
CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Introductions, C Refresher
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 simple_string)

▪ Releases Tonight

▪ “Due” Tuesday next week 9/2

▪ Extended to be due Tuesday the 9th (course selection period ends)

▪ Mostly a C refresher

▪ Don’t put it off, another assignment (a more rigorous C refresher) will also be due the 9th.

❖ Pre semester Survey

▪ Anonymous

▪ Due Wednesday the 9th

3

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ Context in this course

▪ memory

▪ Pointers

▪ Arrays

▪ Structs

▪ The heap

▪ const

4

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ UPenn CIS faculty member since August 2021

▪ I am CREATING this course

▪ BUT I have taught a lot of this content across other courses.

▪ A lot of new stuff! But still some stability

❖ And…

5

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like most music

6

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like animals and going outside
(especially birds, cats and mountains)

7

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I like video games

8

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I have a general dislike of food
(Breakfast is pretty good tho)

9

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ I care a lot about your actual learning and that you have a good experience
with the course

❖ I am a human being and I know that you are one too. If you are facing
difficulties, please let me know and we can try and work something out.

❖ More on my personal website: https://www.cis.upenn.edu/~tqmcgaha/

10

https://www.cis.upenn.edu/~tqmcgaha/

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ How confident are you in your C programming?

❖ What about your ability to write a program from scratch in general?

11

1-5 on your fingers

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

12

Course Overview

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

❖ C++

▪ Taught in a way that hopefully prepares you for systems programming, whether you
continue it in C++, C, Rust, or some other “value semantics” programming language.

❖ And Wider Systems Topics

▪ Performance

▪ Locality

▪ Concurrency

❖ Program Design & Style

13

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."

▪ Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of
Discworld' ‘)

14

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "A lie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

▪ Terry Pratchett, Ian Stewart & Jack Cohen (The Science of Discworld)

15

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is the LC4 model for a computer true?

❖ Is it a useful model?

16

Computer

Operating System

Process

Eh……. no

Yes

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is memory one giant array of bytes?

❖ Is this a useful model?

17

Eh……. no
Yes

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

I’m going to lie to you (but in a good way)

❖ "All models are wrong, but some are useful."

▪ Same source as below.

❖ "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."

▪ AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

❖ This course will reveal more details, but there is still a ton I am leaving out.
Even what I say that is accurate, will likely change in the future.

18

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Prerequisites

❖ Course Prerequisites:

▪ CIS 2400

▪ Some of CIS 1200/1210

❖ What you should be familiar with already:

▪ C programming experience

▪ C Memory Model (we will build on this point and the previous point)

▪ Computer Architecture Model (e.g. the high level, I won’t talk about transistors)

▪ Basic UNIX command line skills

▪ Some basic data structures & algorithmic analysis

19

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Learning Objectives

❖ To leave the class with a better understanding of:

▪ C++

▪ How a lot of software level structures work

▪ How software “interfaces” with the Operating System

▪ How a computer runs/manages multiple programs

▪ Various system resources and how to apply those to code

• Threads, networking, file I/O

❖ You should leave this with a solid foundation to explore higher level systems
courses.

❖ Topics list/schedule can be found on course website

▪ Note: This is tentative
20

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Disclaimer

❖ A lot of the course is tentative

▪ Travis has taught this before but is CHANGING A LOT this time

❖ This is a digest, READ THE SYLLABUS

▪ https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/documents/syllabus

▪ Note: Syllabus is still being updated

21

https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/documents/syllabus
https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/documents/syllabus

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

What if I have already taken CIS 5XXX?
❖ Some of you have already taken CIS 5480 or some other upper-level systems

course. Will you still benefit from the course?

❖ I am pretty sure you will

▪ These other courses have probably taught you some of these things, but (from what I can
tell) they go over a lot of this stuff fast.

▪ Yes, a lot of this is “fundamentals” but the fundamentals are what everything else builds
on top of (so they deserve more time)

❖ This course has the most overlap with CIS 5480. Why?

▪ Cause I have taught that course before

▪ Because it is in-part the “current” “intermediate” systems course.
I do not think it is doing a good job at being an intermediate, so I hope this course will
“free up” CIS 5480 so it can focus on being an Operating Systems course.

22

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components pt. 1

❖ Lectures (~26)

▪ Introduces concepts, slides & recordings available on canvas

▪ In lecture polling & Activities.

