LO1: Heap, Values & References CIS 3990, Fall 2025

The Heap, Value Semantics, References
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

@ Poll Everywhere pollev.com/tqm

« How are you? How is the start of the semester going for you?

University of Pennsylvania LO1: Heap, Values & References

Administrivia

% First Assignment (HWO0O cowsay)
= “Due” Yesterday

= Extended to be due Tuesday the 9t (course selection period ends)
" Mostly a C refresher

= Don’t put it off, HWO1 is posted and you have to work on that too ©

« Pre semester Survey

" Anonymous
= Due Friday the 12t

+» HWO1 Posted tonight
= Due Tuesday the 9t
= More rigorous C refresher ©

CIS 3990, Fall 2025

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Lecture Outline

+» Pointers & Const
+» The Heap

% Value Semantics
+» References

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

%+ const: this cannot be changed/mutated

= Used much more in C++ thanin C

j& Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare (const int* 1) {
*i = (*1)*(*1); // compiler error here!
std::cout << *1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (&) ;
return EXIT SUCCESS;

}

\. J

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

const and Pointers

+~ Pointers can change data in two different contexts:

I‘f\‘} X
1) You can change the value of the pointer K - X]
FL_*%

¥ =

1 LaY P

2) You can change the thing the pointer points to
(via dereference)

%+ const can be used to prevent either/both of these behaviors!
" const next to pointer name means you can’t change the value of the pointer

= const next to data type pointed to means you can’t use this pointer to change the thing
being pointed to it Y const e;

= Tip: read variable declaration from rg@ﬁt-to-left

L
@jf\f’

University of Pennsylvania

const and Pointers

+ The syntax with pointers is confusing:

LO1: Heap, Values & References

int x
const

Q v++;

const

Oz +=
D z++;

® *w +=
0 Wt+;

const
O v +=
'0' v++;

_

-) .
int main(int argc,

int y = 6;

int *z = &y;
1;

int *const w = &x;

1;

int *const v
1;

char** argv) {

// int

// (const int)

// pointer to a (const 1int)

// (const pointer) to a (variable int)

= &x; // (const pointer) to a (const int)

return EXIT SUCCESS;

CIS 3990, Fall 2025

University of Pennsylvania

const Parameters

< A const parameter
cannot be mutated inside
the function

" Therefore it does not
matter if the argument can
be mutated or not

< A non-const parameter
may be mutated inside
the function

= Compiler won’t let you pass
in const parameters

LO1: Heap, Values & References

Make parameters const when you caw

(void foo(const int* y) {
std::cout << *y << std::endl;

}

void bar (int* y) {

std::cout << *y << std::endl;

}

int main(int argc, char** argv)
const int a = 10;
int b = 20;

foo (&a) ; // OK
foo (&b) ; // OK
bar (&a) ; // not OK — error
bar (&b) ; // OK

return EXIT SUCCESS;

CIS 3990, Fall 2025

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Lecture Outline

% Pointers & Const
%~ The Heap

% Value Semantics
+» References

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Types of Memory

+ There are three* main ways in which memory is allocated.

(int counter = 0; // global var) (int foo(int a) { h
int x = a + 1; // local var
int main(int argc, char** argv) { return x;
counter++; }
cout << "count = " << counter;
cout << endl; int main(int argc, char** argv) {
return 0; int y = foo(10); // local var
L}) cout << "y = " << y << endl;
return 0O;
" counter is statically-allocated))

- Allocated when program is loaded)
_ = a3, x,y are automatically-allocated
- Deallocated when program exits o
« Allocated when function is called

" Compiler knows exactly how many instances of
it will exist across program’s life.

