
Stephanie Weirich
School of Engineering and Science, University of Pennsylvania

Levine 510, 3330 Walnut St, Philadelphia, PA 19104

 215-573-2821 • sweirich@cis.upenn.edu
July 13, 2021

Positions
University of Pennsylvania Philadelphia, Pennsylvania
ENIAC President’s Distinguished Professor September 2019-present
Galois, Inc Portland, Oregon
Visiting Scientist June 2018-August 2019
University of Pennsylvania Philadelphia, Pennsylvania
Professor July 2015-August 2019
University of Pennsylvania Philadelphia, Pennsylvania
Associate Professor July 2008-June 2015
University of Cambridge Cambridge, UK
Visitor August 2009-July 2010
Microsoft Research Cambridge, UK
Visiting Researcher September-November 2009
University of Pennsylvania Philadelphia, Pennsylvania
Assistant Professor July 2002-July 2008
Cornell University Ithaca, New York
Instructor, Research Assistant and Teaching AssistantAugust 1996-July 2002
Lucent Technologies Murray Hill, New Jersey
Intern June-July 1999

Education
Cornell University Ithaca, NY
Ph.D., Computer Science 2002
Cornell University Ithaca, NY
M.S., Computer Science 2000

mailto:sweirich@cis.upenn.edu

Rice University Houston, TX
B.A., Computer Science, magnum cum laude 1996

Honors
○␣ SIGPLAN Robin Milner Young Researcher award, 2016
○␣ Most Influential ICFP 2006 Paper, awarded in 2016
○␣ Microsoft Outstanding Collaborator, 2016
○␣ Penn Engineering Fellow, University of Pennsylvania, 2014
○␣ Institute for Defense Analyses Computer Science Study Panel, 2007
○␣ National Science Foundation CAREER Award, 2003
○␣ Intel Graduate Student Fellowship, 2000–2001
○␣ National Science Foundation Graduate Research Fellowship, 1996–1999
○␣ CRA-W Distributed Mentorship Project Award, 1996
○␣ Microsoft Technical Scholar, 1995–1996

Teaching Experience

University of Pennsylvania. .

○␣ CIS 120 - Programming Languages and Techniques I
Spring 2021, Spring 2020, Spring 2018, Spring 2016, Spring 2015, Spring
2014, Spring 2013, Spring 2012, Spring 2011, Fall 2008, Spring 2008,
Spring 2007

○␣ CIS 552 - Advanced Programming
Fall 2020, Fall 2019, Fall 2017, Spring 2017, Fall 2015, Fall 2013, Fall 2012,
Fall 2011

○␣ CIS 670/700 - Advanced topics in Programming Languages
Fall 2016, Fall 2010, Spring 2009, Fall 2006, Spring 2006, Fall 2002

○␣ CIS 500 - Software Foundations
Fall 2014, Fall 2005, Fall 2004

○␣ CIS 340 - Principles of Programming Languages
Spring 2004, Spring 2003

Cornell University. .

○␣ CS 212 - Java Practicum
○␣ CS 213 - C++ Programming
○␣ CS 214 - A Taste of UNIX and C

Students

Dissertation supervision (current students). .

○␣ Yao Li.
○␣ Pritam Chaudhury.
Postdoc supervision. .

○␣ Joachim Breitner, Aug 2016-2018.
Dissertation supervision (graduated students). .

○␣ Antal Spector-Zabusky, May 2021. Don’t mind the formalization gap: The
Design and Usage of hs-to-coq. Current position: Jane Street.

○␣ Richard Eisenberg, December 2016. Dependently-Typed Haskell. Current
position: Assistant professor, Bryn Mawr College. Co-winner of Morris
and Dorothy Rubinoff award.

○␣ Vilhelm Sjöberg, May 2015. A Dependently Typed Language with Non-
termination. Current position: Postdoc, Yale University. Co-winner of
SIGPLAN 2016 John C. Reynolds Doctoral Dissertation award.

○␣ Brent Yorgey, December 2014. Combinatorial Species and Labelled Struc-
tures. Current position: Assistant Professor, Hendrix College.

○␣ Chris Casinghino, December 2014. Combining Proofs and Programs. Cur-
rent position: Draper Laboratory.

○␣ Dimitrios Vytiniotis, August 2008. Practical type inference for first-class
polymorphism. Current position: Google DeepMind, London, UK.

○␣ Geoffrey Washburn, December 2007. Principia Narcissus: How to avoid
being caught by your reflection. Current position: Logicblox.

Dissertation committee member. .

○␣ Li-Yao Xia, Penn.
○␣ Teng Zheng, Penn.
○␣ Robert Rand, Penn. November 2018.
○␣ William Bowman, Northeastern University, November 2018.
○␣ Steven Keuchel, University of Ghent, June 2018.
○␣ Jennifer Paykin, Penn, May 2018.
○␣ Leonidas Lampropolos, Penn, May 2018.
○␣ Arthur Azevedo de Amorim, Penn, September 2017.
○␣ Peter Michael Osera, Penn, July 2015.
○␣ Daniel Wagner, Penn, June 2014.
○␣ Harley Eades III, University of Iowa, May 2014.
○␣ Julien Cretin, INRIA / University Paris 7, January 2014.
○␣ Michael Greenberg, Penn (chair), December 2013.

http://repository.upenn.edu/dissertations/AAI10244979/
http://cs.brynmawr.edu/~rae/
http://repository.upenn.edu/dissertations/AAI3709556/
http://repository.upenn.edu/dissertations/AAI3709556/
http://www.cs.yale.edu/homes/vilhelm/
http://repository.upenn.edu/dissertations/AAI3668177/
http://repository.upenn.edu/dissertations/AAI3668177/
https://www.hendrix.edu/
http://repository.upenn.edu/dissertations/AAI3670881/
http://www.draper.com/
http://repository.upenn.edu/dissertations/AAI3328671/
http://repository.upenn.edu/dissertations/AAI3328671/
http://repository.upenn.edu/dissertations/AAI3292086/
http://repository.upenn.edu/dissertations/AAI3292086/
http://www.logicblox.com/

○␣ Hongbo Zhang, Penn, Master’s thesis, December 2013.
○␣ Klara Mazurak, Penn (chair), May 2013.
○␣ Jianzhao Zhao, Penn, April 2013.
○␣ Aaron Bohannon, Penn, February 2012.
○␣ Jean-Philippe Bernardy, Chalmers (“Faculty Opponent”), Gothenburg,

Sweden, June 2011.
○␣ Jeffrey Vaughan, Penn, December 2009.
○␣ Boris Yakobowski, INRIA / University Paris 7, December 2008.
○␣ Dan Dantas, Princeton University, August 2007.
○␣ Stephen Tse, Penn, August 2007.
○␣ Wahnhong Nam, Penn, December 2006.
○␣ Joeseph Vanderwaart, Carnegie Mellon University, August 2006.
○␣ Vladimir Gapayev, Penn, January 2006.
Visiting PhD student supervison. .

○␣ Pedro Henrique Azevedo de Amorim, Mar-Aug 2016.
○␣ Antoine Voizard, École Normale Supérieure, Paris. Mar-Aug 2014.
○␣ Steven Keuchel, University of Ghent, Sep 2013-Mar 2014.
○␣ Arthur Charguéraud (co-supervised with Benjamin Pierce), INRIA, 2007.
Independent study. .