❖ Recitations (12)

▪ Reiterates lecture content, lecture clarifications, assignment & exam preparation

❖ Programming Projects (~10)

▪ Due every ~1 week

▪ Applications of course content

▪ Usually have everything you need for an assignment when it is released

❖ Check-in “Quizzes” (~12)

▪ Unlimited attempt low-stake quizzes on Ed to make sure you are caught up with the
material

23

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components pt. 2

❖ Final Project (1)

▪ Due at the end of the semester

▪ Can be done solo or in partners (tentatively)

▪ Further Details TBD

❖ Exams (2)

▪ Two in-person exams, some personal notes will be allowed

▪ Details TBD

❖ Textbook (0)

▪ No Textbook, but using a C++ reference would probably be useful

▪ https://cplusplus.com/

▪ https://en.cppreference.com/w/

24

https://cplusplus.com/
https://cplusplus.com/
https://en.cppreference.com/w/
https://en.cppreference.com/w/

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Policies for Growth

❖ Course policies are designed to be flexible and to provide opportunities for you
to get feedback and GROW

25

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Grading (Tentative)

❖ Breakdown:

▪ Homework assignments (54%)

▪ Final Project (14%)

▪ Exams (27%)

• Midterm 9%

• Final 18%

▪ Oral Concept Discussion (5%)

❖ Engagement Credits to determine +/-

❖ Final Grade Calculations:

▪ I would LOVE to give everyone an A+ if it is earned

▪ Final grade cut-offs will be decided privately at the end of the Semester

26

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Engagement Credits

❖ “Engagement Credits” keep track of the various ways you may interact with
the course.

❖ The % on the previous slide determines whether you get some kind of an “A”,
some kind of a “B”, etc.

❖ These credits will be used to decide whether you get a “+”, “-“ or neither on
the letter grade you earn

27

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Engagement Credits

❖ “Engagement Credits” keep track of the various ways you may interact with
the course.

❖ The % on the previous slide determines whether you get some kind of an “A”,
some kind of a “B”, etc.

❖ These credits will be used to decide whether you get a “+”, “-“ or neither on
the letter grade you earn

▪ If you earn an A, you will need

• 110 credits for an A+

• 90 credits for an A

• < 90 credits for an A-

▪ If you earn a B, you will need

• 100 credits for a B+

• 80 credits for a B

• < 80 credits for a B- 28

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

HW Late Policy

❖ Check-ins are due before Monday’s lecture and cannot be turned in late

❖ HW’s cannot be turned in late, but they can be reopened

▪ When you submit a check-in you can also say you want to re-open ONE homework
assignment.
That homework assignment will be re-opened till the next check-in is due.

▪ You can re-open the same assignment multiple times

▪ The final project can’t be re-opened

❖ End of the semester is the end. No submissions past that.
(unless there is particularly special circumstances)

29

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

HW Grading

❖ Roughly every other programming homework assignment is graded on style in
addition to correctness from an autograder

❖ Style grading is done manually and only if you get 100% on the autograder.

▪ We let you re-open assignments later in the semester, so you can eventually get full
correctness and fix style

▪ It can take a lot of work to grade these manually, especially with the re-opens, so we need
to make sure we stick to a reasonable number of submissions to grade and regrade.

▪ For each style issue we will leave a comment and mark a rubric item in gradescope.

30

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

HW Grading

❖ Roughly every other programming homework assignment is graded on style in
addition to correctness from an autograder

❖ Notably, each rubric item / style issue will necessarily result in a deduction on
your grade. We instead categorize the overall quality of your assignment.

▪ Excellent (E) - 100% - Code Quality and displayed mastery of the content is perfect, or has
only a few very minor flaws.

▪ Satisfactory (S) - 80% - Code Quality and mastery of material is pretty good

▪ Needs improvement (N) - 50% - Code works, but demonstrates an incomplete mastery of
topics and/or code-quality.

▪ Unassessable (U) - 0% - Code either doesn’t pass the already existing automated tests, or
has enough major flaws to require an almost rewrite of the code.

❖ More details in syllabus
31

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Midterm Clobber Policy

❖ The Final Exam is cumulative

▪ Made up of “midterm” material and “post midterm” material

▪ If you do better on the “midterm” section of the final, your midterm grade can be
overwritten.

▪ Accounts for the exam’s being too easy/hard by comparing to the standard deviation &
mean of the exam.

▪ Formula is in the syllabus

▪ This does not work in reverse, if you do poorly on the “midterm” part of the final I will not
improve that section of your final exam.

