
CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Intermediate Computer Systems Programming, Fall 2025

Instructor: Travis McGaha

TAs: Theodor Bulacovschi Ash Fujiyama

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Midterm Details Posted: In-class on Wed Oct 22nd

▪ You can bring a 1 sheet (double sided) 8.5 x 11 sheet of paper of notes.
You can type it or handwrite it, but it must be your own (no two students should have the
same sheet)

▪ Clobber Policy

▪ IF YOU CAN’T MAKE THE EXAM LET ME KNOW AS SOON AS YOU ARE AWARE

❖ HW07: Posted!

▪ We don’t expect you to work on it till after midterm, but you can start whenever.

▪ Shouldn’t be too long (hopefully). You are doing an “Embarrassingly Parallel” problem

❖ Mid-sem Survey & Check-in posted after the exam, due on Mon after exam

▪ (checkin will just be reopens and survey)
2

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Administrivia: TEST

❖ TEST THE UBUNTU COLOR CONTRAST

❖ Do these themes work better going forward for you to read the code
projected?

3

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of some things. (for
example: I will list some of the functions that may be useful and a brief summary of what
the function does)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

4

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1.5)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of some things. (for
example: I will list some of the functions that may be useful and a brief summary of what
the function does)

❖ Example of some documentation I may provide:

5

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must remember some things

▪ High level concepts or fundamentals. I do not expect you to remember every minute
detail.

• E.g. how a multi level page table works should be know, but not the exact details of what is in
each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll everywhere
questions)

6

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop and think about the
questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part even if you haven’t
finished the current part

7

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic name.

❖ Don't just say something like (for example) "because of threads" or just state
some facts like "threads are parallel and lightweight processes".

❖ State how the topic(s) relate to the exam problem and answer the question
being asked.

8

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review are still
testable
▪ We recommend going through the course material. Lecture polls,

recitation worksheets, and the previous homeworks.

9

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Review Topics

❖ C++ Programming

❖ C++ Memory

❖ git

❖ Caches & Locality

❖ Processes

❖ Threads

10

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 1)

❖ Implement the function filter() which takes in a vector of integers and a set of
integers. The function returns a new vector that contains all of the integers of
the input vector, except for any elements that were in the set.

❖ For example, the following
code should print

▪ 4

▪ 5

11

vector<int> v {3, 4, 5};

set<int> s {3, 6};

auto res = filter(v, s);

for (auto& num : res) {

 cout << num << endl;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 1)

12

vector<int> filter(const vector<int>& numbers

 const set<int>& omit) {

 vector<int> result{};

 for (const auto& num : numbers) {

 if (!omit.contains(num)) {

 result.push_back(num);

 }

 }

 return result;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 2)

❖ Implement the function invert() which takes in a map that maps strings to
other strings. The function returns a map of strings to vectors of strings that
represents the “reverse mapping” of the input map. In other words, the keys in
the result map should be all the values in the input map. The values in the
output map should be all keys that mapped to that value in the input map.

❖ For example,
consider:

13

map<string, string> map;

map["radar"] = "tacoma";

map["rain"] = "tacoma";

map["transit"] = "philly";

map<string, vector<string>> res = invert(map);

// res should be:

// {

// "tacoma" -> ["radar", "rain"],

// "philly" -> ["transit"],

// }

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 2)

14

map<string, vector<string>> invert(const map<string, string>& map) {

 map<string, vector<string>> res;

 for (const auto& kv : map) {

 res[kv.second].push_back(kv.first);

 }

 return res;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 3)

❖ Implement the function lookup() which takes in a map that maps “words” to
another map. The inner map contains document names and how many times
the word shows up in the specified document. Your function also takes in a
vector of words called "query". Your code returns a vector of all documents
that contains every word in the query. Each document returned also has the
total count of words

❖ For example,
consider:

❖ You can make
helper functions or structs if you want. 15

map<string, map<string, int>> index;
index["bye"]["the_wall.txt"] = 2; // bye shows up twice in the_wall.txt
index["bye"]["lyrics.txt"] = 1;
index["hi"]["lyrics.txt"] = 3;
index["hi"]["blank.txt"] = 50;

vector<pair<string, int>> res = lookup(index, {"bye", "hi"});
// res should be:
// { ("lyrics.txt", 4) }

