
Specifying real-world binding structures
Susmit Sarkar∗ Peter Sewell∗ Francesco Zappa Nardelli+

∗University of Cambridge +INRIA Rocquencourt

Representing binding structures is a central challenge in mech-
anizing the theory of programming languages. Two facets of the
problem should be distinguished: on the one hand, one needs a
specification language for express the complex binding structures
found in realistic programming languages, while on the other hand
one needs an implementation technique to represent such struc-
tures in proof assistants. Most research effort to date has focused
on the second issue, limiting to the case in which a single variable
binds in a single subterm. Notable exceptions are FreshOCaml [3]
and Cαml [1], but neither provides a complete solution (expressive
enough to deal with the variety of binding found in the wild but
also simple and intuitive).

We argue that lightweight annotations of productions in the
syntax grammar are sufficient to specifiy complex binding struc-
tures, including multiple let recs, OCaml’s or-patterns, depen-
dent records, and even Join Calculus patterns. The first annotation
bind mse in ntr lets one specify that the variables defined in the
set mse bind in nonterminals of the production. Here mse ranges
over sets of metavariables, which can be specified explicitly or by
auxiliary functions, as in the Ocaml or-pattern language fragment
below.

exp ::= x
| (exp , exp′)
| let pat = exp in exp′ bind b(pat) in exp ′

pat ::=
| (pat || pat ′) b = b(pat) ∪ b(pat ′)
| (pat , pat ′) b = b(pat) ∪ b(pat ′)
| Some x b = x
| None b = {}

This specifies that the linked occurences of x below must vary
together:

let ((None, Some x) || (Some x , None)) = x in x

We will explain the process of giving meaning to binding spec-
ifications by considering a fragment of a grammar for System F<:

for contexts and judgments. (In this particular development we
choose to have the variables in the Γ of a judgment bind in the
judgment body.)

Γ ::=
| ∅ Tdom = {}

tdom = {}
| Γ, X<:T Tdom = Tdom(Γ) ∪X

tdom = {}
bind Tdom(Γ) in T

| Γ, x :T Tdom = Tdom(Γ)
tdom = tdom(Γ) ∪ x
bind Tdom(Γ) in T

Judgments ::= . . .
| Γ ` t : T bind Tdom(Γ) in t

bind Tdom(Γ) in T
bind tdom(Γ) in t

The key building block for our definitions is that of sets of variable
occurences that are meant to alpha-vary together. Thus for example,

the linked occurences of concrete variables must vary together in
the following abstract syntax term for a context.

Γ = X<:Top, Y<:X→X , x :X, y :Y

We call these sets the open binding sets, and we can give a compo-
sitional calculation of them over the structure of the term by look-
ing at the binding specifications. They are not always allowed to
actually vary, such as in the example context above. The variables
bound in the context can only be alpha-varied when placed in a
judgment, such as in

X<:Top, Y<:X→X , x :X, y :Y ` x : X

This phenomenon typically occurs when some of the binding struc-
ture is visible, but more binding will occur in higher levels of the
abstract syntax tree.

When we can syntactically decide at a bind declaration point
that none of the variables will be picked out at a binding site, we can
seal the sets of variable occurence, which we call closed binding
set, such as in the judgment form. The notion of alpha-equivalence
is then the equivalence class of all terms which differ only in the
identity of the concrete variable within the closed binding sets. We
give a definition of capture-avoiding substitution, and prove that it
respects this expanded notion of alpha-equivalence. Correctness of
our definitions cannot be defined in general, as there is no widely
accepted other notion of non-single-variable binding, but it can be
shown in specific cases — we do so for the important special case
of the untyped lambda calculus.

The Ott tool [2] implements this language of binding specifi-
cations by translating them into what we call a fully concrete rep-
resentation within various proof assistants. In this representation,
abstract syntax terms may contain concrete variables, and terms
are not considered up to alpha-equivalence. The (Ott-generated)
substitution functions assume that the substituted term is always
closed. A wide variety of programming language theory, includ-
ing a formalization of OCaml without objects or modules, can still
be done in this restricted setting, since typical languages do not
perform reductions under binders. We prove that under suitable
sanity conditions, the operational definition of substitution within
Ott coincides with the definition of substitution respecting alpha-
equivalence above. The proof is on paper, and partly formalized
within Isabelle.

This fully concrete representation, is, however, clearly not suffi-
cient for some examples. An important problem for future work is
to develop good proof assistant implementations that respect alpha
equivalence in general, not just for closed substitutions. One could
envisage doing this indirectly, by translating into languages with
single binders, or directly, e.g. perhaps by generalising a locally
nameless or nominal representation.
References
[1] François Pottier. An overview of Cαml. In ACM Workshop on ML,

ENTCS 148(2), pages 27–52, March 2006.
[2] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,

Thomas Ridge, Susmit Sarkar, and Rok Strniša. Ott: Effective tool
support for the working semanticist. In ICFP, 2007.

[3] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming
with binders made simple. In Proc. ICFP, 2003.