• The point with this policy is to demonstrate growth

32

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Infrastructure

❖ Course website

▪ Schedule, syllabus, assignment specifications, materials …

▪ If you need something it is probably linked from the course site

❖ Docker

▪ Coding environment for hw’s, code is submitted to GradeScope

❖ GradeScope

▪ Used for exam grades & HW submissions

❖ Github

▪ You will have a repo for the course and you will submit to gradescope via your repo
33

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Infrastructure

❖ Poll Everywhere

▪ Used for some lecture polls

❖ Ed

▪ Course discussion board, in-class activities and for check-in quizzes

❖ Canvas

▪ Grades, lecture recordings & surveys

34

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ Generative AI

▪ I strongly recommend against using generative AI like ChatGPT, Co-Pilot or related
technologies. I am not denying that ChatGPT can be a useful tool for getting something
made, but I not convinced that it benefits your growth and learning of the material in this
class.

▪ You learn by doing things. If you aren’t doing the critical thinking, the learning, the
programming yourself, then that experience (and knowledge) will not stick with you.

• AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking

• (More in syllabus)

❖ You will not help your overall grade and happiness:

▪ Quizzed individually during project demo, exams on project in finals

▪ If you can’t explain your code in OH, we can turn you away.

• This is different than being confused on a bug or with C, this is ok

▪ Personal lifelong satisfaction from completing the course 35

https://www.mdpi.com/2075-4698/15/1/6
https://www.mdpi.com/2075-4698/15/1/6

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Getting Help

❖ Ed

▪ Announcements will be made through here

▪ Ask and answer questions

▪ Sign up if you haven’t already!

❖ Office Hours:

▪ Can be found on calendar on front page of canvas page

▪ Starts next week (hopefully)

❖ 1-on-1’s:

▪ Can schedule 1-on-1’s with Travis

▪ Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs 36

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

❖ Can see Office Hours on the course site calendar

❖ Travis’ Office Hours are in his office (Levine 269 C)

❖ 2nd floor Levine ->

OH Locations

37

LOBBY

ME ->

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

OH Locations

❖ Can see Office Hours on the course site calendar

❖ Theodor’s Office Hours are in Levine 3rd floor
bump space

❖ Map of 3rd floor ->

38

OH ->

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ We do look for it:

▪ Careful grading by teaching staff for most classes

▪ Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

▪ Successfully used in several classes at Penn

❖ Penalty depends on severity.

▪ Zero on the assignment, (5%) deduction on final grade. F grade if caught twice.

▪ First-time offenders may be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

▪ Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

▪ Posting code publicly is a BIG NO NO

▪ If you come to us first before we catch you, we will give you the opportunity to “make up”
39

http://theory.stanford.edu/~aiken/moss/

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We Care

❖ We are still figuring things out, but we do care about you and your experience
with the course

▪ There is a pre-semester survey available on canvas now. Please fill this out honestly and
we will do our best to incorporate people’s answers

▪ Please reach out to course staff if something comes up and you need help

❖ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

▪ We know that things can be tough, but please reach out if you feel tempted. We want to
help

▪ Read more on academic integrity in the syllabus

❖ We do not just say this, hopefully the policies also show that we care.
40

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns so far?

41

pollev.com/tqm

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ Context in this course

▪ memory

▪ Pointers

▪ Arrays

▪ Structs

▪ The heap

▪ const

42

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Context of C in this course

❖ You will be writing C++ in this course, not C

▪ Most C is legal C++

▪ For the first few assignments you will write C++ code that also mostly works as C code

❖ C++ is not C

▪ C is the foundation for C++, but modern C++ is very different

▪ We will refresh ourselves on this C foundation but quickly move on to C++

❖ Recitation tomorrow:

▪ More C refresher

▪ Not recorded, but materials will be posted

43

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ Looks simple enough…

▪ Let’s walk through the program step-by-step to highlight some differences

44

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ iostream is part of the C++ standard library

▪ Note: you don’t write “.h” when you include C++ standard library headers

• But you do for local headers (e.g. #include "Deque.hpp")

▪ iostream declares stream object instances

• e.g. cin, cout, cerr

45

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard library functions are available to you

• For C header math.h, you should #include <cmath>

▪ We include it here for EXIT_SUCCESS

46

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ using namespace std;

▪ It is there because I said so (can’t use it in header files tho)

▪ We include it here so that I can say cout instead of std::cout

47

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main() {

 std::cout << "Hello, World!" << std:: endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ “cout” is an object instance declared by iostream, C++’s name for stdout