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 3)

16

vector<pair<string, int>> lookup(const map<string, map<string, int>>& index,
 const vector<string>& query) {

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Programming (pt 3)

17

vector<pair<string, int>> lookup(const map<string, map<string, int>>& index,
 const vector<string>& query) {
 vector<pair<string, int>> result;
 if (query.size() == 0) {
 return result;
 }

 for (const auto& p : index.at(query.at(0))) {
 result.push_back(p);
 }

 for (size_t i = 1; i < query.size(); ++i) {
 for (size_t j = 0; j < result.size(); ++j) {
 const auto& inner_map = index.at(query.at(i));
 const auto& curr_result = result.at(j);
 if (inner_map.contains(curr_result.first)) {
 curr_result.second += inner_map.at(curr_result.first);
 } else {
 result.erase(result.begin() + j); // erase takes an iterator
 --j;
 }
 }
 }
 return result;
}

Many possible solutions.
This one we tried to use as few
functions of the std library as possible.

You can use other things in the std
library if you like.

Note that operator[] on the map
would not work here cause it is
const.

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations

❖ Consider the following code
that uses std::list (linked list)

❖ How many memory allocations
occur in this code?

❖ What is the state of memory
when we reach HERE?

18

struct coord {
 int x;
 int y;
}

list<coord> scale(list<coord> to_norm) {
 int total_x = 0;
 int total_y = 0;
 for (coord r : to_norm) {
 total_x += r.x;
 total_y += r.y;
 }

 for (coord& r : to_norm) {
 r.x *= total_x;
 r.y *= total_y;
 }

 return to_norm; // result is moved
}

int main() {
 list<coord> l;
 coord rn = {1, 1};
 l.push_back(rn);
 rn = {2, 2};
 l.push_back(rn);
 rn = {3, 3};
 l.push_back(rn);
 list<coord> result = std::move(scale(l));
 // HERE
}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations

❖ Consider the following code
that uses std::list (linked list)

❖ How many memory allocations
occur in this code?

▪ 0 for initial construction of the list in main

▪ 3 for push_back in main (1 for each node that must be allocated for the list)

▪ 3 for copy constructing the list as a parameter to scale()

▪ 0 for iterating ove the list in scale(). Yes we do make a copy of the coord structs, but
those are just ints, no memory allocation needed

▪ 0 for moving the returned list out to the list result in main

❖ 6 in total

19

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations
❖ Memory Diagram:

▪ Since we didn’t go over the exact internals of the linkedlist, it would have been fine to
have a slightly different linked list structure (e.g. no tail_ pointer) as long as it was clear it
was a linked list and the nodes were on the heap similar to how they are here:

20

heapstack

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Main’s stack frame

C++ Memory Diagram & Allocations
❖ Memory Diagram:

▪ Since we didn’t go over the exact internals of the linkedlist, it would have been fine to
have a slightly different linked list structure (e.g. no tail_ pointer) as long as it was clear it
was a linked list and the nodes were on the heap similar to how they are here:

21

list l

m_head

m_tail

list result

m_head

m_tail

list node

next:

value:

x: 1

y: 1

list node

next:

value:

x: 2

y: 2

list node

next: NULL

value:

x: 3

y: 3

list node

next:

value:

x: 6

y: 6

list node

next:

value:

x: 12

y: 12

list node

next: NULL

value:

x: 18

y: 18

heapstack

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

git (pt. 1)

❖ What steps are needed to go from the git tree on the left to the tree
on the right? You don’t need to list the exact command, but you should be able
to explain the command “close enough”.

❖ Assume HEAD starts on main

22

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

git (pt. 1)

❖ Exact commands:
▪ git checkout feature

▪ git merge --squash debug

▪ git commit (need to commit after merging. if you forgot this we wouldn’t care much)

▪ git rebase main

23

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

git (pt. 2)

❖ Describe a scenario where someone may want to rebase a branch

24

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

git (pt. 2)

❖ Describe a scenario where someone may want to rebase a branch

▪ Diagrams aren’t expected in your answer but are welcome. This is here to help explain the
concept to you

▪ Consider the case we start working on a new branch that branched off from main (doesn’t
have to be main, could be another branch).