« Deallocated when function returns

= Compiler knows how many there will be per
function invocation and there lifetime is
limited to scope of function. 10

University of Pennsylvania

LO1: Heap, Values & References

Stack Example:

(ginclude <iostream>)
#include <cstdlib>

int sum(int n) {
int sum = 0;
for (int 1 = 0; 1 < n; 1i++) {
sum += 1;
}

return sum;

int main () {
int sum = sum(3);
cout << "sum: " << sum;
cout << endl;
return EXIT SUCCESS;

Stack frame for
main ()

CIS 3990, Fall 2025

11

e T . . o
% University of Pennsylvania

LO1: Heap, Values & References

Stack Example:

/ginclude <iostream>)
#include <cstdlib>

—p>int sum(int n) {

int sum = 0;

for (int 1 = 0; 1 < n; 1i++) {
sum += 1i;

}

return sum;

int main() {
int sum = sum(3);
cout << "sum: " << sum;
cout << endl;
return EXIT SUCCESS;

Stack frame for
main ()

Stack frame for
sum ()

CIS 3990, Fall 2025

12

University of Pennsylvania

LO1: Heap, Values & References

Stack Example:

(ginclude <iostream>
#include <cstdlib>

int sum(int n) {

int sum = 0;
for (int 1 =
sum += 1i;

}

return sum;

0; 1 < n; 1i++)

int main () {

int sum = sum(3);

cout << "sum: " << sum;
cout << endl;

return EXIT SUCCESS;

{

Stack frame for
main ()

sum () ’s stack frame

goes away after
sum () returns.

main ()’s stack frame
is now top of the stack

and we keep executing
main ()

CIS 3990, Fall 2025

13

% University of Pennsylvania

LO1: Heap, Values & References

Stack Example:

/ginclude <iostream>)
#include <cstdlib>

int sum(int n) {
int sum = 0;
for (int 1 = 0; 1 < n; 1i++) {
sum += 1;
}

return sum;

int main () {
int sum = sum(3);
-1, cout << "sum: " << sum;
cout << endl;
return EXIT SUCCESS;

Stack frame for
main ()

Stack frame for
cout << string

CIS 3990, Fall 2025

14

University of Pennsylvania

LO1: Heap, Values & References

CIS 3990, Fall 2025

Stack

% @Grows, but has a static max size

® Can find the default size limit with the command ulimit —-all

(May be a different command in different shells and/or linux versions. Works in bash on
Ubuntu though)

= Can also be found at runtime with getrlimit (3)

+ Max Size of a stack can be changed
" at run time with setrlimit (3)

= At compilation time for some systems (not on Linux it seems)
" (or at the creation of a thread)

15

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Types of Memory
%+ There are three* main ways in which ® *arr,arr[i], etcare dynamically-

memory is allocated. allocated.

int* alloc nums(size t len) { - Allocated “explicitly” by the program

int* arr = new int[len]; “at run time”
for (size t 1 =0; i < len; i++) { " it

arr[i] = ©; - Deallocated when the program “explicitly
} deallocates it.

return arr; . .
’ " Compiler doesn’t necessarily know how much

memory will be allocated. It will be decided

main() { while running.

size t 1len;
cout << “please give a number: ° << endl; = Java, etc. uses dynamic allocation. It’s just
cin >> len; // reads an integer from stdin

"hidden" and safer.

int* my_arr = alloc_nums(len);
// ... do something with the array

" Note: arr is a pointer that is on the stack with
automatic allocation. The data that it is

delet ; inti '
elete[] my_arr pointing at is on the heap.

16

University of Pennsylvania LO1: Heap, Values & References

How to mess it up

» Memory is easy to mess up, here are some ways how ©

% In general:

= Accessing memory that you are not supposed to access.

« Automatic Allocation:

Making a pointer to some thing on the stack and the pointer outlives the thing it is
pointing at. Trying to dereference the pointer will get you Undefined Behaviour (UB)

» Dynamic Allocation:

Delete-ing a pointer that was not returned by new.
Using the wrong delete (delete vs delete]]).

Not deleting memory.

Deleting the same memory more than once.
Re-using memory after it has been deleted.

New doesn’t always initialize the memory allocated, you may need to set it yourself!

CIS 3990, Fall 2025

17

University of Pennsylvania

LO1: Heap, Values & References

+» What will happen when we try to compile and run?

A.
B. Output “(2, 4, 3)"

C. Compiler error
about arguments
to foo (in main)

D. Compiler error
about body of foo

E. We're lost...

CIS 3990, Fall 2025

Ed Discussion

rvoid foo(int* const x,
int* y, int z) {

const int a = 1;
int b = 2, ¢ = 3;

foo(&a, &b, c);
std::cout << " (" << a << ",

return EXIT_SUCCESS;

int main(int argc, char** argv) {

<< ", T KKK e << ") LKL std:rendl;

1] << b

18

University of Pennsylvania

LO1: Heap, Values & References

+» What will happen when we try to compile and run?

