37

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Access Modifiers

❖ Typically we want our data members to be private, and we can make this
happen with access modifiers:

38

struct SimpleString {
 char* data;
 size_t len;

 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();

 // member function (method)
 char& at(size_t index);
};

struct SimpleString {
public:
 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();

 // member function (method)
 char& at(size_t index);

private:
 char* data;
 size_t len;
};

Note: access modifier applies to all following
members until a new modifier is specified

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Class vs Struct (Functionality)

❖ A class is the same thing as a struct. Only difference is if you don’t specify an
access modifier, class assumes private, structs assume public. THAT’S IT

39

struct SimpleString {
public:
 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();

 // member function (method)
 char& at(size_t index);

private:
 char* data;
 size_t len;
};

class SimpleString {
public:
 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();

 // member function (method)
 char& at(size_t index);

private:
 char* m_data;
 size_t m_len;
};

I teach it this way because
this is how objects are at
their core. They are pretty
much just structs that
have a bit more.

They are laid out in
memory the same way
structs are

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Class vs Struct (Style)

❖ A class is the same thing as a struct. Only difference is if you don’t specify an
access modifier, class assumes private, structs assume public. THAT’S IT

❖ Our SimpleString (and Vec) would be better
as a class stylistically.

❖ Typically, we only use and define struct’s
as we would in C: just a collection of
data members (with only a few simple
member functions if any)

❖ Common C++ style: prefix non-public data
members with m_

40

class SimpleString {
public:
 // declare a constructor
 SimpleString(char* cstr);

 // decare a destructor
 ~SimpleString();

 // member function (method)
 char& at(size_t index);

private:
 char* m_data;
 size_t m_len;
};

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Synthesized Copying

❖ If you don’t define the copy constructor, assignment operator, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the data members (i.e. fields)

▪ Sometimes the right thing; sometimes the wrong thing

41

#include "SimpleString.hpp"

int main(int argc, char** argv) {

 SimpleString x;

 SimpleString y(x);

 y = x; // invokes synthesized assignment operator

 return EXIT_SUCCESS;

}

Usually wrong whenever a class has dynamically allocated data

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Synthesized Constructing/Destructing

❖ If you don’t define any constructor, C++ will synthesize one for you

▪ Default initializes all member variables

❖ If you don’t define any destructor, C++ will synthesize one for you

▪ Does nothing except call the destructor of any member variables

42

Usually wrong whenever a class has dynamically allocated data

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Explicitly ask for “default”

❖ If the synthesized constructor/destructor/copy constructor/assignment
operator/etc. is something you want, then be explicit and declare them as
“default”

❖ Don’t have to implement them in the .cpp file if they are default

❖ Can also disable an operation by setting it = delete;

43

class SimplePoint {
public:
 SimplePoint() = default;
 ~SimplePoint() = default;
 SimplePoint(const SimplePoint other) = default;
 SimplePoint& operator=(const SimplePoint rhs) = default;
private:
 int m_x;
 int m_y;
};

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Rule of three*

❖ If you want to define any of the following for a class:

▪ Destructor

▪ Copy constructor

▪ Assignment operator

❖ It means there is some resource that needs to be properly handled/cleaned up,
and you should implement them all (or disable some of them)

❖ This is really a rule of 5, but we haven’t talked about the last two yet.

44

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Object Data Members

❖ What if we had a class like the following.
What would the destructor for this class need to look like?
What about the copy constructor?

45

class Course {
public:
 // ...
private:
 SimpleString m_dept;
 int m_number;
};

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Object Data Members

❖ What if we had a class like the following.
What would the destructor for this class need to look like?
What about the copy constructor?

46

class Course {
public:
 // ...
private:
 SimpleString m_dept;
 int m_number;
};

As long as SimpleString has the destructor, copy constructor, etc. properly defined, then the default
destructor (empty destructor) and default copy constructor are fine.

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

Regular Types

❖ A type is “regular” if it is

▪ Copy constructable

▪ Default (0-arg) constructable

▪ Comparable (operator==)

❖ More emphasis on the first two: If you have those then using your newly
defined object type will be much more compatible with the standard library
and other libraries.

47

CIS 3990, Fall 2025L02: ClassesUniversity of Pennsylvania

That’s all for now!

❖ Still out:

▪ HW00

▪ HW01

▪ Pre-semester Survey

❖ Hopefully you are doing well ☺

48

	Default Section
	Slide 1: Classes Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Integer Types in C++
	Slide 7: Fixed Width Integers
	Slide 8: size_t
	Slide 9: Don’t mix and match
	Slide 10: static_cast
	Slide 11: Lecture Outline
	Slide 12: use_string.cpp example walkthrough
	Slide 13: use_string.cpp example walkthrough
	Slide 14: Objects!
	Slide 15: Lecture Outline
	Slide 16: Demo: Adding Constructors
	Slide 17: Demo: Adding Constructors
	Slide 18: Demo: Adding Constructors
	Slide 19: Destructors & RAII
	Slide 20: Destructors
	Slide 21: Demo: Adding Destructors
	Slide 22: Destructor In Practice
	Slide 23: Demo: Adding Methods
	Slide 24
	Slide 25: Lecture Outline
	Slide 26
	Slide 27
	Slide 28: Copy Constructors
	Slide 29: When Do Copies Happen?
	Slide 30: Why Copying is an issue: Depending on the type
	Slide 31: Const reference most parameters
	Slide 32: Assignment != Construction
	Slide 33: Overloading the “=” Operator
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Lecture Outline
	Slide 38: Access Modifiers
	Slide 39: Class vs Struct (Functionality)
	Slide 40: Class vs Struct (Style)
	Slide 41: Synthesized Copying
	Slide 42: Synthesized Constructing/Destructing
	Slide 43: Explicitly ask for “default”
	Slide 44: Rule of three*
	Slide 45: Object Data Members
	Slide 46: Object Data Members
	Slide 47: Regular Types
	Slide 48: That’s all for now!