○␣ Doctoral: Irene Yoon, Spring 2020. Hengchu Zhang, Yao Li, Spring 2017.
Antoine Voizard, Kenny Foner, Fall 2015. Antal Spector-Zabusky, Spring
2016, Spring 2013. Jennifer Paykin, Fall 2012. Richard Eisenberg, Justin
Hsu, Spring 2012. Richard Eisenberg, Hongbo Zhang. Fall 2011. Brent
Yorgey, Peter-Michael Osera, Vilhelm Sjöberg. Fall 2008-Spring 2009.
Chris Casinghino, Spring 2008. Andrew Hilton (co-advised), Karl Mazu-
rak, Jeff Vaughan, Fall 2004. Liang Huang, Spring 2004.

○␣ Masters: Eric Giovanni, Spring 2020. Dominik Bollman, Spring 2016.
Simon Wimmer, Summer 2015.

○␣ Undergraduate Senior Design Project: Memoria Matters and Lauren Le-
ung, 2016-2017 (Honoable Mention). Charles Du 2017, Max McCarthy
2016. Lewis Ellis, Max Scheiber, Ashutosh Goel, and Jeff Grimes (Honor-
able Mention). Tiernan Garsys, Taylor Mandel, Lucas Peña, and Noam
Zilberstein (Third place). 2014-2015. Kaycee Anderson, Juan Jose Lopez,
Caroline Ho, and Johanna Martens (Honorable Mention), 2013-2014.

○␣ Undergraduate Research: Daniel Lee, 2021. Joshua Cohen, 2018. Em-
manuel Suarez, 2017-2018. Anastasiya Kravchuk-Kirilyuk, 2017. Matthew
Weaver 2015-2016. Leondra Morse, Summer 2015 (CRA-DREU). Mitchell
Stern, Spring 2014. Hamidhasan Ahmed, Spring 2014, Summer 2013.

Sneha Popley, Summer 2008 (CRA-DREU). Stephanie Simon, Summer
2008. David Gorski, Fall 2006. Parshant Mittal, Atish Davda, Fall 2005.
Neal Parikh, Summer 2004.

Research Community Service

Conference and Symposium Leadership. .

○␣ International Conference on Functional Programming (ICFP) 2020, gen-
eral chair.

○␣ Principles of Programming Languages (POPL) 2019, program chair.
○␣ International Conference on Functional Programming (ICFP) 2010, pro-

gram chair.
○␣ Haskell Symposium 2009, program chair.
Journal Leadership. .

○␣ Associate Editor of ACM TOPLAS, 2019-present.
○␣ Editorial Board of Logical Methods in Computer Science, 2016-present.
○␣ Editor of Journal of Functional Programming, 2011-2017.
○␣ Guest Editor (with Zhenjiang Hu, Shin-Cheng Mu), Progress in Informat-

ics. Special Issue on Advanced Programming Techniques for Construction
of Robust, General and Evolutionary Programs, March 2013.

○␣ Guest Editor (with Benjamin Pierce), Journal of Automated Reasoning.
Special Issue on the POPLmark Challenge. October 2012.

○␣ Editorial Board, Foundations and Trends in Programming Languages,
2012-present.

○␣ Nomination committee, SIGPLAN CACM Research Highlights, 2009-2011.
Workshop Leadership. .

○␣ DeepSpec Workshop, 2018. Co-located with PLDI, co-organizer.
○␣ Dagstuhl seminar “Language Based Verification Tools for Functional Pro-

grams” (16131), April 2016, co-organizer.
○␣ Dependently-Typed Programming Workshop (DTP) 2013, program chair

and organizer.
○␣ Shonan Village Dependently-Typed Programming, 2011, co-organizer.
○␣ Types in Language Design and Implementation Workshop, 2011, general

chair.
○␣ Workshop on Mechanizing Metatheory, 2006-2009, co-organizer.
○␣ Workshop on Mechanizing Metatheory, 2006, program chair.
Program Committee Membership (conference/symposium).

○␣ Formal Structures for Computation and Deduction (FSCD) 2021.

○␣ History of Programming Languages (HOPL IV) 2020.
○␣ Symposium on Trends in Functional Programming (TFP) 2020.
○␣ Principles of Programming Languages (POPL) 2018.
○␣ Certified Proofs and Programs (CPP) 2018.
○␣ European Symposium on Programming (ESOP) 2017.
○␣ Principles and Practice of Declarative Programming (PPDP) 2016.
○␣ Symposium on Trends in Functional Programming (TFP) 2016.
○␣ International Conference on Functional Programming (ICFP) 2015.
○␣ Certified Proofs and Programs (CPP) 2015.
○␣ Principles of Programming Languages (POPL) 2014.
○␣ Functional and Logic Programming (FLOPS) 2014.
○␣ Typed Lambda Calculi and Applications (TLCA) 2013.
○␣ Asian Symposium on Programming Languages and Systems (APLAS)

2012.
○␣ International Symp. on Principles and Practice of Declarative Program-

ming (PPDP) 2012.
○␣ Certified Proofs and Programs (CPP) 2011.
○␣ European Symposium on Programming (ESOP) 2011.
○␣ Verified Software, Tools, Theory and Experiments (VSTTE) 2010.
○␣ International Conference on Functional Programming (ICFP) 2007.
○␣ International Conference on Aspect-Oriented Software Development (AOSD)

2007.
○␣ Principles of Programming Languages (POPL) 2006.
○␣ European Symposium on Programming (ESOP) 2006.
○␣ Programming Language Design and Implementation (PLDI) 2004.
○␣ International Conference on Functional Programming (ICFP) 2002.
Program Committee Membership (workshop). .

○␣ TYPES 2021.
○␣ TyDe 2021.
○␣ CoqPL Workshop 2020.
○␣ Coq Workshop 2018.
○␣ Haskell Implementor’s Workshop (HiW) 2016.
○␣ Higher-Order Programming with Effects (HOPE) 2016.
○␣ Implementation of Functional Languages (IFL) 2015.
○␣ Coq Workshop 2015.
○␣ Logical Frameworks and Meta Languages Theory and Practice (LFMTP)

2013.
○␣ Trends in Functional Programming in Education (TFPIE) 2013.
○␣ Grace Hopper Conference, Panels, Workshops, and Presentations 2012.

○␣ Programming Languages meets Program Verification Workshop (PLPV)
2010.

○␣ IFIP TC2 Working Conference Domain Specific Languages 2009.
○␣ Proof Carrying Code Workshop 2008.
○␣ Haskell Workshop 2007.
○␣ Workshop on Types in Language Design and Implementation (TLDI)

2007.
○␣ ML Workshop 2006.
○␣ MetaOCaml Workshop, 2005.
○␣ Foundations of Object-Oriented Languages Workshop (FOOL) 2005.
○␣ MetaOCaml Workshop, 2004.
○␣ Foundations of Global Ubiquitous Computing Workshop (FGUC) 2004.
○␣ IFIP TC2 Working Conference on Generic Programming 2002.
○␣ Haskell Workshop 2001.
Steering Committee Membership. .

○␣ ICFP, 2009-2012, 2017-present
○␣ POPL, 2017-2021.
○␣ PLMW, 2012-present
○␣ Haskell Symposium, 2008-2012, 2018-present
○␣ TLDI, 2010-2011
○␣ PLPV, 2012-2014
○␣ WGP, 2012-2015
Technical Society Membership. .

○␣ Association for Computing Machinery, 1998-present
○␣ ACM SIGPLAN, 1998-present
○␣ ACM SIGLOG, 2014-present
○␣ IFIP Working Group 2.8 (Functional Programming), 2003-present
○␣ IFIP Working Group 2.11 (Program Generation), 2007-2012
Other. .