A.
B. Output “(2, 4, 3)"

_C. Compiler error
about arguments
to foo (in main)

D. Compiler error
about body of foo

E. We're lost...

Can’t modify the x, but can
\mo&hﬁ{ x (dereference)

CIS 3990, Fall 2025

Ed Discussion

rvoid foo(int?‘const X,
Int ptr —int* y, int z) { ~

*X = 1 7 Allowed

zZ —-= 3 \\\

} Allowed, but change doesn’t persist ot

int main(int argc, char** argv)
const int a = 1;
int b = 2, ¢ = 3;

«— Const mismateh
foo (&a, &b, c);

return EXIT_SUCCESS;

Copy of it value

std::cout << "(" << a << ", " <KD
<< ", T KK e)T L stdrrendl;

{

19

University of Pennsylvania

+~ Debug this function,
what is wrong with it?
how do we fix it?

int* find _fibs(size t upper) {

int res[upper];

if (upper > 0) {
res[0] = O;
res[1] = 1;

}

for(size t 1 = 1; 1 < upper; ++1i) {
res[i] = res[i - 1] + res[i - 2];

}

return res;

}

LO1: Heap, Values & References

CIS 3990, Fall 2025

Ed Discussion

int* find_fibs(size t upper);

int main() A
size t fib_len = 10;
int* fibs = find fibs(fib_len);

for (size t i = 0; i <= fib _len; ++i) {
cout << "fibs[i]: " << fibs[i] << endl;

¥

return EXIT_SUCCESS;
}

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int main() {
main()’s stack frame size t fib _len = 10;

fib len int* fibs = find fibs(fib_len);

F1bs [::] for (size t i = 0; i <= fib_len; ++i) {
cout << "fibs[i]: " << fibs[i] << endl;

¥

return EXIT SUCCESS;

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int* find fibs(size t upper) {
main()’s stack frame int res[upper];
fib len | 10 if (upper > 0) {
B IIII res[0] = 0;
res[1] = 1;

find_fibs()’s stack frame }
for(size t i = 1; 1 < upper; ++1i) {

res[i] = res[i - 1] + res[i - 2];

¥

return res;

¥

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int* find fibs(size t upper) {
main()’s stack frame int res[upper];
fib len | 10 if (upper > 0) {
B IIII res[@] = 0;
res[1] = 1;
find_fibs()’s stack frame }
for(size t i = 1; 1 < upper; ++1i) {

res[i] = res[i - 1] + res[i - 2];

¥

return res;

¥

Off by one error: if upper ==
then we go out of bounds of the array

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int* find fibs(size t upper) {
main()’s stack frame int res[upper];

fib_len [10 if (upper > 0) {
f,g‘ IIII res[@] = 0;

s |] res[1] = 1;
find_fibs()’s stack frame }

for(size t 1 = 1; i < upper; ++i) {
upper = res[i |

res[i] = res[i - 1] + res[i - 2];

res |0 |1 1]2 [~ [3)

return res;

¥

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int* find fibs(size t upper) {
main()’s stack frame int res[upper];
fib len | 10 if (upper > 0) {
- res[0] = 0O;
res[1] = 1;
}

for(size t 1 = 1; i < upper; ++i) {

res[i] = res[i - 1] + res[i - 2];

¥

return res;

¥

Stack local variable goes away

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

« Does this function work as intended?

int main() {
main()’s stack frame size t fib _len = 10;

fib len int* fibs = find _fibs(fib_len);

for (size t i = 0; i <= fib_len; ++i) {
cout << "fibs[i]: " << fibs[i] << endl;

¥

return EXIT SUCCESS;

Stack local variable goes away
We try to print memory we don’t have access to!