▪ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

▪ Used to format and write output to the console

▪ We use << to send data to cout to get printed

48

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Hello World in C++

❖ endl is a pointer to a “manipulator” function

▪ This manipulator function writes newline ('\n') to the ostream it is invoked on and
then flushes the ostream’s buffer

▪ This enforces that something is printed to the console at this point

49

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: Error Printing

❖ “cerr” is used if we want to print an error message

50

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 // ...

 cerr << “ERROR: Invalid Argument!" << endl;

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory

❖ Where all data, code, etc are stored for a
program

❖ Broken up into several segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an address

51

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

52

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

…

int main() {
 char c = 'A';
 char other = '0';
 int x = 3034;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 3034 …

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory is Huge

❖ Modern computers are called “64-bit”

▪ Addresses are 64-bits (8-bytes)

▪ There are 264 possible memory locations, each location is 1-byte

▪ 264 is 18,446,744,073,709,551,616.
▪ Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

53

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as an int

54

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C & C++

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

55

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 5950;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

56

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;
 int* ptr = &x;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 0x0000000000000008 …

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: nullptr

❖ nullptr is a memory location that is guaranteed to be invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

▪ In C++ (and modern C) we use nullptr instead

❖ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error

▪ It’s better to cause a segfault than to allow the corruption of memory!

57

int main(int argc, char** argv) {

 int* p = nullptr;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable or hard-code it in

▪ No bounds checking!

58

type name[size]

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the
array

• Cannot be assigned to / changed

59

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Here is a memory diagram example:

60

int main() {
char c = '\0';

int arr[2] = {1, 2};
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers as C arrays

❖ Pointers can be set to an array

❖ Pointers can always be indexed into like an array

▪ Pointers don’t always have to point to the beginning of
an array!

61

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

int main() {
char c = '\0';

int arr[2] = {1, 2};

int* ptr = arr;

 int x = ptr[1] + 1;
}

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26

0x0000...08 3 …

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

The Heap

❖ For most program memory we care about,
things are stored either in the heap or stack

❖ In C we allocated with malloc() and deallocated with free()

❖ In C++ we will use new and delete.

▪ New still gives us a pointer to the heap

▪ We must deallocate the pointer with delete
when we are done with the pointer.

62

int main() {
 int* x = new int;

 *x = 3;

 // prints *x which is 3
 cout << *x << endl;

 delete x;
}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

The Heap

❖ In C++ we will use new and delete.

▪ New still gives us a pointer to the heap

▪ Can use new to allocate an array!

▪ Will need this to allocate an array of
characters (so a C-style string) in
the first homework assignment.

▪ We deallocate arrays with delete[]

❖ We use the heap when we want memory to stay allocated past the lifetime of
a function.

❖ Will talk more about what the heap is and why it is important next lecture.
This should be enough for HW00 though.

63

int main() {

 int* arr = new int[2];

 arr[0] = 5930;
 arr[1] = 5950;

 delete[] arr;
}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

64

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

Ed Discussion

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

65

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 6

arc 12

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

66

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 6

arc 12

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

67

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 2

arc 3

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

68

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 2

arc 3

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

69

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 2

arc 3

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

70

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 2

arc 2

ptr

other

Ed Discussion

main()’s stack frame

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

71

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int** other = &ptr;
 ptr = &arc;
 **other = curr;
 *other += 3;

 // print curr and arc
 cout << curr << endl;
 cout << arc << endl;

}

curr 2

arc 2

ptr ?

other

Ed Discussion

main()’s stack frame

&arc + 12

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

72

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 2400 1210

foo()’s stack frame

core

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

73

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 2420 1210

foo()’s stack frame

core

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

74

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 2420 1210

foo()’s stack frame

core

ptr

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

75

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 1520 1210

foo()’s stack frame

core

ptr

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

76

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 1520 5000

foo()’s stack frame

core

ptr

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

▪ Hint: Draw it out!

77

void foo() {
int core[3] = {1100, 2400, 1210};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

Ed Discussion

1100 1520 5020

foo()’s stack frame

core

ptr

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

❖ Given this code, where
are theses in memory?
Assume the code
is executing and is just
about to finish the
AllocArray function.

