University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Introductions, C Refresher
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

0 Poll Eve rywhere pollev.com/tqgm

+» How are you?

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Administrivia

% First Assignment (HWOO simple_string)

= Releases Tonight

= “Due” Tuesday next week 9/2

= Extended to be due Tuesday the 9t (course selection period ends)
" Mostly a C refresher

= Don’t put it off, another assignment (a more rigorous C refresher) will also be due the 9.

Pre semester Survey

" Anonymous
= Due Wednesday the 9t

University of Pennsylvania

Lecture Outline

Introduction & Logistics

= Assignments & Exams

Course Overview

Policies

C “Refresher”

Context in this course
memory

Pointers

Arrays

Structs

The heap

const

LOO: Intro, & C Refresher

CIS 3990, Fall 2025

University of Pennsylvania

LOO: Intro, & C Refresher

Instructor: Travis McGaha

%+ UPenn CIS faculty member since August 2021
= | am CREATING this course

= BUT I have taught a lot of this content across other courses.
= A lot of new stuff! But still some stability

« And...

CIS 3990, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

SoSA s

B o5 B =
KANKYO ONGAKU

Jspanese Ambient. entl & New Age Music

::TH E GLOWZr12

()P (A

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Instructor: Travis McGaha

% | like animals and going outside
(especially birds, cats and mountains)

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Instructor: Travis McGahc

| like video games

SAHSHMHUHW X

EARLY < ACECESS

A

o \
FALLOUT:

NFW/ /EGAS

TSRS)

. ‘ . . 4 . . -
\ 5 =
‘ 3 p s S § y / 5
e | N\ 1 - { ? E - p : IS ,A‘_, ~_,474?{{ el l_ LA B
‘ \ \ ‘ !\. 4 o \ SO > .
: | \)) = b4 N)
> d S i . ‘ = 1 e ‘ B | S § .

\T/ARI

(MATURE 17+ pc :
=
m‘ on.pom RETTOEERL-L

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Instructor: Travis McGaha

+ | have a general dislike of food

(Breakfast is pretty good tho) G "’WMQ;,;;‘ CEIp: g

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Instructor: Travis McGaha

» | care a lot about your actual learning and that you have a good experience
with the course

» | am a human being and | know that you are one too. If you are facing
difficulties, please let me know and we can try and work something out.

- More on my personal website: https://www.cis.upenn.edu/~tgmcgaha/

10

https://www.cis.upenn.edu/~tqmcgaha/

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

1-5 on your fingers

+» How confident are you in your C programming?

+» What about your ability to write a program from scratch in general?

11

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Course Overview

12

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Course Overview

o C++

" Taught in a way that hopefully prepares you for systems programming, whether you
continue it in C++, C, Rust, or some other “value semantics” programming language.

+» And Wider Systems Topics
" Performance
" |ocality

= Concurrency

+» Program Design & Style

13

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

“Lies-to-children”

%+ "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."”

= Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of
Discworld' ‘)

14

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

“Lies-to-children”

» "Alie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

= Terry Pratchett, lan Stewart & Jack Cohen (The Science of Discworld)

15

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

We lied to you (but in a good way)

+ |s the LC4 model for a computer true? Eh....... no

« |Is it a useful model? Yes

Process
Operating System

16

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

We lied to you (but in a good way)

+ |s memory one giant array of bytes? Eh....... no
% Is this a useful model? Yes

17

LOO: Intro, & C Refresher CIS 3990, Fall 2025

University of Pennsylvania

I’m going to lie to you (but in a good way)

» "All models are wrong, but some are useful."

= Same source as below.

+» "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."
= AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

« This course will reveal more details, but there is still a ton | am leaving out.
Even what | say that is accurate, will likely change in the future.

18

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Prerequisites

+» Course Prerequisites:
= CIS 2400
= Some of CIS 1200/1210

+ What you should be familiar with already:
= C programming experience
" C Memory Model (we will build on this point and the previous point)
= Computer Architecture Model (e.g. the high level, | won’t talk about transistors)
= Basic UNIX command line skills
= Some basic data structures & algorithmic analysis

19

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Learning Objectives

+» To leave the class with a better understanding of:
" C++
" How a lot of software level structures work
" How software “interfaces” with the Operating System
" How a computer runs/manages multiple programs

= Various system resources and how to apply those to code
- Threads, networking, file I/0

+ You should leave this with a solid foundation to explore higher level systems
courses.