○␣ NSF panel: March 2019, March 2018, February 2016, June 2014, October
2012, December 2011, March 2008, December 2004.

○␣ Haskell’ language standard committee, 2005-2010.
○␣ TYPES forum moderator: 2003-2009.
○␣ PLDI External Review Committee: 2013, 2011, 2009
○␣ POPL External Review Committee: 2015, 2012.
○␣ Ad hoc reviews: ACM Computing Surveys, JFP, HOSC, Acta Informatica,

TOPLAS, SCP, ICFP, POPL, PLDI, ECOOP, LCTES, ICALP, FOOL,
ML, Haskell, PEPM, NSF

Department, School and University Service
○␣ Provost’s Faculty Advisory Commitee on Online Learning, 2020.
○␣ Penn Engineering COVID-19 oversight committee, 2020.
○␣ Faculty Council on Access and Academic Support, 2019-present.
○␣ SEAS Undergraduate Curriculum Committee, 2017-2018.
○␣ Undergraduate Chair, CIS, Sep 2014-Dec 2017.
○␣ SEAS Diversity Committee, 2015-2016.
○␣ Penn Forum for Women Faculty, 2015-2016.
○␣ Faculty advisor to CommuniTech (Penn undergraduate service organiza-

tion). 2012-present.
○␣ Faculty advisor to AΩE International Engineering and Technical Science

Sorority. 2012-present.
○␣ University committee on the Facilities, 2011-2014. Chair 2013-2014, 2012-

2013.
○␣ Graduate student admissions chair, 2013-2014, 2012-2013.
○␣ Diversity hiring committee chair, 2012-2013.
○␣ CIS seminar series coordinator, 2011-2012.
○␣ Faculty Council, 2010-2012.
○␣ Academic Performance Committee, 2004-2017.
○␣ CIS seminar organizer, 2011-2012.
○␣ CIS 120 reform, 2009-2010.
○␣ Back-up Care Committee, 2009.
○␣ Senior Design Project Judge, 2006.
○␣ Freshman Advisor, 2003.
○␣ Graduate Admissions Committee, 2003-2004.
○␣ Curriculum Committee, 2002-2003.

Outreach
○␣ Workshop organizer: (with Ron Garcia) ICFP Programming Languages

Mentoring Workshop (ICFP-PLMW 2015) Vancouver, BC, September,
2015

○␣ Workshop co-founder: (with Kathleen Fisher and Ron Garcia) Program-
ming Language Mentoring Workshop (PLMW 2012) Philadelphia, PA,
January 24, 2012.

○␣ SIGPLAN CARES member, January 2020-present
○␣ SRC@ICFP student research competition, selection committee. 2015,

2014.
○␣ Haskell Foundation, Interim Board member, late 2020 to early 2021.

https://www.sigplan.org/Cares/
https://haskell.foundation/

○␣ Programming Contest co-organizer:
- 2004, Seventh Annual ICFP programming contest
- 2000, Third Annual ICFP Programming Contest

○␣ Panelist/Speaker:
- Panel on Advising and Research. PLMW @PLDI, June 22, 2021.
- “Dependent types—salvation or plague?”, panel discussion at Lambda-

Days, Feb 4th, 2021
- CS Curriculum Panel, 35th anniversary of the Computer Science De-

partment at Rice, Houston, TX, October 11-13, 2019.
- Panel Moderator/Member at FemmeHacks, Feb 2018, Feb 2017, Feb

2016
- The “Computers”, April 2015
- WICS high school day for girls, April 2017, April 2015, April 2014,

April 2013, April 2012
- Programming Languages Panel, Computer Science 50th Anniversary

Symposium, Cornell University, Ithaca, NY, October 2, 2014.
- Teaching Haskell in Academia and Industry (panel). Haskell Sympo-

sium, September 2013
- Graduate Student Professional Seminars March 2013, March 2012
- SWE Graduate Section Inspiration Lunch Talk, April 20, 2012
- Philadelphia Area Aspirations in Computing Award presentation, March

21, 2012
- Penn AWE Pre-Orientation, Aug 2016, Aug 2011
- CRA-W/CDC Programming Languages Summer School, UT Austin,

May 2007.
- Women in Science and Engineering Conference, Princeton, February

2006.
○␣ Podcast interviews:

- CoRecursive w/ Adam Bell, June 2018.
- Type Theory Podcast, “Episode 4: Stephanie Weirich on Zombie and

Dependent Haskell”, April 2015.

Funding

Current. .

1. SHF: Small: Mechanized reasoning for functional programs. Weirich, NSF
2006535. $450,000, 10/2020-09/2023.

2. SHF: Medium: Collaborative Research: The Theory and Practice of De-
pendent Types in Haskell. Weirich, Eisenberg (Bryn Mawr), NSF 1703835,

http://www.cis.upenn.edu/proj/plclub/contest/
http://www.cs.cornell.edu/icfp/
https://pldi21.sigplan.org/details/PLMW-PLDI-2021/7/Panel-on-Advising-and-Research
https://www.lambdadays.org/lambdadays2021?utm_source=ESL&utm_medium=email&utm_campaign=CBV+America+2021#free-meetup
http://cs35.rice.edu/
http://cs35.rice.edu/
http://www.cs.cornell.edu/events/50years/schedule
http://www.cs.cornell.edu/events/50years/schedule
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/
http://typetheorypodcast.com/2015/04/episode-4-stephanie-weirich-on-zombie-and-dependent-haskell/

$814,453 (Penn), 7/2017-6/2021.

3. Collaborative Research: Expeditions in Computing: The Science of Deep
Specification. Weirich (PI), Pierce, Zdancewic (Penn), Appel (Princeton),
Shao (Yale), Chlipala (MIT). NSF 1521539, $10 million total, 1/2016-
10/2021.

4. Collaborative Research: Expeditions in Computing: The Science of Deep
Specification: REU Supplement. Weirich, Pierce, Zdancewic (Penn). $24,000,
1/2017-10/2021.

Completed. .

2. CIF: Small: Rich-Type Inference for Functional Programming. Weirich
(PI). NSF 1319880, $450,000, 9/2013-8/2018.

3. SPARCS: Synthesis of Platform-aware Attack-Resilient Control Systems
Lee (PI), Sokolsky, Pappas, Michael, Mangharam, Weirich, Alur, Tabuada.
DARPA, $5.5 million total, 8/2012-8/2017.

4. CCF-SHF Small: Beyond Algebraic Data Types: Combinatorial Species
and Mathematically-Structured Programming Weirich (PI). NSF 1218002,
$325,840, 8/2012-8/2017.

5. SHF: Small: Dependently-Typed Haskell Weirich (PI). NSF 1116620, $496,785,
8/2011-8/2016.

6. Student travel support for ICFP 2015. Weirich. NSF $20,000.

7. CIF: Small: Rich-Type Inference for Functional Programming REU Weirich.
NSF, $7,000.

8. SHF: Small: Dependently-Typed Haskell REU Weirich (PI). NSF 1116620,
$6,000.

9. SHF: Large: Collaborative Research: TRELLYS:Community-Based De-
sign and Implementation of a Dependently Typed Programming Language
Weirich (Penn), Stump (University of Iowa), Sheard (Portland State Uni-
versity). NSF 0910786, $2.1 million total. 2009-2014.

10. Student Travel Support for Programming languages Mentoring Workshop
(PLMW 2012) Weirich (PI). NSF $15,900, 11/2011.

11. Networks Opposing Botnets Smith (PI), Pierce, Zdancewic, Loo, Weirich,
Felton, Rexford, Walker, Morrisett, Welsh. ONR, $400,000 (Penn), 2009-
2012.

