A Foundation for Dependently Typed Haskell

Stephanie Weirich University of Pennsylvania

An alternate history...

What if Haskell was based, not on the Hindley-Milner type system, but on a different ML type system?

Proposal

 Base Haskell on a core dependently-typed language with ★: ★

```
terms, types \quad a, b, A, B \quad ::= \quad \star \mid x \mid \lambda x : A.b \mid a \ b \quad \\ \mid \quad \Pi x : A.B
```

- Full-spectrum dependently typed language with a single sort
- Proposed by Martin Löf (1971 draft paper)
- Not logically consistent
- · Not good for proof checking ... but neither is Haskell
- Type checking is undecidable
- Type sound (Cardelli 1985) and supremely uniform
- Acknowledgements: Conor, Adam Gundry, Richard

• Subsumes higher-order polymorphism, type families, kind polymorphism, etc.

$$\frac{\vdash \Gamma}{\Gamma \vdash \star : \star} B_STAR \qquad \frac{\vdash \Gamma}{\Gamma \vdash x : A} B_VAR$$

$$\frac{\Gamma, x : A \vdash B : \star}{\Gamma \vdash A : \star} B_PI \qquad \frac{\Gamma \vdash A : \star}{\Gamma, x : A \vdash a : B} B_ABS$$

$$\frac{\Gamma \vdash b : \Pi x : A . B}{\Gamma \vdash a : A} B_APP \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash a : B} B_CONV$$

$$\frac{\vdash \Gamma}{\Gamma \vdash a : B} B_CONV$$

Caveats

- This is work in progress
- I'm not going to say anything about type inference
- It gets complicated...
- And, it is easy to make mistakes when working with these systems
- However, all theorems have been mechanically verified by Coq
 - LaTeX rules generated from same source
 - I'm overly impressed by my own "trivial" proofs

+ Coercion abstraction

• GADTs require *propositional equality*: the ability of the type system to assume equality

```
data T :: * -> * where
    TInt :: forall a. (Int ~ a) => T a

f :: forall a. T a -> a
f TInt = 0 + 0
```

Can we just encode propositional equality?

$$a \sim b \triangleq \Pi c : (\star \rightarrow \star). c a \rightarrow c b$$

- No!
 - Logic is inconsistent --- need to run proofs
 - Type inference decides where coercions are placed in terms.

```
f :: forall a. T a -> a
f (TInt @c) = ((0 + 0) > c)
f (TInt @c) = (+ > (Int -> Int -> c)) 0 0
```

Coercion abstraction

```
data T :: * -> * where

TInt :: forall a. (Int ~ a) => T a
```

- GADTs require *propositional equality*: the ability of the type system to reason about type (and term) equality
- Type soundness requires consistent propositional equality; cannot have a proof that Int ~ Bool
- Elaboration requires irrelevant type coercion; it cannot matter how we use propositional equality
- So (a ~ b) proposition CANNOT be a type
 FC solution: separate language of equality proofs

Dependent types + coercions

A core dependently-typed language with ★: ★ and explicit coercions

Coercions are proof witnesses of equality between terms

$$\Gamma; \Delta \vdash \gamma : a \sim b$$

Coercion abstraction

$$\frac{\Gamma \vdash \phi \text{ ok}}{\Gamma, c : \phi \vdash B : \star} \text{AN_CPI}$$

$$\frac{\Gamma \vdash \forall c : \phi . B : \star}{\Gamma \vdash \forall c : \phi . B : \star}$$

$$egin{aligned} \Gamma dash b : orall c : a_1 \sim_{A_1} b_1.B \ \Gamma ; \mathsf{dom}(\Gamma) dash \gamma : a_1 \sim b_1 \ \hline \Gamma dash b [\gamma] : B \{ \gamma/c \} \end{aligned} ext{AN_CAPP}$$

$$\Gamma \vdash \phi$$
 ok $\Gamma, c : \phi \vdash a : B$ $\Gamma \vdash \Lambda c : \phi . a : \forall c : \phi . B$ AN_CABS

$$\begin{array}{c} \Gamma \vdash a : A \\ \Gamma; \mathsf{dom}(\Gamma) \vdash \gamma : A \sim B \\ \hline \Gamma \vdash B : \star \\ \hline \Gamma \vdash a \rhd \gamma : B \end{array} \mathsf{AN_CONV}$$

Coercion proofs

$$\Gamma; \Delta \vdash \gamma: a \sim b$$

- Coercions show that type equality...
 - is an equivalence relation
 - is congruent
 - is injective for type constructors (needed for preservation proof)
 - ignores coercions in terms (type conversion is irrelevant)
 - contains reduction (now type checking is decidable!)
- 21 different coercion rules total

Coercion proofs and types

 Design decision: if we can prove two terms equal, what do we know about their types?

$$\Gamma; \Delta \vdash \gamma : a \sim b$$

- Nothing?
- They have the same type?
- There is a *coercion* between their types?

$$\begin{array}{c} \Gamma; \Delta \vdash \gamma_1 : a_1 \sim b_1 \\ \Gamma; \Delta \vdash \gamma_2 : a_2 \sim b_2 \\ \Gamma \vdash a_1 \ a_2 : A \\ \Gamma \vdash b_1 \ b_2 : B \\ \hline \Gamma; \Delta \vdash \gamma_1 \ \gamma_2 : a_1 \ a_2 \sim b_1 \ b_2 \end{array} \\ \text{AN_APPCONG}$$

Consistency

• Progress lemma requires consistency

DEFINITION 1 (Consistency). Define **consistent** AB to mean that if A and B are both types (i.e. of the form \star , $\Pi x : A.B$ or $\forall c : \phi.A$) then they have the same form.