+ Topics list/schedule can be found on course website
= Note: This is tentative

20

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Disclaimer

+ A lot of the course is tentative
" Travis has taught this before but is CHANGING A LOT this time

« This is a digest, READ THE SYLLABUS
" https://www.cis.upenn.edu/~tgmcgaha/cis3990/25fa/documents/syllabus

= Note: Syllabus is still being updated

21

https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/documents/syllabus
https://www.cis.upenn.edu/~tqmcgaha/cis3990/25fa/documents/syllabus

University of Pennsylvania LOO: Intro, & C Refresher

What if | have already taken CIS 5XXX?

+» Some of you have already taken CIS 5480 or some other upper-level systems
course. Will you still benefit from the course?

« | am pretty sure you will

" These other courses have probably taught you some of these things, but (from what | can
tell) they go over a lot of this stuff fast.

" Yes, a lot of this is “fundamentals” but the fundamentals are what everything else builds
on top of (so they deserve more time)

« This course has the most overlap with CIS 5480. Why?
® Cause | have taught that course before

" Because it is in-part the “current” “intermediate” systems course.

| do not think it is doing a good job at being an intermediate, so | hope this course will

“free up” CIS 5480 so it can focus on being an Operating Systems course. ’s

CIS 3990, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher

Course Components pt. 1

% Lectures (~26)
" |ntroduces concepts, slides & recordings available on canvas
" |n lecture polling & Activities.

% Recitations (12)

= Reiterates lecture content, lecture clarifications, assighment & exam preparation
%+ Programming Projects (~10)

" Due every ~1 week

= Applications of course content

= Usually have everything you need for an assignment when it is released
» Check-in “Quizzes” (~12)

= Unlimited attempt low-stake quizzes on Ed to make sure you are caught up with the
material

J
*

CIS 3990, Fall 2025

23

University of Pennsylvania LOO: Intro, & C Refresher

Course Components pt. 2

% Final Project (1)
" Due at the end of the semester
® Can be done solo or in partners (tentatively)
= Further Details TBD

% Exams (2)

= Two in-person exams, some personal notes will be allowed
= Details TBD

+ Textbook (0)

= No Textbook, but using a C++ reference would probably be useful
= https://cplusplus.com/

" https://en.cppreference.com/w/

CIS 3990, Fall 2025

24

https://cplusplus.com/
https://cplusplus.com/
https://en.cppreference.com/w/
https://en.cppreference.com/w/

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Policies for Growth

+» Course policies are designed to be flexible and to provide opportunities for you
to get feedback and GROW

25

University of Pennsylvania LOO: Intro, & C Refresher

Course Grading (Tentative)

+~ Breakdown:
" Homework assignments (54%)
" Final Project (14%)
= Exams (27%)
- Midterm 9%
- Final 18%

® QOral Concept Discussion (5%)

+ Engagement Credits to determine +/-

« Final Grade Calculations:

= | would LOVE to give everyone an A+ if it is earned

" Final grade cut-offs will be decided privately at the end of the Semester

CIS 3990, Fall 2025

26

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Engagement Credits

+ “Engagement Credits” keep track of the various ways you may interact with
the course.

+ The % on the previous slide determines whether you get some kind of an “A”,
some kind of a “B”, etc.

n

+» These credits will be used to decide whether you get a “+”, “-“ or neither on
the letter grade you earn

Activity Points per # of occurances
Lecture Attendance 1 =2/

Check-in Diagnostic 3 =2

Recitation Attendance 3 =2

Course Surveys 4 &5

Staff Endorsed Ed Answer 2 Uncapped

Other Activities Varies Varies

27

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Engagement Credits

+ “Engagement Credits” keep track of the various ways you may interact with
the course.

+» The % on the previous slide determines whether you get some kind of an “A”,
some kind of a “B”, etc.

+ These credits will be used to decide whether you get a “+”, “-“ or neither on
the letter grade you earn

= |f you earn an A, you will need
- 110 credits for an A+
« 90 credits foran A
« <90 credits for an A-

= |f you earn a B, you will need
« 100 credits for a B+
- 80creditsfora B
- < 80 credits for a B-

28

University of Pennsylvania LOO: Intro, & C Refresher

HW Late Policy

%+ Check-ins are due before Monday’s lecture and cannot be turned in late
+ HW’s cannot be turned in late, but they can be reopened

" When you submit a check-in you can also say you want to re-open ONE homework
assignment.