12. Computer Science Study Panel, Phase II Weirich (PI), Zdancewic. DARPA,
$500,000, 2008-2010.

13. Collaborative Research: CT-T: Manifest Security University of Pennsylva-
nia. Pierce (PI), Weirich, Zdancewic. Carnegie Mellon University. Pfen-
ning (PI), Harper, Crary. NSF $1 million total, 2007-2011.

14. A Practical Dependently-Typed Functional Programming Language Weirich
(PI). NSF, $200,000. 2007-2009.

15. Computer Science Study Panel, Phase I Weirich. DARPA, $99,411. 2007-
2008.

16. CRI: Machine Assistance for Programming Languages Research Weirich
(PI), Pierce, Zdancewic. NSF $200,000, 2006-2008.

17. CAREER: Type-Directed Programming in Object-Oriented Languages Weirich
(PI), NSF CCF-0347289: $400,000, 2003-2008.

Refereed Publications
[1] Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel

Lee. An existential crisis resolved: Type inference for first-class exis-
tential types. Proc. ACM Program. Lang., 5(ICFP), August 2021. To
appear.

[2] Yao Li, Li yao Xia, and Stephanie Weirich. Reasoning about the garden
of forking paths. Proc. ACM Program. Lang., 5(ICFP), August 2021.
To appear.

[3] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, Joshua Cohen, and Stephanie Weirich. Ready, set,
verify! Applying hs-to-coq to real-world Haskell code. Journal of
Functional Programming, 31:1–40, February 2021. doi: 10.1017/
S0956796820000283.

[4] Pritam Choudhury, Harley D. Eades III, Richard A. Eisenberg, and
Stephanie Weirich. A graded dependent type system with a usage-aware
semantics. Proc. ACM Program. Lang., 5(POPL), January 2021.

[5] Anastasiya Kravchuk-Kirilyuk, Antoine Voizard, and Stephanie
Weirich. Eta-equivalence in core dependent haskell. In Marc Bezem
and Assia Mahboubi, editors, Post-proceedings of the 25th International

Conference on Types for Proofs and Programs (TYPES 2019), vol-
ume 175 of Leibniz International Proceedings in Informatics, pages 7:1–
7:32, Dagstuhl, Germany, September 2020. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[6] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard
Eisenberg. A role for dependent types in Haskell. Proc. ACM Program.
Lang., 3(ICFP), 2019. doi: 10.1145/3341705.

[7] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, and Stephanie Weirich. Ready, set, verify! Applying
hs-to-coq to real-world Haskell code (Experience report). Proc. ACM
Program. Lang., 2(ICFP):89:1–89:16, July 2018. ISSN 2475-1421. doi:
10.1145/3236784.

[8] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. Total Haskell is reasonable Coq. In Proceedings of
7th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP’18). ACM, 2018. doi: 10.1145/3167092. New York,
NY, USA.

[9] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo
de Amorim, and Richard A. Eisenberg. A specification for dependent
types in Haskell. Proc. ACM Program. Lang., 1(ICFP):31:1–31:29, Au-
gust 2017. ISSN 2475-1421. doi: 10.1145/3110275.

[10] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. Po-
sition paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 375(2104), 2017. ISSN 1364-503X. doi:
10.1098/rsta.2016.0331.

[11] Steven Keuchel, Stephanie Weirich, and Thomas Tom Schrijvers. Infra-
gen: Binder boilerplate at scale. In European Symposium on Program-
ming (ESOP), pages 419–445, April 2016.

[12] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
Visible type application. In European Symposium on Programming
(ESOP), pages 229–254, April 2016.

[13] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for Haskell. Journal of
Functional Programming, 26, 2016. doi: 10.1017/S0956796816000150.

[14] Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich, and In-
sup Lee. Verified ros-based deployment of platform-independent control
systems. In Seventh NASA Formal Methods Symposium, pages 248–262,
Pasadena, CA, 2015.

[15] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congru-
ence. In POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 369–382, Mumbai, India,
January 2015.

[16] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for Haskell. In The 19th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’14, pages 189–202, September 2014.

[17] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations.
In POPL 2014: 41st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 671–683, San Diego, CA, USA,
January 2014.

[18] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining
proofs and programs in a dependently typed language. In POPL 2014:
41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 33–45, San Diego, CA, USA, 2014.

[19] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC
with explicit kind equality. In Proceedings of The 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, pages
275–286, Boston, MA, September 2013.

[20] Garrin Kimmel, Aaron Stump, Harley D. Eades, Peng Fu, Tim Sheard,
Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathin Collins,
and Ki Yunh Anh. Equational reasoning about programs with general
recursion and call-by-value semantics. Progress in Informatics, (10):
19–48, March 2013.

[21] Miroslav Pajic, Nicola Bezzo, James Weimer, Rajeev Alur, Rahul
Mangharam, Nathan Michael, George J. Pappas, Oleg Sokolsky, Paulo

Tabuada, Stephanie Weirich, and Insup Lee. Towards synthesis of
platform-aware attack-resilient control systems: extended abstract. In
HiCoNS ’13: Proceedings of the 2nd ACM international conference on
High confidence networked systems, pages 75–76, New York, NY, USA,
2013. ISBN 978-1-4503-1961-4.

[22] Richard A. Eisenberg and Stephanie Weirich. Dependently typed pro-
gramming with singletons. In Haskell Symposium, pages 117–130,
Copenhagen, Denmark, September 2012.

[23] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Con-
tracts made manifest. Journal of Functional Programming, 22(3):225–
274, May 2012.

[24] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Step-
indexed normalization for a language with general recursion. In
Fourth workshop on Mathematically Structured Functional Program-
ming (MSFP ’12), pages 25–39, 2012.

[25] Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins,
Harley D. Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron
Stump, and Stephanie Weirich. Irrelevance, heterogenous equality, and
call-by-value dependent type systems. In Fourth workshop on Mathe-
matically Structured Functional Programming (MSFP ’12), pages 112–
162, 2012.

[26] Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim
Sheard, Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan
Collins, and Ki Yung Ahn. Equational reasoning about programs with
general recursion and call-by-value semantics. In Sixth ACM SIGPLAN
Workshop Programming Languages meets Program Verification (PLPV
’12), pages 15–26, 2012.

[27] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhaẽs. Giving Haskell a pro-
motion. In Seventh ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI ’12), pages 53–66, 2012.

[28] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders unbound.
In Proceeding of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 333–345, New York, NY,
USA, 2011. ISBN 978-1-4503-0865-6.

[29] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative type abstraction and type-level computation.
In POPL 11: 38th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, January 26–28, 2011. Austin, TX, USA.,
pages 227–240, January 2011.

[30] Tim Sheard, Aaron Stump, and Stephanie Weirich. Language-based
verification will change the world. In 2010 FSE/SDP Workshop on
the Future of Software Engineering Research, pages 343–348, November
2010. Position paper.

[31] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination
casts: A flexible approach to termination with general recursion. In
Workshop on Partiality and Recursion in Interactive Theorem Provers,
pages 76–93, Edinburgh, Scotland, July 2010.

[32] Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, type equal-
ity and higher-order polymorphism. Journal of Functional Program-
ming, 20(2):175–210, March 2010.

[33] Michael Greenberg, Benjamin Pierce, and Stephanie Weirich. Con-
tracts made manifest. In 37th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 353–364, Madrid,
Spain, January 2010.

