Work-in-progress: "Verifying" the Glasgow Haskell Compiler Core language

Stephanie Weirich

<u>Ioachim Breitner, Antal Spector-Zabusky. Yao L</u>i,

Christine Rizkallah, John Wiegley

June 2018

Let's prove GHC correct

What would it take?

What would it take?

- A proof assistant
 - not doing this by hand

- A formal specification of Haskell, to define what correct means
 - That's really big and we don't have one. Maybe we can start with something smaller? GHC Core?
- A formal specification of Haskell, to prove that the *Haskell program GHC* is correct
 - That's really big and we don't have one. Maybe we can use something else?
- A lot of work
 - Maybe there is benefit to verifying only part of it, but which?

GHC Core language

Gallina is Haskell if you squint

- Want to use Coq to reason about GHC
 - Need a semantics for Haskell in Coq
 - But that is what we are trying to build!
- "Easy" approach: shallow embedding
 - Use Gallina as a stand-in for Haskell
 - Translate Haskell functions to Gallina functions, use that as semantics

hs-to-coq

A tool for translating Haskell code to equivalent Gallina definitions via shallow embedding [CPP' 18]

Questions about hs-to-coq approach

- 1. Is there enough Haskell code out there that we can translate to make this approach worthwhile?
- 2. Even if we can find code to translate, is the result suitable for verification?
- 3. Even if we can do the proofs, do they mean anything about the Haskell source?

Case study: containers

- Popular Haskell libraries: Data.Set and Data.IntSet
- Used by GHC Core language implementation
- What did we prove?
 - Invariants in the source file comments (ensures the balance properties)
 - Mathematical specification (both our own and FSetInterface)
 - Quickcheck properties interpreted as theorems
 - GHC Rewrite rules

Containers case study

What did we learn?

- 1. We can translate these libraries*
- 2. We can prove what we want to prove**
- 3. Output is semantically equivalent (as far as we can tell by testing)
- 4. Haskell code is correct 😳

*Need to address partiality **We "edit" the code during translation in support of verification

Partiality: Unsound

Partiality: Annoying

Partiality: Pragmatic approach

"default" is an opaque definition so proofs must work for any value of the appropriate type.

Partiality: Pragmatic approach

• Can also use this approach for difficult termination arguments (with classical logic/axiom of choice)

A Formalization Gap is a good thing

- Machine integers are fixed width. Do we want to reason about overflow?
- No!
 - In Data.Set, Ints track size of tree for balance
 - GHC uses Data.IntSet to generate unique names
 - Both cases will run out of memory before overflow
- Control translation with hs-to-coq rewrites
 - type GHC.Num.Int = Coq.ZArith.BinNum.Z
 - Formalization gap is explicit & recorded

A Formalization Gap is a good thing

- Machine integers store positive and negative numbers. Do we want that?
- No!
 - In Data.Set, Ints track size of tree for balance
 - GHC uses Data.IntSet to generate unique names
 - Both cases never need to store negative numbers
- Control translation with hs-to-coq rewrites
 - type GHC.Num.Int = Coq.NArith.BinNat.N
 - (But, need *partial* implementation of subtraction)
 - Formalization gap is explicit & recorded

What about GHC?

Questions about GHC

- 1. Is there enough code *in GHC* that we can translate to make this approach worthwhile?
- 2. Even if we can find code to translate, is the result suitable for verification?
- Even if we can do the proofs, do they mean anything about the GHC implementation? (Note: Core plug-in option available)

- Base libraries (9k loc)
 - 45 separate modules
 - Some written by-hand: GHC.Prim, GHC.Num, GHC.Tuple
 - Most translated: GHC.Base, Data.List, Data.Foldable, Control.Monad, etc.
- Containers (6k loc)
 - Translated & (mostly) verified: 4 modules
 - (Data.Set, Data.Map, Data.IntSet, Data.IntMap)
- GHC, version 8.4.1 (19k loc)
 - 55 modules so far (327 modules total in GHC, but we won't need them all)
 - hs-to-coq edits (2k LOC)
- *First verification goal*: Exitify compiler pass

Core AST

<mark>data</mark> Expr b = Var Id Lit Literal	<pre>Inductive Expr b : Type := Mk_Var : Id -> Expr b Lit : Literal -> Expr b Lop :</pre>
<pre> App (Expr b) (Arg b) Lam b (Expr b) Let (Bind b) (Expr b) Case (Expr b) b Type [Alt b] Cast (Expr b) Coercion Tick (Tickish Id) (Expr b) Type Type Coercion Coercion deriving Data data Bind b =</pre>	<pre> App : Expr b -> Arg b -> Expr b Lam : b -> Expr b -> Expr b Let : Bind b -> Expr b -> Expr b Case : Expr b -> b -> unit -> list (Alt b) -> Expr b Cast : Expr b -> unit -> Expr b Tick : Tickish Id -> Expr b -> Expr b Type_ : unit -> Expr b Coercion : unit -> Expr b</pre>
NonRec b (Expr b) Rec [(b, (Expr b))] deriving Data	:= NonRec : b -> Expr b -> Bind b Rec : list (b * (Expr b)) -> Bind b

Core Optimization : Exitify

```
-- | Given a recursive group of a joinrec, identifies
-- "exit paths" and binds them as
-- join-points outside the joinrec.
exitify :: InScopeSet -> [(Var,CoreExpr)] ->
        (CoreExpr -> CoreExpr)
exitify in_scope pairs =
        \body -> mkExitLets exits (mkLetRec pairs' body)
where
        pairs' = ... // updated recursive group
        exits = ... // exit paths
-- 215 LOC, incl comments
```

- Requires moving code from one binding scope to another
- First proof: show that well-scoped terms stay well-scoped

Bug found!

- Exitify does not always produced wellscoped code
 - Missed by GHC test suite
 - (Perhaps not exploitable at source level)
- Fixed in GHC HEAD
 - Proofs updated to new version
- What is the general workflow?
 - Always work on HEAD? Maintain separate branch?
 - Axiomatize failing lemma?
 - Fix code via hs-to-coq edits?

Conclusion & More questions

Let's take advantage of the semantic similarity of Haskell and Gallina for developing verified compilers

- "Formalization gap" is pragmatic
- How far can we push this approach?
- Can we make it easier to verify just a part of a large system?
- Can we get good performance of extracted code? (And plug back into GHC?)
- Can we say anything about linking with nonverified code?