That homework assignment will be re-opened till the next check-in is due.
" You can re-open the same assignment multiple times
" The final project can’t be re-opened

+» End of the semester is the end. No submissions past that.
(unless there is particularly special circumstances)

CIS 3990, Fall 2025

29

University of Pennsylvania LOO: Intro, & C Refresher

CIS 3990, Fall 2025

HW Grading

+ Roughly every other programming homework assignment is graded on style in
addition to correctness from an autograder

+ Style grading is done manually and only if you get 100% on the autograder.

= We let you re-open assignments later in the semester, so you can eventually get full
correctness and fix style

It can take a lot of work to grade these manually, especially with the re-opens, so we need
to make sure we stick to a reasonable number of submissions to grade and regrade.

" For each style issue we will leave a comment and mark a rubric item in gradescope.

30

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

HW Grading

+ Roughly every other programming homework assignment is graded on style in
addition to correctness from an autograder

+» Notably, each rubric item / style issue will necessarily result in a deduction on
your grade. We instead categorize the overall quality of your assignment.

= Excellent (E) - 100% - Code Quality and displayed mastery of the content is perfect, or has
only a few very minor flaws.

= Satisfactory (S) - 80% - Code Quality and mastery of material is pretty good

= Needs improvement (N) - 50% - Code works, but demonstrates an incomplete mastery of
topics and/or code-quality.

= Unassessable (U) - 0% - Code either doesn’t pass the already existing automated tests, or
has enough major flaws to require an almost rewrite of the code.

+» More details in syllabus

31

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Midterm Clobber Policy

% The Final Exam is cumulative
" Made up of “midterm” material and “post midterm” material

" |f you do better on the “midterm” section of the final, your midterm grade can be
overwritten.

= Accounts for the exam’s being too easy/hard by comparing to the standard deviation &
mean of the exam.

" Formulais in the syllabus

" This does not work in reverse, if you do poorly on the “midterm” part of the final | will not
improve that section of your final exam.

- The point with this policy is to demonstrate growth

32

CIS 3990, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher

Course Infrastructure

» Course website
= Schedule, syllabus, assignment specifications, materials ...

/
>

" |f you need something it is probably linked from the course site

» Docker
" Coding environment for hw’s, code is submitted to GradeScope

/
*

+ GradeScope
= Used for exam grades & HW submissions

Github

= You will have a repo for the course and you will submit to gradescope via your repo

*

33

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Course Infrastructure

+ Poll Everywhere

= Used for some lecture polls

« Ed

® Course discussion board, in-class activities and for check-in quizzes

<« Canvas

" Grades, lecture recordings & surveys

34

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Collaboration Policy Violation

« Generative Al

= | strongly recommend against using generative Al like ChatGPT, Co-Pilot or related
technologies. | am not denying that ChatGPT can be a useful tool for getting something
made, but | not convinced that it benefits your growth and learning of the material in this
class.

" You learn by doing things. If you aren’t doing the critical thinking, the learning, the
programming yourself, then that experience (and knowledge) will not stick with you.

« Al Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking

« (More in syllabus)

+ You will not help your overall grade and happiness:
" Quizzed individually during project demo, exams on project in finals

" |f you can’t explain your code in OH, we can turn you away.
« This is different than being confused on a bug or with C, this is ok

= Personal lifelong satisfaction from completing the course .

https://www.mdpi.com/2075-4698/15/1/6
https://www.mdpi.com/2075-4698/15/1/6

University of Pennsylvania LOO: Intro, & C Refresher

Getting Help

= Announcements will be made through here
= Ask and answer questions
= Sign up if you haven’t already!