▪ array

▪ arr

▪ my_len

▪ num

▪ arr[0]

▪ main

78

size_t my_len = 5;

// forward decl
void AllocArray(int** arr, size_t len, int init_val);

int main() {
 int num = 3;
 int* array = nullptr;
 AllocArray(&array, my_len, num);

}
void AllocArray(int** arr, size_t len, int init_val) {
 int* new_arr = new int[len];
 for (size_t i = 0; i < len; i++) {
 new_arr[i] = init_val;
 }
 *arr = new_arr;

 //  WE ARE RIGHT HERE. ABOUT TO RETURN
}

Ed Discussion

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

79

size_t my_len = 5;

// forward decl
void AllocArray(int** arr, size_t len, int init_val);

int main() {
 int num = 3;
 int* array = nullptr;
 AllocArray(&array, my_len, num);

}
void AllocArray(int** arr, size_t len, int init_val) {
 int* new_arr = new int[len];
 for (size_t i = 0; i < len; i++) {
 new_arr[i] = init_val;
 }
 *arr = new_arr;

 //  WE ARE RIGHT HERE. ABOUT TO RETURN
}

Ed Discussion

Stack

Heap

main’s frame

AllocArray’s frame

Static Memory

…

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

80

size_t my_len = 5;

// forward decl
void AllocArray(int** arr, size_t len, int init_val);

int main() {
 int num = 3;
 int* array = nullptr;
 AllocArray(&array, my_len, num);

}
void AllocArray(int** arr, size_t len, int init_val) {
 int* new_arr = new int[len];
 for (size_t i = 0; i < len; i++) {
 new_arr[i] = init_val;
 }
 *arr = new_arr;

 //  WE ARE RIGHT HERE. ABOUT TO RETURN
}

Ed Discussion

Stack

Heap

main’s frame

AllocArray’s frame

Static Memory

…

num

array

arr

new_arr len

init_val

my_len 5

3 3 3 3 3

5

3

3

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

❖ If we wanted to make
sure everything was
properly deallocated,
how many calls to
delete do we need?

Where should we
delete?

81

Ed Discussion

size_t my_len = 5;

// forward decl
void AllocArray(int** arr, size_t len, int init_val);

int main() {
 int num = 3;
 int* array = nullptr;
 AllocArray(&array, my_len, num);

}

void AllocArray(int** arr, size_t len, int init_val) {
 int* new_arr = new int[len];
 for (size_t i = 0; i < len; i++) {
 new_arr[i] = init_val;
 }
 *arr = new_arr;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

❖ If we wanted to make
sure everything was
properly deallocated,
how many calls to
delete do we need?

Where should we
delete?

82

Ed Discussion

size_t my_len = 5;

// forward decl
void AllocArray(int** arr, size_t len, int init_val);

int main() {
 int num = 3;
 int* array = nullptr;
 AllocArray(&array, my_len, num);

 delete[] array;
}

void AllocArray(int** arr, size_t len, int init_val) {
 int* new_arr = new int[len];
 for (size_t i = 0; i < len; i++) {
 new_arr[i] = init_val;
 }
 *arr = new_arr;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data

❖ A struct is a C and C++ datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

❖ Generic declaration in C++:

83

struct Point {

 float x;

 float y;

};

Point pt;

Point origin = {0.0f, 0.0f};

pt = origin; // pt now contains 0.0f, 0.0f

Default values are still garbage!

 <- Initializer List

Can be assigned into,

used as parameters, etc.

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data: copied not referenced

❖ A struct is a C and C++ datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

• When we assign a struct, we copy the values in the struct

84

Point pt;

Point origin = {0.0f, 0.0f};

pt = origin; // pt now contains 0.0f, 0.0f

origin.first = 1.0f;

print(origin.first);

print(pt.first);

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Accessing struct Fields

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

85

struct Point {

 float x, y;

};

int main(int argc, char** argv) {

 Point p1 = {0.0, 0.0};

 Point* p1_ptr = &p1;

 p1.x = 1.0;

 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

 return 0;

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Const

❖ const is a keyword in C and C++ that means that a variable cannot be
modified. It is “constant”

❖ If a struct is const in C or C++,
then its members are also const.

86

int main() {
 const int x = 3;
 int y = 5;

 x += 1; // ILLEGAL

 y += 1;

 const Point p = {0.0, 0.0};

 p.first = 1.0; // ILLEGAL
}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Strings in C

❖ Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: '\0’

▪ Called the “null terminator” character

❖ C-strings are often referred to with a char[] or a char*

❖ Example:

▪ print(str) // Rain

▪ print(ptr_str) // in

87

int main() {
 char c = '\0';

 char str[5] = "Rain";

 char* ptr_str = &(str[2]);
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'R' 'a' 'i' 'n' '\0' 0x000…006 …

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ Finish writing this code:

❖ Strdup is a function that takes in a C string, makes a copy of it, and returns it

88

Ed Discussion

// takes in a pointer to constant chars
// (we cannot manipulate the chars but could manipulate the pointers)
char* strdup(const char* string) {

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ Finish writing the CopyList function.