[34] Limin Jia, Jianzhou Zhao, Vilhem Sjöberg, and Stephanie Weirich.
Dependent types and program equivalence. In 37th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 275–286, Madrid, Spain, January 2010.

[35] Stephanie Weirich and Chris Casinghino. Arity-generic type-generic
programming. In ACM SIGPLAN Workshop on Programming Lan-
guages Meets Program Verification (PLPV), pages 15–26, January 2010.

[36] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie
Weirich, and Steve Zdancewic. Reactive noninterference. In 16th ACM
Conference on Computer and Communications Security, pages 79–90,
November 2009.

[37] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. FPH:
first-class polymorphism for Haskell. In ICFP 2008: The 13th ACM
SIGPLAN International Conference on Functional Programming, pages
295–306, Victoria, BC, Canada, September 2008.

[38] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional program-
ming language. ACM Transactions on Programming Languages, 30(3):
1–60, May 2008. ISSN 0164-0925.

[39] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pol-
lack, and Stephanie Weirich. Engineering formal metatheory. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 3–15, January 2008.

[40] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encod-
ing higher-order abstract syntax with parametric polymorphism. Jour-
nal of Functional Programming, 18(1):87–140, January 2008.

[41] Dimitrios Vytiniotis and Stephanie Weirich. Dependent types: Easy
as PIE. In Marco T. Morazán and Henrik Nilsson, editors, Draft Pro-
ceedings of the 8th Symposium on Trends in Functional Programming,
pages XVII–1—XVII–15. Dept. of Math and Computer Science, Seton
Hall University, April 2007. TR-SHU-CS-2007-04-1.

[42] Dimitrios Vytiniotis and Stephanie Weirich. Free theorems and runtime
type representations. In Mathematical Foundations of Programming Se-
mantics (MFPS XXIII), pages 357–373, New Orleans, LA, USA, April
2007.

[43] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. Journal
of Functional Programming, 17(1):1–82, January 2007.

[44] Stephanie Weirich. Type-safe run-time polytypic programming. Journal
of Functional Programming, 16(10):681–710, November 2006.

[45] Stephanie Weirich. RepLib: A library for derivable type classes. In
Haskell Workshop, pages 1–12, Portland, OR, USA, September 2006.

[46] Geoffrey Washburn and Stephanie Weirich. Good advice for type-
directed programming: Aspect-oriented programming and extensible
generic functions. In Workshop on Generic Programming (WGP), pages
33–44, Portland, OR, USA, September 2006.

[47] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Boxy type inference for higher-rank types and impredicativity. In In-
ternational Conference on Functional Programming (ICFP), pages 251–
262, Portland, OR, USA, September 2006.

[48] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for GADTs.
In International Conference on Functional Programming (ICFP), pages
50–61, Portland, OR, USA, September 2006.

[49] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal
reasoning techniques in Coq. In International Workshop on Logical
Frameworks and Meta-Languages:Theory and Practice (LFMTP), pages
60–69, Seattle, WA, USA, August 2006.

[50] Benjamin C. Pierce, Peter Sewell, Stephanie Weirich, and Steve
Zdancewic. It is time to mechanize programming language metathe-
ory. In Verified Software: Theories, Tools, Experiments (VS:TTE),
pages 26–30, Zürich, Switzerland, October 2005.

[51] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: A polymorphic aspect-oriented functional program-
mming language. In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 306–319, Tallinn, Estonia, Septem-
ber 2005.

[52] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geof-
frey Washburn, Stephanie Weirich, and Steve Zdancewic. Mechanized
metatheory for the masses: The POPLmark challenge. In The 18th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), pages 50–65, Oxford, UK, August 2005.

[53] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity
using information flow. In Twentieth Annual IEEE Symposium on.
Logic in Computer Science (LICS 2005), pages 62–71, Chicago, IL,
USA, June 2005.

[54] Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An
open and shut typecase. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pages 13–24, Long Beach, CA,
USA, January 2005.

[55] Stephanie Weirich. Type-safe cast. Journal of Functional Programming,
14(6):681–695, November 2004.

[56] Stephanie Weirich and Liang Huang. A design for type-directed Java.
In Viviana Bono, editor, Workshop on Object-Oriented Developments
(WOOD), ENTCS, pages 117–136, August 2004.

[57] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encod-
ing higher-order abstract syntax with parametric polymorphism. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 249–262, Uppsala, Sweden, August 2003.

[58] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. Journal of Functional Program-
ming, 12(6):567–600, November 2002.

[59] Stephanie Weirich. Higher-order intensional type analysis. In Daniel Le
Métayer, editor, 11th European Symposium on Programming (ESOP),
pages 98–114, Grenoble, France, April 2002.

[60] Stephanie Weirich. Encoding intensional type analysis. In D. Sands,
editor, 10th European Symposium on Programming (ESOP), pages 92–
106, Genova, Italy, April 2001.

[61] Stephanie Weirich. Type-safe cast: Functional pearl. In Proceedings of
the fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 58–67, Montreal, Canada, September 2000.

[62] Karl Crary and Stephanie Weirich. Resource bound certification. In The
Twenty-Seventh ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 184–198, Boston, MA, USA,
January 2000.

[63] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceed-
ings of the fourth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 233–248, Paris, France, September
1999.

[64] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assembly language. In Second
ACM SIGPLAN Workshop on Compiler Support for System Software,
pages 25–35, Atlanta, GA, USA, May 1999. Published as INRIA re-
search report number 0228, March 1999.

[65] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. In Proceedings of the third

ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 301–313, Baltimore, MD, USA, September 1998.

[66] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of program
invariants. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 23–32, 1996.

Chapters in Books
[67] Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and

Dimitrios Vytiniotis. A reflection on types. In Sam Lindley, Conor
McBride, Phil Trinder, and Don Sannella, editors, WadlerFest 2016:
A list of successes that can change the world, LNCS, pages 292–317.
Springer, 2016.

[68] Stephanie Weirich. Type systems. In Teofilo F. Gonzalez, Jorge Diaz-
Herrera, and Allen Tucker, editors, Computing Handbook, 3rd ed. (1),
pages 70:1–39. CRC Press, 2014. ISBN 978-1-43-989852-9.

[69] Stephanie Weirich and Chris Casinghino. Generic programming with
dependent types. In Jeremy Gibbons, editor, Generic and Indexed Pro-
gramming, number 7470 in Lecture Notes in Computer Science, pages
217–258. Springer-Verlag Berlin Heidelberg, 2012.

[70] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible
dynamic linking of native code. In R. Harper, editor, Types in Com-
pilation: Third International Workshop, TIC 2000; Montreal, Canada,
September 21, 2000; Revised Selected Papers, volume 2071 of Lecture
Notes in Computer Science, pages 147–176. Springer, 2001. URL http:
//link.springer.de/link/service/series/0558/tocs/t2071.htm.

Thesis
[71] Stephanie Weirich. Programming With Types. PhD thesis, Cornell

University, August 2002.

Technical Reports
[72] Yao Li, Li yao Xia, and Stephanie Weirich. Reasoning about the garden

of forking paths. Technical report, March 2021.

http://link.springer.de/link/service/series/0558/tocs/t2071.htm
http://link.springer.de/link/service/series/0558/tocs/t2071.htm

[73] Pritam Choudhury, Harley D. Eades III, Richard A. Eisenberg, and
Stephanie Weirich. A graded dependent type system with a usage-aware
semantics (extended version). Technical report, 2020. URL https:
//arxiv.org/abs/2011.04070.