«» Office Hours:

® Can be found on calendar on front page of canvas page
= Starts next week (hopefully)

s 1-on-1’s:
® Can schedule 1-on-1’s with Travis

= Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs

CIS 3990, Fall 2025

36

University of Pennsylvania LOO: Intro, & C Refresher

CIS 3990, Fall 2025

OH Locations

«» Can see Office Hours on the course site calendar

% Travis’ Office Hours are in his office (Levine 269 C)

+ 2" floor Levine ->

u—\

QUAIN

COURTYARD

TOWNE BUILDING

LEVINE HALL

M

LEVINE HALL

E>®

WALNUT STREET

37

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

OH Locations

TOWNE BUILDING

«» Can see Office Hours on the course site calendar

_—
LEVINE HALL
+ Theodor’s Office Hours are in Levine 3" floor
bump space COURTYARD a
[2)

+ Map of 37 floor ->

LEVINE HALL

%
_l OH->® d
=

WALNUT STREET

38

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Collaboration Policy Violation

+» We do look for it:
= Careful grading by teaching staff for most classes
= Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

Successfully used in several classes at Penn

% Penalty depends on severity.

Zero on the assignment, (5%) deduction on final grade. F grade if caught twice.

First-time offenders may be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

Posting code publicly is a BIG NO NO

If you come to us first before we catch you, we will give you the opportunity to “make up”
39

http://theory.stanford.edu/~aiken/moss/

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

We Care

+~ We are still figuring things out, but we do care about you and your experience
with the course

" There is a pre-semester survey available on canvas now. Please fill this out honestly and
we will do our best to incorporate people’s answers

" Please reach out to course staff if something comes up and you need help

<~ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

= We know that things can be tough, but please reach out if you feel tempted. We want to
help

= Read more on academic integrity in the syllabus

+» We do not just say this, hopefully the policies also show that we care.

40

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

0 Poll Eve rywhere pollev.com/tqgm

» Any questions, comments or concerns so far?

41

University of Pennsylvania

Lecture Outline

% Introduction & Logistics

Course Overview
Assignments & Exams
Policies

s C “Refresher”

Context in this course
memory

Pointers

Arrays

Structs

The heap

const

LOO: Intro, & C Refresher

CIS 3990, Fall 2025

42

University of Pennsylvania LOO: Intro, & C Refresher

Context of C in this course

% You will be writing C++ in this course, not C
" Most Cis legal C++

" For the first few assignments you will write C++ code that also mostly works as C code

% C++isnotC
= Cis the foundation for C++, but modern C++ is very different
= We will refresh ourselves on this C foundation but quickly move on to C++

+ Recitation tomorrow:
" More C refresher
" Not recorded, but materials will be posted

CIS 3990, Fall 2025

43

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Aside: Hello World in C++

r#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main () {
cout << "Hello, World!" << endl;
return EXIT SUCCESS;

}

. J

+ Looks simple enough...
= Let’s walk through the program step-by-step to highlight some differences

44

University of Pennsylvania

LOO: Intro, & C Refresher

Aside: Hello World in C++

using namespace std;

int main () {

return EXIT SUCCESS;

}

\

lnclude <iostreg // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

cout << "Hello, World!" << endl;

X/

" jostream declares stream object instances

« e.g.Ccln, cout, cerr

¢ lostreamis part of the C++ standard library

= Note: you don’t write “. h” when you include C++ standard library headers
- But you do for local headers (e.g. # include "Deque.hpp'")

CIS 3990, Fall 2025

45

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Aside: Hello World in C++

:ﬁ;QCT”NQLi“ m> // for cout, endl
\&Einclude <cstdlib> // for EXIT SUCCESS

using namespace std;

int main () {
cout << "Hello, World!" << endl;
return EXIT SUCCESS;

}

. J

+ cstdlibisthe Cstandard library’s stdlib.h

= Nearly all C standard library functions are available to you
« For Cheadermath.h, youshould #include <cmath>

" Weinclude it here for EXIT SUCCESS

46

University of Pennsylvania

Aside: Hello World in C++

LOO: Intro, & C Refresher

r#include <iostream>
#include <cstdlib>

int main () {

}

\

// for cout, endl
// for EXIT SUCCESS

<£§Z£g namespace:EEED

cout << "Hello, World!" << endl;
return EXIT SUCCESS;

¢ US1ng namespace std;

" |tis there because | said so (can’t use it in header files tho)

= We include it here so that | can say cout instead of std: :cout

r#include <iostream>
#include <cstdlib>

int main () {
std::cout << "Hello,
return EXIT SUCCESS;

}

// for cout, endl
// for EXIT SUCCESS

World!" << std:: endl;

CIS 3990, Fall 2025

47

LOO: Intro, & C Refresher

CIS 3990, Fall 2025

University of Pennsylvania

Aside: Hello World in C++

K/
0’0

r#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main () {

Cout << "Hello, Worldl™>< endl;

return ﬂxLI:bUUCﬂSS;

