Paradoxical Typecase

Stephanie Weirich

University of Pennsylvania




What this talk is not about

 Dependently typed Haskell
— Equalities between kinds (k1 ~ k2)

* .k

— [T-type

e Trellys
— Foundations for new dependently-typed language
— Mix “logical” language with “computation” language
—TH9e:t
— Type “t @ 0" integrates values between languages



Type injectivity is necessary for preservation, but
leads to inconsistency



What is wrong with injectivity?

Data type injectivity
List t1 = List t2 implies t1 =t2

Universal type injectivity
Va:*. t1=Va:*t2 implies that for all t, t1{t/a} = t2{t/a}

Function type (codomain) injectivity
TTx:t1. t2 = TTx:t1. t2’ implies that for all el, t2{ e/x} = t2’{e/x}

Data constructor injectivity Only one available in

Just e =Just e’ implies e =¢’ Coqg and Agda




Type injectivity is important

Inversion in the presence of type conversion:

If T-Ax.e:t then thereis some tl, t2, such that
[,xtl-e:t2 where THt=T]] x:tl.t2:*

Need injectivity for preservation:

— Say (Ax.e)e’ > e{e/x} and '+ (Ax. e) e’ :t2 {e'/x}
— Know TFAx.e: ] x:t1.t2,and e’ : tl1

— Want to prove T, x:t1 F e :t2, to use substitution.

— Inversion gives
[, x:itl’-e:t2” where N[ x:it1.t2 =] x:t1'.t2" : *
— Injectivity givesT=t1 =t1’: *and ', x:t1’ -t2 =t2": * to finish
the case.



Dire warnings

* From Agda manual:

Automatic injectivity of type constructors has been disabled (by default).
To enable it, use the flag —injective-type-constructors, either on the

command line or in an OPTIONS pragma. Note that this flag makes Agda
anti-classical and possibly inconsistent:

Agda with excluded middle is inconsistent
http://thread.gmane.orq/gmane.comp.lanqg.aqgda/1367

* From Coqg FAQ:

...Injectivity of constructors is restricted to predicative types. If injectivity
on large inductive types were not restricted, we would be allowed to
derive an inconsistency (e.g. following the lines of Burali-Forti paradox).
The question remains open whether injectivity is consistent on some

large inductive types not expressive enough to encode known paradoxes
(such as type | above)....



Logical Paradoxes

Are you stuck
in an infinite

loop?




A logical paradox

= A

(Ax => x x) (Ax => X X)



= - A in Haskell

data Void -- uninhabited type
data A = MKA { unA :: A -> Void }
e

delta :: A -> A
delta x = (unA Xx) X
omega :: Void

omega = delta (MKA delta)



As=A->A

data Void
data A = MKA { unA :: A -> A }

delta :: A -> A
delta x = (unA Xx) X
omega :: A

omega = delta (MKA delta)



Easy (?) to avoid

(Strictly) positivity recursive types...

...but, what about recursive kinds?
data T :: (* -> Void) -> *

e Tgoesbetween (* -> Void) and *
* Atypecase goesbetween *and (* -> Void)
* Not just T:

_V:(* -> *) -> *

_n:(* -> ) => %

_Z:(* -> %) > %



In Haskell type language?!

{-# LANGUAGE DataKinds, KindSignatures,
TypeFamilies #-}

data Void
data T (c :: * -> Void)
type family Delta (t :: *) :: Void

type instance Delta (T c) = ¢ (T c)




Expression level loop

data Void

data T (¢ :: * -> Void)

data R (t :: *) = MKR { unR :: t -> Void }
PN

delta : Void

delta x = unR x X Doesn’t quite

typecheck,
omega :: Void whew!!

omega = delta (MkR delta)



Expression level loop

data Void
data T (¢ :: * -> Void)
data R (t :: *) = MKR { unR :: t -> Void }
delta :: R (T R) -> Void
L
delta x , _
Doesn’t quite
' typecheck,

omega = delta (MkR delta)




Type families

data Void

data T (c :: * => ¥*)

type family Delta (t :: *) :: *

type instance Delta (T c) = c (T c)

data R (t :: *) = MKkR { unR :: Delta t -> Void }
delta :: R (T R) -> Void

delta X = unR X X

omega :: Void

omega = delta (MkR delta)



Can we just eliminate typecase?



typecase = GADTs + injectivity

data Void
data T (c :: * => *)

type—family Delta (£ s+ *) 3+ *
type—instance belta (T )= (T €}

data R (t :: *) =
forall c:*->*, (t ~ T ¢c) => MKR ( ¢ (T c) -> Void )
unR :: R (T ¢c) -=> ¢ (T ¢) -> Void
unR (MKR x) = X
delta :: R (T R)k
delta x = unR X X Need injectivity here
X:(Tc~Tc)=>c (Tc)->Void
omega :: Void Coerce to:: ¢ (T c¢) -> Void

omega = delta (MKR delta)




typecase = LEM + injectivity

e 00 [Agda] Agda with the excluded middle is inconsistent ? -

[Ada] Agda wi the excd mile is inconsisent ?

Chung Kil Hur ckh25 at cam.ac.uk
Thu Jan 7 00:59:14 CET 2010

e Previous message: [Agda] Agda with excluded middle is inconsistent
e Next message: [Agda] Agda with the excluded middle is inconsistent ?
e Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

Hi everyone,

I proved the absurdity in Agda assuming the excluded middle.

Is it a well-known fact ?

It seems that Agda's set theory is weird.

This comes from the injectivity of inductive type constructors.
The proof sketch is as follows.

Define a family of inductive type

data I : (Set -> Set) -> Set where

with no constructors.

By injectivity of type constructors, I can show that I : (Set -> Set) -> Set is injective.
As you may see, there is a size problem with this injectivity.

So, I just used the cantor's diagonalization to derive absurdity in a classical way.

Does anyone know whether cantor's diagonalization essentially needs the classical axiom, or can be done iny
If the latter is true, then the Agda system is inconsistent.

Please have a look at the Agda code below, and let me know if there's any mistakes.




Agda example

postulate exmid : V (A : Setl) -> A + (A -> Void)
postulate Iinj :V x v > I y=13XxXx ->y = X

J ¢ Set -> (Set -> Set)
J a with exmid (), x:Set. I x = a)
Ja | inl (x, ) = X

J a = tcase a of

. : (I b) -> b
Ja | inr b = A x — Void o
A x -> Void
IJIeql : V x -=> I (J (I x)) =1 X
IJIeql = ..

J srj :+ V (x : Set -> Set) -> ), a:Set. x
J srj X (I x, pf) where

pf X =J (I x)

pf = Iinj IJdIeql

]
&
)




Essence of Agda paradox

J s * > (* => %)
J a = tcase a of
(I b) -> b
-> A x -> Void
C s * :> *
C a = tcase (J a a) of
Void -> Unit
_ -> Void
Observe: J (I C) (I C) =>C (I Cc) =>
=>J (I C) (I C)



What next?

Disallow typecase?
— Mendler-style eliminator for types?

Disallow LEM (and equality?)
— Nice to be compatible with classical reasoning
— Propositional equality core component of dependent types

Disallow injectivity? For quantified types and datatypes?
— Current strategy by Agda & Coq
— Sometimes useful in user code, but not often
— ...but seems strange given necessity for preservation

Find a weaker statement of injectivity? LEM?
Predicativity?

— T7T : (SetO -> Set0) -> Set1

— data | : (SetO -> Set0) -> Set0

— f:Vecan==Vecbn->a==

— f::iso a = head (iso (cons a nil))