[74] Antal Spector-Zabusky, Joachim Breitner, Yao Li, and Stephanie
Weirich. Embracing a mechanized formalization gap. Technical report,
October 2019.

[75] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard
Eisenberg. A role for dependent types in Haskell (extended version).
Technical report, 2019. URL https://arxiv.org/abs/1905.13706.

[76] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congru-
ence (extended version). Technical Report MS-CIS-14-10, University of
Pennsylvania, October 2014.

[77] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for Haskell (extended ver-
sion). Technical Report MS-CIS-14-07, Univ. of Pennsylvania, April
2014.

[78] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining
proofs and programs in a dependently typed language (with technical
appendix). Technical Report MS-CIS-13-08, University of Pennsylvania,
November 2013.

[79] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations (ex-
tended version). Technical Report MS-CIS-13-10, University of Penn-
sylvania, November 2013.

[80] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative type abstraction and type-level computation
(extended version). Technical report, November 2010.

[81] Brian Aydemir and Stephanie Weirich. Lngen: Tool support for locally
nameless representations. Technical Report MS-CIS-10-24, Computer
and Information Science, University of Pennsylvania, June 2010.

[82] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination
casts: A flexible approach to termination with general recursion (tech-
nical appendix). Technical Report MS-CIS-10-21, University of Penn-
sylvania Department of Computer and Information Science, 2010.

https://arxiv.org/abs/2011.04070
https://arxiv.org/abs/2011.04070
https://arxiv.org/abs/1905.13706

[83] Brian Aydemir, Steve Zdancewic, and Stephanie Weirich. Abstracting
syntax. Technical Report MS-CIS-09-06, Computer and Information
Science, University of Pennsylvania, March 2009.

[84] Karl Crary, Robert Harper, Frank Pfenning, Benjamin C. Pierce,
Stephanie Weirich, and Stephan Zdancewic. Manifest security. Techni-
cal report, January 2007. White paper.

[85] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Boxy type inference for higher-rank types and impredicativity, Techni-
cal Appendix. Technical Report MS-CIS-05-23, University of Pennsyl-
vania, April 2006.

[86] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Simple unification-based type inference for GADTs, Technical Ap-
pendix. Technical Report MS-CIS-05-22, University of Pennsylvania,
April 2006.

[87] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types (tech-
nical appendix). Technical Report MIS-CIS-05-14, University of Penn-
sylvania, July 2005.

[88] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity
using information flow (extended version). Technical Report MS-CIS-
05-04, Computer and Information Science, University of Pennsylvania,
July 2005.

[89] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: a polymorphic aspect-oriented functional program-
ming language (extended version). Technical Report MS-CIS-05-07,
University of Pennsylvania, Department of Computer and Information
Science, 2005.

[90] Dan S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. Analyzing polymorphic advice. Technical Report TR-717-04,
Princeton University Computer Science, December 2004.

[91] Liang Huang and Stephanie Weirich. A design for type-directed pro-
gramming in Java (extended version). Technical Report MS-CIS-04-11,
University of Pennsylvania, Computer and Information Science, Octo-
ber 2004.

[92] Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An
open and shut typecase (extended version). Technical Report MS-CIS-
04-26, University of Pennsylvania, Computer and Information Science,
October 2004.

[93] Simon L. Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: Practical type inference for generalised algebraic
dataypes. Technical Report MS-CIS-05-26, University of Pennsylva-
nia, Computer and Information Science Department, Levine Hall, 3330
Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[94] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encod-
ing higher-order abstract syntax with parametric polymorphism (ex-
tended version). Technical Report MS-CIS-03-26, University of Penn-
sylvania, Computer and Information Science, September 2003.

[95] Michael Hicks and Stephanie Weirich. A calculus for dynamic load-
ing. Technical Report MS-CIS-00-07, University of Pennsylvania, April
2000.

[96] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics (extended version). Technical
Report TR98-1721, Cornell University, Computer Science, November
1998.

Invited Talks and Technical Presentations
1. TBA. Invited talk at IFL. The 33rd Symposium on Implementation and

Application of Functional Languages. September 2021.

2. Programming Language Design: From Grace Hopper to Today. ENIAC
Day: 75th anniversary of ENIAC mini-symposium. February 15, 2021.

3. Strongly-Typed System F in GHC. YOW! Lambda Jam Online 2020. July
2020.

4. Strongly-Typed System F in GHC . Chalmers Functional Programming
Seminar Series. June 2020.

5. Adventures in Quantitative Type Theory. IFIP WG 2.8 Meeting, Zion
National Park. March 2020.

https://events.seas.upenn.edu/event/eniacday/
https://events.seas.upenn.edu/event/eniacday/
https://www.youtube.com/watch?v=j2xYSxMkXeQ

6. A Dependently-Typed Core Calculus for GHC. PurPL Fest invited speaker.
Purdue University. West Lafayette, IN. September 23, 2019.

7. Dependent Types in Haskell. BOBkonf invited speaker (research track).
Berlin, Germany. August 21, 2019.

8. A Dependently-Typed Core Calculus for GHC . TYPES 2019 Conference
Invited talk. Oslo, Norway. June 2019.

9. Strongly-typed System F in GHC . IFIP WG 2.8, Bordeaux, Fr. May 2019.

10. Dependent Types in Haskell. Cornell CS Colloquium, Ithaca, NY. Novem-
ber 2018.

11. Dependent Types in Haskell. Haskell eXchange keynote, London, October
2018.

12. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language
using the Coq proof assistant. Intel Labs, Hillsboro, OR. August 2018.

13. Work-in-progress: Towards a formal semantics for GHC Core. DeepSpec
2018 Workshop, Philadelphia, PA. June 2018.

14. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language.
IFIP WG 2.8, Asilomar, CA. June 2018.

15. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language.
Dagstuhl Seminar 18201, “Secure Compilation” Wadern, Germany, May,
2018.

16. Dependent Types in Haskell. Invited speaker, Comcast Labs Connect:
Functional Programming. March 9, 2018.

17. Locally Nameless at Scale. Joint presentation with Anastasiya Kravchuck-
Kirilyuk. CoqPL workshop, Los Angeles, CA. January 2018.

18. Dependent Types in Haskell. University of Washington, PLSE Seminar
Series, Seattle, WA, December 2017.

19. Dependent Types in Haskell. McMaster University Departmental Seminar,
Hamilton Ontario, November 2017.

20. Dependent Types in Haskell. StrangeLoop 2017, St. Louis, MO, Septem-
ber 2017.

https://purpl.cs.purdue.edu/kickoff.html
https://bobkonf.de/2019-summer/
https://cas.oslo.no/types2019/
https://www.cs.cornell.edu/content/dependent-types-haskell
https://skillsmatter.com/skillscasts/12195-keynote-dependent-types-in-haskell
https://www.youtube.com/watch?v=wNa3MMbhwS4&t=25s

21. Eta-equivalence in Core Dependent Haskell. WG 2.8, Edinburgh, UK.
June 2017.

22. The Influence of Dependent Types. Keynote address, ACM Symposium on
Principles of Programming Languages (POPL ’17) Paris, France, January
2017.