}

\

J

“cout” is an object instance declared by 1iostream, C++’'s name for stdout

" std::cout isan object of class ostream

« http://www.cplusplus.com/reference/ostream/ostream/
= Used to format and write output to the console
" We use << to send data to cout to get printed

48

http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/reference/ostream/ostream/

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Aside: Hello World in C++

r#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main () {

cout << "Hello, World!"

return EXIT SUCCESS;
}

. J

+» endl is a pointer to a “manipulator” function

® This manipulator function writes newline (' \n ') to the ostream it is invoked on and
then flushes the ostream’s buffer

" This enforces that something is printed to the console at this point

49

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Aside: Error Printing

r#include <iostream> // for cout, endl N
#include <cstdlib> // for EXIT SUCCESS
using namespace std;
int main () {
/ .
‘ERROR: Invalid Argument!" << endl;
return EXIT SUCCESS;
k} J

« “cerr”isused if we want to print an error message

50

University of Pennsylvania LOO: Intro, & C Refresher

Memory

Where all data, code, etc are stored for a
program

Broken up into several segments:
" The stack

" The heap

" The kernel

" Etc.

Each “unit” of memory has an address

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

CIS 3990, Fall 2025

51

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Memory as an array of bytes

+» Everything in memory is made of bits and bytes
= Bits:asinglelorO
= Byte: 8 bits

int main() A
char ¢ = 'A’";

+ Memory is a giant array of bytes where o
char other = '0°';

everything™* is stored

® Each byte has its own address (“index”)

int x = 3034;

+» Some types take up one byte, others more

Ox04 Ox05 Ox06 O0OxO07 Ox08 O0Ox09 OxOA O0OxOB OxOC OxOD OxOE OxOF Ox10 Ox11 O0x12

52

University of Pennsylvania LOO: Intro, & C Refresher

CIS 3990, Fall 2025

Memory is Huge

+» Modern computers are called “64-bit”
= Addresses are 64-bits (8-bytes)

" There are 2% possible memory locations, each location is 1-byte

. 1:18,446,744,073,709,551,616.

" Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

53

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

POINTERS ARE EXTREMELY

Pointer
ointers IMPORTANT IN C & C++

+» Variables that store addresses
" |t stores the address to somewhere in memory
" Must specify a type so the data at that address can be interpreted

equivalent

«» @eneric definition:[type* name;]Or[typev *name;]

= Example: [int *ptr; |

- Declares a variable that can contain an address
- Trying to access that data at that address will treat the data there as an int

54

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Pointer Operators

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
" Can be used to read or write the memory at the address

= Example: int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

« Get the address of a variable with &

= &foo getsthe address of foo in memory

= Example: int a = 5950;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

55

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Memory as an array of bytes

+» Everything in memory is made of bits and bytes
= Bits:asinglelorO

= Byte: 8 bits . .
int main()

+~ Memory is a giant array of bytes where char c

everything* is stored char other

int x = 5950;
int* ptr = &x;

® Each byte has its own address (“index”)

+» Some types take up one byte, others more

Ox04 Ox05 Ox06 O0Ox07 Ox08 O0Ox09 OxOA OxOB OxO0C OxOD OxOE OxOF Ox10 Ox11 Ox12

Ox04 O0x05 O0x06 O0x07 (0x08 O0x09 OxOA Ox0B OxOC OxOD OxOE \ OxOF 0x10 Ox11 O0x12
0X00000000000000038

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Aside: nullptr

+ nullptrisamemory location thatis guaranteed to be invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

® In C++ (and modern C) we use nullptr instead

1S4

+ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error

" |t's better to cause a segfault than to allow the corruption of memory!

[int main (int argc, char** argv) {

int* p = nullptr;

*p = 1; // causes a segmentation fault
return EXIT SUCCESS;

|}

57

University of Pennsylvania LOO: Intro, & C Refresher

Arrays in C

+ Definition: type [type name[size]]

" Allocates size*sizeof (type) bytes of contiguous memory

= Normal usage is a compile-time constant for size
(e.q. scores[175];)

" |nitially, array values are “garbage”

« Size of an array
= Not stored anywhere — array does not know its own size!

" The programmer will have to store the length in another variable or hard-code it in
" No bounds checking!