▪ But then a bug fix is made in main and now there is
a new commit in main! You want to keep working on
your branch, and you wish your code had incorporated
that new commit from the start. You want C5
to be the new “base” from which your branch
came from. You can use git rebase to do this.

25

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Locality

❖ For each scenario choose whether reading a file using posix read or via a
std::ifstream would be faster. Briefly explain your answer.

❖ You need to read the first 32 bytes of the file which contains some metadata
about it. Once you have finished reading the metadata, you are done with the
file.

❖ You have a binary file containing machine code (binary encoding of assembly
instructions). You read the file 64-bytes at a time so that you can read one
instruction at a time.

26

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Locality

❖ For each scenario choose whether reading a file using posix read or via a
std::ifstream would be faster. Briefly explain your answer.

❖ You need to read the first 32 bytes of the file which contains some metadata
about it. Once you have finished reading the metadata, you are done with the
file.

▪ POSIX read. It avoid the overhead of allocating a buffer that we won’t benefit from since
we know exactly how many bytes we want to read from the file. Though the performance
gain is not big.

27

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Locality

❖ For each scenario choose whether reading a file using posix read or via a
std::ifstream would be faster. Briefly explain your answer.

❖ You have a binary file containing machine code (binary encoding of assembly
instructions). You read the file 64-bytes at a time so that you can read one
instruction at a time.

▪ std::ifstream since it would buffer the contents of the file, so each time we read another
64 bytes, it will read it from a buffer sometimes instead of going to the filesystem. Reading
from memory is a lot faster than going to the filesystem.

28

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various particles interacting
with each other. To do this we have the following structs to represent a color
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them,
accessing them in order, roughly how many cache hits and cache misses would
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 29

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various particles interacting
with each other. To do this we have the following structs to represent a color
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them,
accessing them in order, roughly how many cache hits and cache misses would
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 30

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

Roughly every other time we access a point
struct, it will already be in the cache. The other
50% of the time, it needs to be fetched from
memory

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color structs.

❖ In our simulator, it turns out a VERY common operation is to iterate over all
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation
faster while still maintaining the same data? Roughly how many cache hits
would we get from this updated code?

31

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color structs.

❖ In our simulator, it turns out a VERY common operation is to iterate over all
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation
faster while still maintaining the same data? Roughly how many cache hits
would we get from this updated code?

32

Change point to just be:
struct point {

 double x, y;

}

Then Store two arrays:
array<point, 100> arr1;

array<color, 100> arr2;

// point at index I

// has color arr2[i]

Each time we access a point,
we can now load 4 points into
the cache. We now get ~25
cache misses and 75 hits

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Cache Q3

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

33

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Cache Q3

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you probably don’t have to call
malloc as often and will have better cache performance

34

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Cache Q3

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

▪ If we use a vector<bool> that represents each bool with a single bit

35

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Cache Q3

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a single bit

• 1 cache miss, 119 cache hits

36

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.

37

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.
▪ After fork is called, global

variables are no longer shared.
Each process has its own
“message”

▪ There is no synchronization to
know if the parent prints after the
child reads. 38

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would have
to rewrite the code if we
wanted it to work. Keeping the
multiple processes and calls to
fork(). Be specific about where
you would add the new lines
of code.

39

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would
have to rewrite the code
if we wanted it to work.
Keeping the multiple
processes and calls to
fork(). Be specific about
where you would add the
new lines of code.

❖ ONE POSSIBLE ANSWER:

40

string message;

int fds[2];

void child();

void parent();

int main() {

 pipe(fds);

 pid_t pid = fork();

 if (pid == 0) {

 close(fds[0]);

 child();

 } else {

 close(fds[1]);

 parent();

 }

}

void child() {

 cin >> message;

 wrapped_write(fds[1], message);

}

void parent() {

 wrapped_read(fds[0], message);

 cout << message;

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Process Synchronization

❖ Which of the following outputs are possible? How?

▪ 1213

▪ 3112

▪ 2312

▪ 1123

❖ If we wanted to change the code to guarantee
that 1312 is printed. How could we do that?