23. A Foundation for Dependently Typed Haskell. WG 2.8, Lake Placid, NY,
July 19, 2016.

24. Depending on Types. Typelevel Summit, Philadelphia, PA, March 2-3,
2016.

25. Dynamic Typing in GHC . Compose :: Conference, Brooklyn, NY, Febru-
ary 4-5, 2016.

26. Visible Type Application. Microsoft Research, Cambridge, UK, November
6, 2015.

27. Visible Type Application. University of Kent, November 5, 2015.

28. Depending on Types. Code Mesh 2015, London, November 4, 2015.

29. From System F to Typed Assembly Language, by Morrisett, Walker, Crary,
Glew. Papers We Love, Philadelphia. Philadelphia, PA, October 6, 2015

30. Towards Dependently Typed Haskell. WG 2.8, Kefalonia, Greece, May 24,
2015

31. Pi-Forall: How to use and implement a dependently-typed language. Tech-
nical Keynote, Compose Conference. New York, January 30, 2015

32. Programming up-to Congruence. ACM Symposium on Principles of Pro-
gramming Languages (POPL ’15). Mumbai, India, January 16, 2015

33. Depending on Types. Computer Science Colloquium Series, Indiana Uni-
versity. Bloomington, Indiana, October 17, 2014

34. Programming Languages Panel. Cornell CS 50th Anniversary Symposium.
Ithaca, New York, October 2, 2014

35. Depending on Types. Keynote address, International Conference on Func-
tional Programming (ICFP). Gothenburg, Sweden, September 3, 2014

36. Programming Up-to Congruence, Again. WG 2.8, Estes Park, Colorado,
August 12, 2014

https://www.youtube.com/watch?v=GgD0KUxMaQs
http://typelevel.org/
https://www.youtube.com/watch?v=asdABzBUoGM
http://www.composeconference.org/
https://www.youtube.com/watch?v=n-b1PYbRUOY
http://www.codemesh.io/
https://www.youtube.com/watch?v=Epbaka9uTQ4
https://www.youtube.com/watch?v=Epbaka9uTQ4
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/slides/wg28.hs
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/minutes.html
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/minutes.html
https://github.com/sweirich/pi-forall/blob/2014/compose.md
http://www.cs.cornell.edu/events/50years/schedule

37. Combining Proofs and Programs. Certification of High-level and Low-level
programs. Paris, France, July 7, 2014

38. Why You Should Care About Dependent Types. Programming Languages
Mentoring Workshop. San Diego, CA, January 21, 2014

39. Programming Up-to Congruence. WG 2.8, Aussios, France, October 14,
2013

40. The Pleasure and Pain of Advanced Type Systems. Invited speaker, Face-
book Faculty Summit. Menlo Park, CA, August 6, 2013

41. Paradoxical Typecase. WG 2.8, Anapolis, MD, November 7, 2012

42. A POPLmark Retrospective: Using Proof Assistants in Programming Lan-
guage Research. Invited speaker, LFMTP 2012: 7th International Work-
shop on Logical Frameworks and Meta-languages: Theory and Practice,
Copenhagen, Denmark, September 9, 2012

43. Dependently-typed programming in GHC. Invited speaker, FLOPS 2012:
Eleventh International Symposium on Functional and Logic Programming,
Kobe, Japan, May 25, 2012

44. Binders Unbound. The 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2012 Tokyo Japan, September 21, 2011

45. Combining Proofs and Programs. Dependently Typed Programming, Shonan
Seminar 007, Shonan Village, Japan, September 16, 2011

46. Combining Proofs and Programs. Joint invited speaker for Rewriting
Techniques and Applications (RTA 2011) and Typed Lambda Calculi and
Applications (TLCA 2011) Novi Sad, Serbia, June 1, 2011

47. Combining Proofs and Programs in Trellys. Plenary Address, MFPS 27.
Pittsburgh, PA. May 26, 2011

48. Generic Binding and Telescopes. WG 2.8, Marble Falls, TX. March 11,
2011

49. Generative Type Abstraction and Type-level Computation. ACM Sympo-
sium on Principles of Programming Languages (POPL ’11). Austin, TX,
January 2011

50. ICFP 2010 Program Chair’s Report. Baltimore, MD. September 27, 2010

http://plmw2014.inria.fr/talks/weirich-plmw14.pdf
http://people.csail.mit.edu/adamc/lfmtp12/programme.html
http://people.csail.mit.edu/adamc/lfmtp12/programme.html
http://www.org.kobe-u.ac.jp/flops2012/
http://www.org.kobe-u.ac.jp/flops2012/
http://www.rdp2011.uns.ac.rs/index.html
http://www.rdp2011.uns.ac.rs/index.html
http://www.rdp2011.uns.ac.rs/index.html
http://dauns.math.tulane.edu/%7Emfps/MFPS27/MFPS_XXVII.html

51. Dependent Types and Program Equivalence. University of Strathclyde.
Glasgow, Scotland. April 30, 2010

52. Generic Programming with Dependent Types. IFIP 2.11, St. Andrews,
Scotland. March 1-3, 2010

53. Dependent Types and Program Equivalence. University of Nottingham.
Nottingham, England. February 5, 2010

54. Trellys Status Report. PLPV Discussion. Madrid, Spain. January 19,
2010

55. A POPLmark Retrospective: Using Proof Assistants in Programming Lan-
guage Research. University of Cambridge Computer Laboratory Wednes-
day Seminars. Cambridge, England. December 2, 2009

56. Dependent Types and Program Equivalence. Semantics Lunch, University
of Cambridge Computer Laboratory. Cambridge, England. November 2,
2009

57. Haskell Symposium 2009 Program Chair’s report. Edinburgh, Scotland.
September 3, 2009

58. Doing Dependent Types Wrong Without Going Wrong. IFIP WG 2.8,
Frauenchiemsee, Germany, June 2009

59. Adventures in Dependently-Typed Metatheory. IFIP WG 2.11, Mountain
View CA. April 15, 2009

60. Engineering Formal Metatheory Computer Science Colloquium, City Uni-
versity of New York Graduate Center. New York, NY. February 2, 2009

61. First-class Polymorphism for Haskell. IFIP WG 2.8, Park City, UT. June
19, 2008

62. Engineering Formal Metatheory. Princeton University, Princeton NJ,
USA. November 19, 2007

63. Machine Assistance for Programming Language Research. Cornell Uni-
versity, Ithaca, NY, USA. October 12, 2007

64. Formal Reasoning About Programs and Programming Languages. National
Security Agency. Fort Meade, MD, USA. July 20, 2007

65. Engineering Aspects of Formal Metatheory. Harvard University, Boston
MA, USA. June 1, 2007

66. Dependently-Typed Languages. Working session summary. IFIP WG 2.11,
Portland, OR, October 2006

67. Simple Unification-Based Type Inference for GADTs. International Con-
ference on Functional Programming (ICFP). Portland, OR. September
2006

68. RepLib: A Library for Derivable Type Classes. Haskell Workshop. Port-
land, OR. September 2006

69. Parametricity and GADTs. IFIP Working Group 2.8 (Functional Pro-
gramming). Boston, MA. July 2006

70. Practical Type Inference for Advanced Type Systems. International Fed-
eration for Information Processing (IFIP) Working Group 2.11, Dagstuhl,
Wadern, Germany. January 2006

71. Boxy Types: Inference for Higher-rank Types and Impredicativity. Inter-
national Federation for Information Processing (IFIP) Working Group 2.8,
Kalvi Manor, Estonia. October 2005

72. A Core Language for Generalised Algebraic Datatypes. International Fed-
eration for Information Processing (IFIP) Working Group 2.8, West Point,
USA. November 2004

73. A Design for Type-directed Java. Programming Languages Seminar, Yale
University, New Haven, CT. October 1, 2004

74. 2004 ICFP Programming Contest Results. (Presented jointly with Ben-
jamin Pierce and Steve Zdancewic) International Conference on Func-
tional Programming, Snowbird, UT. September 20, 2004