(and we go out of bounds in the for loop too)

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

+» Consider our SimpleString “object” from HWOO, could we implement it

without a pointer to the heap? struct SimpleString {
char* data;

size t len;

s

27

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

+» Consider our SimpleString “object” from HWOO, could we implement it

without a pointer to the heap? struct SimpleString {

char* data;
size t len;

s

« Does this work?

struct SimpleString {
char data[10];
size t len;

}s

28

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

+» Consider our SimpleString “object” from HWOO, could we implement it

without a pointer to the heap? struct SimpleString {

char* data;
size t len;

s

+» We have to use a pointer, we don’t know how big the string is!

struct SimpleString {
char data[10];
size t len;

}s

29

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

+» Consider our SimpleString “object” from HWOO, could we implement it

without a pointer to the heap? struct SimpleString {

char* data;
size t len;

}s

SimpleString SimpleString From(const char* cstring) {

+» Does this work? SimpleString ret;

char arr[strlen(cstring) + 1];

for (size t i = @; i <= strlen(cstring); i++) {
arr[i] cstring[i]

¥

ret.data = arr;
ret.len = strlen(cstring);

return ret;

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

+» Consider our SimpleString “object” from HWOO, could we implement it

without a pointer to the heap? struct SimpleString {

char* data;
size t len;

}s

SimpleString SimpleString_ From(const char* cstring) {
We have to use a pointer JEEERLNES S I-ags

, : char arr[strlen(cstring) + 1];
we don’t know how big for (size t 1 = @; i <= strlen(cstring); i++) {

the string is! arr[i] = cstring[i]

If we use a pointer, }
- .. ret.data = arr;

where is it pointing? ret.len = strlen(cstring);

Pointing to the stack

won’t work... return ret;

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

in;/main(i { . . + What is wrong with this code?
start as leng array , :
int* arr = new int[2]{3, 9}; (MU|t|p|e bugs)

size t len = 2; You can assume this compiles.

+» How do we fix this?
PushNums(arr, len, 3);

len += 1;

PushNums(arr, len, 4);
len += 1; void PushNums(int* arr, size t len,
int new_num) {
for (size t i = @; 1 < len; int* new_arr = new int[len + 1];
cout << arr[i] << endl; for (size_t i = 0; 1 < len; ++1) {
delete arr + i; \ new_arr[i] = arr[i];
}

new _arr[len + 1] = new_nhum;
delete arr; arr = new_arr;

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Ed Discussion

% Finish writing this function and program:

struct String {
char* data;
size t len;

}s

void StringAppend(String* str, char* new_data) {
// finish this function

¥

int main(int argc, char* argv[]) {
// write a main that takes all the args, adds them to one string,
// then prints them. Make sure you have no memory leaks or other errors.
// you can assume you have access to String String From(char* cstr)
// which creates a String deep copying the passed in c-string

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Will 1 Actually Use new?

L)

In “real” or “modern” C++ code, you would not explicitly use new or delete
yourself.

In most cases, a string, vector or other data structure can be used, and you
never have to allocate memory yourself. (BUT it is still important to be
conscious of all the memory allocations going on!)

Whenever you are using objects from the C++ standard library (more later),
those objects will do memory allocation.

For now: we will handle memory ourselves.
(not for very long, after HW2 we will be more modern)

34

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Raise Your Hands

+» QUICK, which of these two is faster?

int fib(int n) {
int arr[2] = {0, 1};
int index = 0;
int 1 = 0;

int fib(int n) {
int* arr = new int[2]{0, 1};

for (int i =
arr[i % 2]
}

0; 1< n; ++i) {
= i[@] + i[1];
while (i < n) {

arr[index] = arr[@] + arr[1];

i+4=1;

index = 1 - index;

delete[] arr;

}

return arr[(i - 1) % 2];

return arr[1l - index];

35

University of Pennsylvania

Heap is SLOW

% QUICK, which of these two is faster?

int fib(iiT n) {
int arr[2] = {0, 1};
int index = 0;
int 1 = 0;

while (i < n) {
arr[index] = arr[@] + arr[1];
i+4=1;
index = 1 - index;

}

return arr[1l - index];

LO1: Heap, Values & References CIS 3990, Fall 2025

int fib(int n) {

int* arr = new int[2]{0, 1};

for (int i =0; i < n; ++1i) {
arr[i % 2] = i[0] + 1i[1];
}

bool res = arr[(i - 1) % 2]
delete[] arr;

return res;

+ There is overhead to the program maintaining the heap. Using the heap is

almost always slower.