CIS 3990, Fall 2025

58

LOO: Intro, & C Refresher

University of Pennsylvania

CIS 3990, Fall 2025

Using Arrays Optional when initializing

(
Initialization:[type name [size] = {ValO,...,valN};]

= {1} initialization can only be used at time of definition

" |f no size supplied, infers from length of array initializer

/7
0’0

+ Array name used as identifier for “collection of data”
" name [index] specifies an element of the array and can be
used as an assignment target or as a value in an expression

@Array name (by itself) produces the address of the start of the

array
- Cannot be assigned to / changed

= {2, 3, 5, 6, 11, 13};

int primes[6]

pirdies | o) = No TndexOutOfBound
. o , o TndexOu ounds

primes[100] 0; // memory smash! Hope for scofault

59

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Arrays in C

int main() A
char ¢ = "\@';

+» Here is a memory diagram example:

int arr[2] = {1, 2};

¥

Ox06 O0x07/ Ox08 0x09 OxOA OxOB OxOC OxOD OxOE OxOF O0x10 Ox11 Ox12 O0Ox13 O0x14

o : :

60

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Pointers as C arrays

main() A

c = '\0';
+» Pointers can be set to an array
arr[2] = {1, 2};

* ptr = arr;

+» Pointers can always be indexed into like an array

= Pointers don’t always have to point to the beginning of X = ptr[1l] + 1;
an array!

Ox06 O0x0/ O0x08 O0x09 OxOA O0x0OB Ox0OC OxOD OxOE OxOF 0x10 O0Ox11 Ox12 O0Ox13 O0x14

o' N 1 2
0x18 0x19 /Ox1A Ox1B OxI1C OxI1D OxIE OxIF O0x20 Ox21 Ox22 Ox23 Ox24 Ox25 Ox26
0x0000. . .08 e 3 o

University of Pennsylvania LOO: Intro, & C Refresher

The Heap

%~ For most program memory we care about,
things are stored either in the heap or stack

» In C we allocated with malloc () and deallocated with free()

int main() {

. s Atk _ st
+ In C++ we will use and . Int® x = new 1nt;

= New still gives us a pointer to the heap

" We must deallocate the pointer with delete

when we are done with the pointer. // prints *x which is 3
cout << *x << endl;

delete x;

}

CIS 3990, Fall 2025

62

University of Pennsylvania LOO: Intro, & C Refresher

CIS 3990, Fall 2025

The Heap

% In C++ we will use and
= New still gives us a pointer to the heap
® Can use new to allocate an array!

= Will need this to allocate an array of
characters (so a C-style string) in
the first homework assignment.

" We deallocate arrays with

int main() A
int* arr = new int[2];

arr[0] 5930;
arr[1] 5950;

delete[] arr;

¥

+ We use the heap when we want memory to stay allocated past the lifetime of

a function.

« Will talk more about what the heap is and why it is important next lecture.

This should be enough for HWO0O though.

63

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

int** other = &ptr;
ptr = &arc;

**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+» What does this print? int main() {

_ . int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

®" Try drawing with boxes and arrows!

main ()’s stack frame
int** other = &ptr;
ptr = &arc;
**other = curr;
*other += 3;

cout << curr << endl;
cout << arc << endl;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

«» What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

®" Hint: Draw it out! core[1l] += 20;

void foo() {
int core[3] = {1100, 2400, 1210};

C otk _)
foo ()’s stack frame int* ptr = &(core[1]);

core ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+ Given this code, where [EEEARSEIVARIEEEEF
are theses in memory?

// forward decl

Assume the code void AllocArray(int** arr, size t len, int init val);
is executing and is just .
about to finish the int main() A
. int num = 3;

AllocArray function. int* array = nullptr;

array AllocArray(&array, my len, num);

arr) : : : : -

void AllocArray(int** arr, size t len, int init val) {

my_len int* new_arr = new int[len];

num for (size t i = 0; 1 < len; i++) {

arr[0] } new_arr[i] = init val;

main *arr = new_arr;

// € WE ARE RIGHT HERE. ABOUT TO RETURN

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

. size t my len = 5;
main’s frame

// forward decl
void AllocArray(int** arr, size t len, int init val);

int main() A
int num = 3;
int* array = nullptr;
AllocArray(&array, my len, num);
}
void AllocArray(int** arr, size t len, int init val) {
int* new_arr = new int[len];
for (size t i = 0; i < len; i++) {
new_arr[i] = init val;