▪ There must still be 4 processes forked in a similar way
(The initial process can’t fork 3 direct children)

▪ Each process must print out the same number as
before.

41

int main() {
 pid_t pid = fork();
 bool flag = false
 if (pid == 0) {
 flag = true;
 cout << "1" << endl;
 }

 pid = fork();

 if (pid == 0) {
 if (flag) {
 cout << "3" << endl;
 } else {
 cout << "1" << endl;
 }
 } else if (!flag) {
 cout << "2" << endl;
 }
}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Process Synchronization

❖ Which of the following outputs are possible? How?

▪ 1213 Possible

▪ 3112 Not Possible

▪ 2312 Not Possible

▪ 1123 Possible

❖ If we draw the processes and ordering within a process we get:

▪ Within each process the events must happen in that order. So the first child must print(1)
before it forks the child that prints 3, so there must be a 1 printed before 3 is printed.

42

fork()

fork()

print(2)

print(1) print(1)

fork()

print(3)

Overall parentSecond child First child Grand-child

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Process Synchronization

❖ If we wanted to change the code to guarantee
that 1312 is printed. How could we do that?

▪ There must still be 4 processes forked in a similar way
(The initial process can’t fork 3 direct children)

▪ Each process must print out the same number as
before.

▪ One possible answer:

• Main thing: using waitpid to enforce ordering

• Make first child fork its own child before “earlier” so that
when parent waits for it, it implicitly guarantee that both
child and grandchild have finished.

• Make children processes exit to make sure it doesn’t
continue running code it shouldn’t run.

43

int main() {
 pid_t pid = fork();
 bool flag = false
 if (pid == 0) {
 flag = true;
 cout << "1" << endl;
 pid = fork();
 if (pid == 0) {
 cout << "3" << endl;
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 pid = fork();

 if (pid == 0) {
 cout << "1" << endl;
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 cout << "2" << endl;
}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing the contents of a book. Assume that
there is a main() that creates one
thread running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it using just a mutex?
(where do we add calls to lock
and unlock?)

44

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

45

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

46

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

47

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

48

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition
(more on race condition vs
data race after exam.)

49

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it?

50

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3990, Fall 2025L14: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it?

▪ Busy waiting possible
in second_thread.
It will keep looping and
executing the code
over and over again
even if the data is not ready.

51

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

	Default Section
	Slide 1: Midterm Review Intermediate Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Administrivia: TEST
	Slide 4: Midterm Philosophy / Advice (pt. 1)
	Slide 5: Midterm Philosophy / Advice (pt. 1.5)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Review Topics
	Slide 11: C++ Programming (pt 1)
	Slide 12: C++ Programming (pt 1)
	Slide 13: C++ Programming (pt 2)
	Slide 14: C++ Programming (pt 2)
	Slide 15: C++ Programming (pt 3)
	Slide 16: C++ Programming (pt 3)
	Slide 17: C++ Programming (pt 3)
	Slide 18: C++ Memory Diagram & Allocations
	Slide 19: C++ Memory Diagram & Allocations
	Slide 20: C++ Memory Diagram & Allocations
	Slide 21: C++ Memory Diagram & Allocations
	Slide 22: git (pt. 1)
	Slide 23: git (pt. 1)
	Slide 24: git (pt. 2)
	Slide 25: git (pt. 2)
	Slide 26: Locality
	Slide 27: Locality
	Slide 28: Locality
	Slide 29: Caches Q1
	Slide 30: Caches Q1
	Slide 31: Caches Q2
	Slide 32: Caches Q2
	Slide 33: Cache Q3
	Slide 34: Cache Q3
	Slide 35: Cache Q3
	Slide 36: Cache Q3
	Slide 37: IPC
	Slide 38: IPC
	Slide 39: IPC
	Slide 40: IPC
	Slide 41: Process Synchronization
	Slide 42: Process Synchronization
	Slide 43: Process Synchronization
	Slide 44: Threads & Data Races
	Slide 45: Threads & Data Races
	Slide 46: Threads & Data Races
	Slide 47: Threads & Data Races
	Slide 48: Threads & Data Races
	Slide 49: Threads & Data Races
	Slide 50: Threads & Data Races
	Slide 51: Threads & Data Races