75. A Core Language for Generalised Algebraic Datatypes. Dagstuhl Seminar
04381: Dependently Typed Programming, Wadern, Germany. September
12, 2004

76. A Design for Type-Directed Java. Microsoft Research Lab, Cambridge,
UK. August 31, 2004

77. A Design for Type-Directed Java. Workshop on Object-Oriented Devel-
opments (WOOD ’04). London, UK, August 2004

talks/binders.ppt
talks/wg211-dependent.ppt
http://www.informatik.uni-bonn.de/%7Eralf/WG2.8/22/slides/stephanie.pdf

78. Unifying Nominal and Structural Ad-hoc Polymorphism. International
Federation for Information Processing (IFIP) Working Group 2.8, Coffs
Harbour, Australia. January 2003

79. Unifying Nominal and Structural Ad-hoc Polymorphism. Computer Sci-
ence Colloquium, City University of New York Graduate Center. New
York, NY. October 30, 2003

80. Boxes Go Bananas: Parametric Higher-Order Abstract Syntax in System
F. Laboratory for Secure Systems Seminar, Stevens Institute of Technol-
ogy. Hoboken, NJ. May 5, 2003

81. Run-time type analysis in Haskell with an Awful Lot of Newtypes. Interna-
tional Federation for Information Processing (IFIP) Working Group 2.8,
Crans-Montana, Switzerland. January 2003

82. Polytypic Programming and Intensional Type Analysis. New Jersey Pro-
gramming Languages Seminar. University of Pennsylvania, Philadelphia,
PA. September 20, 2002

83. Programming with Types. OHSU/Oregon Graduate Institute, Beaverton,
OR. February 11, 2002

84. Programming with Types. University of Oregon, Eugene, OR. February
15, 2002

85. Programming with Types. University of Pennsylvania, Philadelphia, PA.
February 19, 2002

86. Programming with Types. University of Virginia, Charlottesville, VA.
February 28, 2002

87. Programming with Types. University of Maryland, College Park, MD.
March 4, 2002

88. Programming with Types. Northeastern University, Boston, MA. March
13, 2002

89. Programming with Types. University of California, San Diego, CA. March
15, 2002

90. Programming with Types. Purdue University, West Lafayette, IN. March
25, 2002

talks/wg28-cransmontana.ps
talks/njpls.ps

91. Programming with Types. University of Michigan, Ann Arbor, MI. March
27, 2002

92. Programming with Types. University of Texas, Austin, TX. April 2, 2002

93. Higher-order Intensional Type Analysis. European Symposium on Pro-
gramming (ESOP ’02). Grenoble, France, April 2002

94. Programming with Types. University of Colorado at Boulder, CO. April
16, 2002

95. Programming with Types. Pennsylvania State University, State College,
PA. April 19, 2002

96. Programming with Types. Massachusetts Institute of Technology, Boston,
MA. April 25, 2002

97. Programming with Types. Rice University, Houston TX. April 29, 2002

98. Run-Time Type Analysis and Program Verification. Research, Careers
and Computer Science: A Maryland Symposium. University of Maryland,
College Park, MD. November 2001

99. Polytypic Programming and Intensional Type Constructor Analysis. In-
ternational Federation for Information Processing (IFIP) Working Group
2.8, Are, Sweden. April 2001

100. Encoding Intensional Type Analysis. European Symposium on Program-
ming (ESOP ’01). Genova, Italy. April 2001

101. Resource Bound Certification. Harvard University, Boston, MA. February
2001

102. Functional Pearl: Type-Safe Cast. International Conference on Functional
Programming. Montreal, Canada. September 2000

103. Resource Bound Certification. IBM Research, Hawthorne, NY. June 2000

104. Resource Bound Certification. ACM Symposium on Principles of Pro-
gramming Languages (POPL ’00). Boston, MA, USA. January 2000

105. Flexible Type Analysis. International Conference on Functional Program-
ming (ICFP ’99). Paris, France, September 1999

106. Type Analysis and Typed Compilation. Princeton University, Princeton,
NJ. June 1999

talks/are.ps
talks/harvard.prn
talks/ibm-final.ppt
talks/princeton.ppt

107. Intensional Polymorphism in Type-Erasure Semantics. International con-
ference on Functional Programming (ICFP ’98). Baltimore, MD, USA,
September 1998

Tutorials
○␣ Dependent Types. Programming Languages Mentoring Workshop. St. Louis,

MO. September 2018.
○␣ Formal Logic and Software Verification using Interactive Theorem Provers.

ACM Philadelphia Region Celebration of Women in Computing, April 21,
2018

○␣ Language Specification and Variable Binding. The Science of Deep Speci-
fications Summer School, July 2017

○␣ How to write a great research paper: Simon’s seven easy steps. Program-
ming Languages Mentoring Workshop. Mumbai, India, 2015

○␣ How to give a good research talk. Programming Languages Mentoring
Workshop. Mumbai, India, 2015

○␣ Designing Dependently-Typed Programming Languages. Oregon Program-
ming Languages Summer School: Types, Logic, and Verification. Eugene
OR, USA. June 2014

○␣ Designing Dependently-Typed Programming Languages. Oregon Program-
ming Languages Summer School: Types, Logic, and Verification. Eugene
OR, USA. July 2013

○␣ Computational Flags. Swarthmore CATALYST Conference for 7th/8th
graders, April 2015, March 2012

○␣ Generic Programming with Dependent Types. Spring School on Generic
and Indexed Programming. Oxford, England. March 2010

○␣ Coq for Programming Language Metatheory. Oregon Programming Lan-
guages Summer School on Logic and Theorem Proving in Programming
Languages. University of Oregon, July 2008

○␣ Using Proof Assistants for Programming Language Research or, How to
write your next POPL paper in Coq. POPL Tutorial, Jan 2008

○␣ Getting started in PL design research. CRA-W/CDC Programming Lan-
guages Summer School. UT Austin, May 2007

○␣ Career paths: How to get started in academia or industry. CRA-W/CDC
Programming Languages Summer School. UT Austin, May 2007

http://www.cs.cornell.edu/sweirich/talks/Typepass-final/index.htm
http://github.com/sweirich/dth/
https://deepspec.org/event/dsss17/lecture_weirich.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
http://www.sccs.swarthmore.edu/org/catalyst/
http://www.seas.upenn.edu/~sweirich/ssgip/
http://www.cs.uoregon.edu/research/summerschool/summer08/
http://www.cis.upenn.edu/~plclub/popl08-tutorial/
http://www.cis.upenn.edu/~plclub/popl08-tutorial/
http://www.cs.utexas.edu/users/mckinley/pl-summer-2007/presentations/session3/SW-CRA-PL-Design.ppt
http://www.cs.utexas.edu/users/mckinley/pl-summer-2007/presentations/session6/CareerPathsStephanie050707.ppt

	Positions
	Education
	Honors
	Teaching Experience
	University of Pennsylvania
	Cornell University

	Students
	Dissertation supervision (current students)
	Postdoc supervision
	Dissertation supervision (graduated students)
	Dissertation committee member
	Visiting PhD student supervison
	Independent study

	Research Community Service
	Conference and Symposium Leadership
	Journal Leadership
	Workshop Leadership
	Program Committee Membership (conference/symposium)
	Program Committee Membership (workshop)
	Steering Committee Membership
	Technical Society Membership
	Other

	Department, School and University Service
	Outreach
	Funding
	Current
	Completed

	Refereed Publications
	Chapters in Books
	Thesis
	Technical Reports
	Invited Talks and Technical Presentations
	Tutorials