+ If you can avoid using the heap, then you should ©

+ (so even if we don’t call new explicitly in modern C++, we need to be conscious

of when it is called for us)

36

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Lecture Outline

% Pointers & Const
+» The Heap

+» Value Semantics
+» References

37

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Raise Your Hands

<~ What does this code print?

(int modify int(int x) { A
X = 5;

return X;

3 int main () {

5 int num = 3;

int n = modify int (num);
cout << num << endl;
cout << n << endl;
return EXIT SUCCESS;

38

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Raise Your Hands

<~ What does this code print?

/;truct Point { \\
int x;
1100 int y;
3800 } i

Point modify point(Point p) {

. . p.x = ;
+ How could we fix it? p.y = ;

E.g. make modify point | FetmEn O
actually modify the input?

int main () {
Point pt0 = { , }s
Point ptl = modify point (pt0);
cout << pt0.x << endl;
cout << ptl.x << endl;
return ;

39

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Value Semantics

% C++ (and most “systems” programming languages) use Value Semantics by
default.

+» When we pass something to a function, we pass a copy of that thing.
» When we return a thing, we return a copy of that thing

» HOWEVER, we can pass a copy of a pointer (e.g. a reference to something) to
mimic pass-by-reference.

= (Or use something mentioned later in lecture ©)

40

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" Objects in languages like Java or Python are references

struct Point {
float x;

pt | x=???? float y;

y = 7?2?77 }s

main’s stack frame

int main() A

Point pt;
Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains ©0.0f, 0.0f

pt.x
pt.y

41

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" Objects in languages like Java or Python are references

struct Point {

main’s stack frame

float x;
pt [x=7???? float y;
y=2??7? ¥
origin| x = 0.0f int main() {
y = 0.0f Point pt;

Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains ©0.0f, 0.0f

pt.x
pt.y

42

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" Objects in languages like Java or Python are references

main’s stack frame

pt | x = 0.0f
y = 0.0f

origin| x = 0.0f
y = 0.0f

struct

Point {

float x;
float y;

s

int main() A

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.x
pt.y

origin; // pt now contains ©0.0f, 0.0f

43

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" Objects in languages like Java or Python are references

main’s stack frame

pt | x = 3.0f
y = 0.0f

origin| x = 0.0f
y = 0.0f

struct

Point {

float x;
float y;

s

int main() A

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.x
pt.y

origin; // pt now contains ©0.0f, 0.0f

44

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" Objects in languages like Java or Python are references

main’s stack frame

pt

origin

x = 3.0f
y = 2.0f

x = 0.0f
y = 0.0f

struct

Point {

float x;
float y;

s

int main() A

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.x
pt.y

origin; // pt now contains ©0.0f, 0.0f

45

LO1: Heap, Values & References CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

~

flypedef struct point st {
int x;
int y;

} Point;

void modify point (Point* ptr)

Point new point = (Point) ({
.x = 3800,
.y = 4710,

}i

*ptr = new point;

}

int main () {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;

46

LO1: Heap, Values & References CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

flypedef struct point st { ﬂ\
int x;
int y;
} Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
Buggy version would say: .y = 4710,
ptr = &new point ;
}
int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
N Y

47

LO1: Heap, Values & References

CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame

p |x=1100
y = 2400

flypedef struct point st { ﬂ\
int x;
int y;
} Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,
}i
*ptr = new point;
}
int main () {
] Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
}
_

48

LO1: Heap, Values & References CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame flypedef struct point st {)
int x;
p |x=1100 int y;
y=2400 } Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,
AN }:
modify_point’s stack frame \ } “REE = mEW POLns
ptr| — . .
int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
}
_ J

49

LO1: Heap, Values & References CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame flypedef struct point st {)
int x;
p |x=1100 int y;
y = 2400 } Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,
AN }:
: : T« tr = new point;
modify_point’s stack frame } P P Z
ptr| — . .
int main() {
int Point p = {1100, 2400},
new_poin X = 3800 modify point (&p);
y =4710 printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
}
_ J