AllocArray’s frame

¥

*arr = new_arr;
// €< WE ARE RIGHT HERE. ABOUT TO RETURN

Static Memory

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

size t my_len = 5;

main’s frame

// forward decl
void AllocArray(int** arr, size t len, int init val);

int main() A
int num = 3;
int* array = nullptr;
AllocArray(&array, my len, num);
}
void AllocArray(int** arr, size t len, int init val) {
int* new_arr = new int[len];
for (size t i = 0; i < len; i++) {
new_arr[i] = init val;
}
*arr = new_arr;
// < WE ARE RIGHT HERE. ABOUT TO RETURN

Static Memory my len }

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+ |f we wanted to make size_t my_len = 5;

sure everything was /7 forward decl

properly deallocated, void AllocArray(int** arr, size t len, int init val);
how many calls to
delete do we need?

int main() {
int num = 3;
int* array = nullptr;
Where should we AllocArray(&array, my_len, num);

delete? h

void AllocArray(int** arr, size t len, int init val) {
int* new_arr = new int[len];
for (size t i = 0; i < len; i++) {
new_arr[i] = init val;
}
*arr = new_arr;

1

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+ |f we wanted to make size_t my_len = 5;

sure everything was /7 forward decl

properly deallocated, void AllocArray(int** arr, size t len, int init val);
how many calls to
delete do we need?

int main() {
int num = 3;
int* array = nullptr;
Where should we AllocArray(&array, my_len, num);
delete? delete[] array;
}

void AllocArray(int** arr, size t len, int init val) {
int* new_arr = new int[len];
for (size t i = 0; i < len; i++) {
new_arr[i] = init val;

¥

*arr = new arr;

LOO: Intro, & C Refresher CIS 3990, Fall 2025

University of Pennsylvania

Structured Data

« A struct isa Cand C++ datatype that contains a set of fields
= Similar to a Java class, but with no methods or constructors
= Useful for defining new structured types of data
<€YActs similarly to primitive variables
+~ @Generic declaration in C++;

rstruct Point { ‘
float x;
float vy; .
T Default values are still gprbage!
Point pt; . .
Point origin = {0.0f, 0.0f}; <- Initializer List
pt = origin; // pt now contains 0.0f, 0.0f

Can be assigued nto,
used as parameters, etc.

83

CIS 3990, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher

Structured Data: copied not referenced

« A struct isa Cand C++ datatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data
<€YActs similarly to primitive variables

« When we assign a struct, we copy the values in the struct

Point pt;
Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains 0.0f,

origin.first = 1.0f;

print (origin.first);
print (pt.first);

0.

Of

84

University of Pennsylvania

LOO: Intro, & C Refresher

CIS 3990, Fall 2025

Accessing struct Fields

« Use “.” toreferto a field in a struct

+» Use “—>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

(Struct Point { b
float x, vy;

b g

int main(int argc, char** argv) {
Point pl = {0.0, 0.0};
Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return 0;

}

2.0; // equivalent to (*pl ptr).y = 2.0;

\.

85

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Const
2 is a keyword in C and C++ that means that a variable cannot be
modified. It is “constant” int main() {
const int x = 3;
int y = 5;
% |f a structis in C or C++,
then its members are also . x +=1; // ILLEGAL

y += 1;

const Point p = {0.0, 0.0},;

p.first = 1.0; // ILLEGAL

86

University of Pennsylvania LOO: Intro, & C Refresher

Strings in C

+ Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: " \0”’

= Called the “null terminator” character

» C-strings are often referred to with a char[] or a char¥*

int main() A
char ¢ = "\0';
+» Example:
= print(str) // Rain char str[5] = "Rain”;
" print(ptr_str) // in char* ptr_str = &(str[2]);
}

0x06 Ox0/\ _0Ox08 O0x09 OxOA O0x0OB OxO0C OxOD /OxOE OxOF 0x10 O0Ox11 Ox12 O0Ox13 O0x14

0X000...006

87

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

% Finish writing this code:

+ Strdup is a function that takes in a C string, makes a copy of it, and returns it

char* strdup(const char* string) {

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

+ Finish writing the CopylList function.