Proof based on confluence of parallel reduction

DEFINITION 2 (Joinable).

$$\begin{array}{c}
\vdash a_1 \Rightarrow^* b \\
\vdash a_2 \Rightarrow^* b \\
\hline
\vdash a_1 \Leftrightarrow a_2
\end{array}$$
JOIN

THEOREM 3 (Joinability implies consistency). If $\vdash A \Leftrightarrow B$ then consistent AB.

THEOREM 4 (Equality implies Joinability). If \emptyset ; $\emptyset \vdash \gamma : a \sim b$ then $\vdash a \Leftrightarrow b$.

A Difficulty

Consider this equality

$$\forall c : (\mathbf{Int} \sim_{\star} \mathbf{Bool}).\mathbf{Int} \equiv \forall c : (\mathbf{Int} \sim_{\star} \mathbf{Bool}).\mathbf{Bool}$$

- Cannot be derived via parallel reduction...
- Solution: restrict type system to rule out above equivalence
- Judgment form includes set of "available" coercions

$$egin{array}{l} artriangle \Gamma \ c: a \sim_A b \in \Gamma \ c \in \Delta \ \hline \Gamma; \Delta dash c: a \sim b \end{array}$$
 An_Assn

Equality for cpi

```
\begin{split} &\Gamma; \Delta \vdash \gamma_1 : \phi_1 \equiv \phi_2 \\ &\Gamma, c : \phi_1; \Delta \vdash \gamma_3 : B_1 \sim (B_2\{c/c\}) \\ &B_3 = B_2\{c \triangleright \mathbf{sym} \, \gamma_1/c\} \\ &\Gamma \vdash \forall c \colon \phi_1.B_1 : \star \\ &\Gamma \vdash \forall c \colon \phi_2.B_3 : \star \\ \hline &\Gamma; \Delta \vdash (\forall c \colon \gamma_1.\gamma_3) : (\forall c \colon \phi_1.B_1) \sim (\forall c \colon \phi_2.B_3) \end{split} \text{An\_CPICONG}
```

$$\begin{split} &\Gamma; \Delta \vDash \phi_1 \equiv \phi_2 \\ &\Gamma, c: \phi_1; \Delta \vDash A \equiv B: \star \\ &\overline{\Gamma; \Delta \vDash \forall c: \phi_1.A \equiv \forall c: \phi_2.B: \star} \text{E_CPiCong} \end{split}$$

Implicit Dependent FC

• Curry-style language: type annotations and coercions *not* present in terms

Coercion replaced by definitional equality between types

$$\frac{\Gamma \vDash a : A}{\Gamma; \mathsf{dom}(\Gamma) \vDash A \equiv B : \star} \underbrace{\Gamma \vDash a : B} \mathsf{E_Conv}$$

Erasure & Annotation

- LEMMA 5 (Erasure). If $\Gamma \vdash a : A \text{ then } |\Gamma| \vDash |a| : |A|$
 - If $\Gamma; \Delta \vdash \gamma : a \sim b$ and $\Gamma \vdash a : A$, then $|\Gamma|; \Delta \vdash |a| \equiv |b| : |A|$
- LEMMA 6 (Annotation). If $\Gamma \vdash a : A$, then for all Γ_0 such that $|\Gamma_0| = \Gamma$, there exists a_0 and A_0 , such that $|a_0| = a$, $|A_0| = A$, and $\Gamma_0 \vdash a_0 : A_0$.
 - If Γ ; $\Delta \vDash a \equiv b : A$, then for all Γ_0 such that $|\Gamma_0| = \Gamma$, there exists γ , a_0 , b_0 , and A_0 , such that $|a_0| = a$, $|b_0| = b$, $|A_0| = A$, and Γ_0 ; $\Delta \vdash \gamma : a_0 \sim b_0$ and $\Gamma_0 \vdash a_0 : A_0$.

Current status

- Proofs in Coq (24k LOC, 11k generated)
 - Preservation & progress for implicit and explicit languages
 - Types are unique for explicit language
 - Erasure and annotation theorems
 - Many, many design changes
 - Me + 2 students since April
- Extensions in flight
 - Implicit quantification (erasure for parametric arguments)
 - Recursion/type families
 - Datatypes and pattern matching

Open problem: Consistency

Can we prove a *stronger*, less syntactic consistency result?

- Get rid of "available set"
- Allow richer equalities in coercions (eta equivalence, induction principles, contextual equivalence)
- Enable parametricity-like reasoning for implicit quantification (i.e. free theorems)