❖ It takes a pointer to the first node in a linked list.
Each node has a pointer to the next node
and an integer value.

❖ The function makes an
independent copy of the list passed in
and returns the copy.

89

Ed Discussion

struct node {
 node* next;
 int val;

};

node* CopyList(node* head) {

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ Finish writing the PushFront function.

❖ It takes a pointer to the head pointer
of a linked list. Each node has a
pointer to the next node and an int.

❖ The function pushes a new element
on to the front of the list.

❖ Note the node** parameter

❖ Follow up question why is it important
that it is a node** for head?

90

Ed Discussion

struct node {
 node* next;
 int val;

};

void PushFront(node** head, int to_add) {

}

CIS 3990, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

That’s all for now!

❖ If we got through all this, you should have everything you need for the first
homework assignment from this lecture and recitation

❖ We are going a little fast because I expect you have already seen all or most of
this

❖ When we get to new material it won’t be as fast

❖ Releasing tonight or tomorrow:

▪ HW00

▪ Pre-semester Survey

91

	Default Section
	Slide 1: Introductions, C Refresher Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Travis McGaha
	Slide 6: Instructor: Travis McGaha
	Slide 7: Instructor: Travis McGaha
	Slide 8: Instructor: Travis McGaha
	Slide 9: Instructor: Travis McGaha
	Slide 10: Instructor: Travis McGaha
	Slide 11: Poll: how are you?
	Slide 12
	Slide 13: Course Overview
	Slide 14: “Lies-to-children”
	Slide 15: “Lies-to-children”
	Slide 16: We lied to you (but in a good way)
	Slide 17: We lied to you (but in a good way)
	Slide 18: I’m going to lie to you (but in a good way)
	Slide 19: Prerequisites
	Slide 20: Learning Objectives
	Slide 21: Disclaimer
	Slide 22: What if I have already taken CIS 5XXX?
	Slide 23: Course Components pt. 1
	Slide 24: Course Components pt. 2
	Slide 25: Policies for Growth
	Slide 26: Course Grading (Tentative)
	Slide 27: Engagement Credits
	Slide 28: Engagement Credits
	Slide 29: HW Late Policy
	Slide 30: HW Grading
	Slide 31: HW Grading
	Slide 32: Midterm Clobber Policy
	Slide 33: Course Infrastructure
	Slide 34: Course Infrastructure
	Slide 35: Collaboration Policy Violation
	Slide 36: Getting Help
	Slide 37: OH Locations
	Slide 38: OH Locations
	Slide 39: Collaboration Policy Violation
	Slide 40: We Care
	Slide 41: Poll: how are you?
	Slide 42: Lecture Outline
	Slide 43: Context of C in this course
	Slide 44: Aside: Hello World in C++
	Slide 45: Aside: Hello World in C++
	Slide 46: Aside: Hello World in C++
	Slide 47: Aside: Hello World in C++
	Slide 48: Aside: Hello World in C++
	Slide 49: Aside: Hello World in C++
	Slide 50: Aside: Error Printing
	Slide 51: Memory
	Slide 52: Memory as an array of bytes
	Slide 53: Memory is Huge
	Slide 54: Pointers
	Slide 55: Pointer Operators
	Slide 56: Memory as an array of bytes
	Slide 57: Aside: nullptr
	Slide 58: Arrays in C
	Slide 59: Using Arrays
	Slide 60: Arrays in C
	Slide 61: Pointers as C arrays
	Slide 62: The Heap
	Slide 63: The Heap
	Slide 64: Pointers Poll
	Slide 65: Pointers Poll
	Slide 66: Pointers Poll
	Slide 67: Pointers Poll
	Slide 68: Pointers Poll
	Slide 69: Pointers Poll
	Slide 70: Pointers Poll
	Slide 71: Pointers Poll
	Slide 72: Pointer as Array Poll
	Slide 73: Pointer as Array Poll
	Slide 74: Pointer as Array Poll
	Slide 75: Pointer as Array Poll
	Slide 76: Pointer as Array Poll
	Slide 77: Pointer as Array Poll
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Structured Data
	Slide 84: Structured Data: copied not referenced
	Slide 85: Accessing struct Fields
	Slide 86: Const
	Slide 87: Strings in C
	Slide 88: Pointers Poll
	Slide 89: Pointers Poll
	Slide 90: Pointers Poll
	Slide 91: That’s all for now!