50

LO1: Heap, Values & References CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame flypedef struct point st {)
int x;
p |x=3800 int y;
y=4710 } Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,
AN }:
modify_point’s stack frame \ —}>*ptr = DSW POLNES
ptr| — . .
int main() {
int Point p = {1100, 2400},
new_poin X = 3800 modify point (&p);
y:=4710 printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
}
_ J

51

LO1: Heap, Values & References

CIS 3990, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame

o | x=3800
y =4710

flypedef struct point st { ﬂ\
int x;
int y;
} Point;
void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,
}i
*ptr = new point;
}
int main () {
Point p = {1100, 2400},
|, modify point(&p);
printf ("%d, %d\n", p.x, p.y):;
return EXIT SUCCESS;
}
_

52

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

Lecture Outline

+» Pointers & Const
+» The Heap

% Value Semantics
+» References

59

University of Pennsylvania LO1: Heap, Values & References

References

+» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

References are mostly an alternative to pointers
" They are implemented internally with a pointer
= But references are a lot easier to use

= Can’t do everything with references, sometimes a pointer is needed.

= References are used a lot more often than pointers are

CIS 3990, Fall 2025

60

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {

LO1: Heap, Values & References

CIS 3990, Fall 2025

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

61

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X 5

Y 10

62

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 5

Y 10

63

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 6

Y 10

64

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 7

Y 10

65

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 10

Y 10

66

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 11

Y 10

67

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 11

y,ref 10

funky () ’s stack frame

val 11

68

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 11

y,ref 12

funky () ’s stack frame

val 11

69

University of Pennsylvania

LO1: Heap, Values & References CIS 3990, Fall 2025

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 11

y,ref 12

funky () ’s stack frame

val 13

70

University of Pennsylvania

References

void funky(int val, int& ref) {
ref += 2;
val += 2;

}

int main() {
int x = 5;
int y = 10;
int& z = Xx;

LO1: Heap, Values & References

CIS 3990, Fall 2025

Note: Arrow points
to next instruction.

« A reference is an alias for another variable

= Aliags: another name that is bound to the aliased
variable

- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language
= |ets us “pass things by reference”

main ()’s stack frame

X,z 11

)4 12

71

University of Pennsylvania LO1: Heap, Values & References CIS 3990, Fall 2025

That’s all for now!

+ Releasing tonight or tomorrow:
= HWO1

« Still out:
= HWO0O

= Pre-semester Survey

+ Hopefully you are doing well ©

80

	Default Section
	Slide 1: The Heap, Value Semantics, References Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: const
	Slide 6: const and Pointers
	Slide 7: const and Pointers
	Slide 8: const Parameters
	Slide 9: Lecture Outline
	Slide 10: Types of Memory
	Slide 11: Stack Example:
	Slide 12: Stack Example:
	Slide 13: Stack Example:
	Slide 14: Stack Example:
	Slide 15: Stack
	Slide 16: Types of Memory
	Slide 17: How to mess it up
	Slide 18: Polling Question
	Slide 19: Polling Question
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Will I Actually Use new?
	Slide 35: Heap vs. Stack
	Slide 36: Heap is SLOW
	Slide 37: Lecture Outline
	Slide 38: Poll: how are you?
	Slide 39
	Slide 40: Value Semantics
	Slide 41: Structs: Copied not Referenced
	Slide 42: Structs: Copied not Referenced
	Slide 43: Structs: Copied not Referenced
	Slide 44: Structs: Copied not Referenced
	Slide 45: Structs: Copied not Referenced
	Slide 46: Visualization: fixed pass by reference (Output Parameters)
	Slide 47: Visualization: fixed pass by reference (Output Parameters)
	Slide 48: Visualization: fixed pass by reference (Output Parameters)
	Slide 49: Visualization: fixed pass by reference (Output Parameters)
	Slide 50: Visualization: fixed pass by reference (Output Parameters)
	Slide 51: Visualization: fixed pass by reference (Output Parameters)
	Slide 52: Visualization: fixed pass by reference (Output Parameters)
	Slide 59: Lecture Outline
	Slide 60: References
	Slide 61: References
	Slide 62: References
	Slide 63: References
	Slide 64: References
	Slide 65: References
	Slide 66: References
	Slide 67: References
	Slide 68: References
	Slide 69: References
	Slide 70: References
	Slide 71: References
	Slide 80: That’s all for now!