+ |t takes a pointer to the first node in a linked list.
Each node has a pointer to the next node
struct node {

and an integer value. node* next:
int val;

. }s
« The function makes an

independent copy of the list passed in node* CopyList(node* head) {
and returns the copy.

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

Ed Discussion

% Finish writing the PushFront function. [Eastlaslellas]
node* next;

int val;
+ |t takes a pointer to the head pointer BE
of a linked list. Each node has a

. _ void PushFront(node** head, int to_add) {
pointer to the next node and an int.

+ The function pushes a new element
on to the front of the list.

+ Note the node** parameter

+ Follow up question why is it important
that it is a node** for head?

90

University of Pennsylvania LOO: Intro, & C Refresher CIS 3990, Fall 2025

That’s all for now!

+ |f we got through all this, you should have everything you need for the first
homework assignment from this lecture and recitation

+» We are going a little fast because | expect you have already seen all or most of
this

+» When we get to new material it won’t be as fast

» Releasing tonight or tomorrow:
= HWOO
" Pre-semester Survey

91

	Default Section
	Slide 1: Introductions, C Refresher Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Travis McGaha
	Slide 6: Instructor: Travis McGaha
	Slide 7: Instructor: Travis McGaha
	Slide 8: Instructor: Travis McGaha
	Slide 9: Instructor: Travis McGaha
	Slide 10: Instructor: Travis McGaha
	Slide 11: Poll: how are you?
	Slide 12
	Slide 13: Course Overview
	Slide 14: “Lies-to-children”
	Slide 15: “Lies-to-children”
	Slide 16: We lied to you (but in a good way)
	Slide 17: We lied to you (but in a good way)
	Slide 18: I’m going to lie to you (but in a good way)
	Slide 19: Prerequisites
	Slide 20: Learning Objectives
	Slide 21: Disclaimer
	Slide 22: What if I have already taken CIS 5XXX?
	Slide 23: Course Components pt. 1
	Slide 24: Course Components pt. 2
	Slide 25: Policies for Growth
	Slide 26: Course Grading (Tentative)
	Slide 27: Engagement Credits
	Slide 28: Engagement Credits
	Slide 29: HW Late Policy
	Slide 30: HW Grading
	Slide 31: HW Grading
	Slide 32: Midterm Clobber Policy
	Slide 33: Course Infrastructure
	Slide 34: Course Infrastructure
	Slide 35: Collaboration Policy Violation
	Slide 36: Getting Help
	Slide 37: OH Locations
	Slide 38: OH Locations
	Slide 39: Collaboration Policy Violation
	Slide 40: We Care
	Slide 41: Poll: how are you?
	Slide 42: Lecture Outline
	Slide 43: Context of C in this course
	Slide 44: Aside: Hello World in C++
	Slide 45: Aside: Hello World in C++
	Slide 46: Aside: Hello World in C++
	Slide 47: Aside: Hello World in C++
	Slide 48: Aside: Hello World in C++
	Slide 49: Aside: Hello World in C++
	Slide 50: Aside: Error Printing
	Slide 51: Memory
	Slide 52: Memory as an array of bytes
	Slide 53: Memory is Huge
	Slide 54: Pointers
	Slide 55: Pointer Operators
	Slide 56: Memory as an array of bytes
	Slide 57: Aside: nullptr
	Slide 58: Arrays in C
	Slide 59: Using Arrays
	Slide 60: Arrays in C
	Slide 61: Pointers as C arrays
	Slide 62: The Heap
	Slide 63: The Heap
	Slide 64: Pointers Poll
	Slide 65: Pointers Poll
	Slide 66: Pointers Poll
	Slide 67: Pointers Poll
	Slide 68: Pointers Poll
	Slide 69: Pointers Poll
	Slide 70: Pointers Poll
	Slide 71: Pointers Poll
	Slide 72: Pointer as Array Poll
	Slide 73: Pointer as Array Poll
	Slide 74: Pointer as Array Poll
	Slide 75: Pointer as Array Poll
	Slide 76: Pointer as Array Poll
	Slide 77: Pointer as Array Poll
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Structured Data
	Slide 84: Structured Data: copied not referenced
	Slide 85: Accessing struct Fields
	Slide 86: Const
	Slide 87: Strings in C
	Slide 88: Pointers Poll
	Slide 89: Pointers Poll
	Slide 90: Pointers Poll
	Slide 91: That’s all for now!

