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An alternate history...

What if Haskell was based, not on the

Hindley-Milner type system, but on a
different ML type system?




Proposal

* Base Haskell on a core dependently-typed language
with * : %

terms, types a,b,A,B = x|z|Ax:A.b|ab
| Ilz:A.B

* Full-spectrum dependently typed language with a
single sort

* Proposed by Martin Léf (1971 draft paper)

* Not logically consistent

* Not good for proof checking . but neither ie Haskell
* Type checking is undecidable

* Type sound (Cardelli 1985) and supremely uniform

* Acknowledgements: Conor, Adam Gundry, Richard



* ook

* Subsumes higher-order polymorphism, type
families, kind polymorphism, etc.
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Caveats

This is work in progress
I'm not going to say anything about type inference
It gets complicated...

And, it is easy to make mistakes when working with
these systems

However, all theorems have been mechanically veritied
by Coq

— LaTeX rules generated from same source

— I'm overly impressed by my own "trivial" proofs




+ Coercion abstraction

GADTs require propositional equality: the ability of the
type system to assume equality

data T :: * -> * where
TInt :: forall a. (Int ~a) => T a

f :: forall a. T a -> a
f TInt = 0 + ©

Can we just encode propositional equality?
a~b 2 Ilc:(x > %x).ca—->chb
No!

— Logic is inconsistent --- need to run proofs
— Type inference decides where coercions are placed in terms.

f :: forall a. T a -> a
— | f (TInt @c) = ((0 + 9) > C)

f (TInt @c) (+ = (Int -> Int -> c)) @0 ©




Coercion abstraction

data T :: * -> * where
TInt :: forall a. (Int ~a) => T a

GADTs require propositional equality: the ability of the
type system to reason about type (and term) equality

Type soundness requires consistent propositional
equality; cannot have a proof that Int ~ Bool

Elaboration requires irrelevant type coercion; it cannot
matter how we use propositional equality

So (a ~ b) proposition CANNOT be a type
FC solution: separate language of equality proofs




Dependent types + coercions

* A core dependently-typed language with * : % and

explicit coercions
terms, types a,b,A,B x|z|Ar:A.b|ab
IIz: A.B

Ac:¢.a | aly] |Ve:¢.A
a> -y

an~pgb

propositions @
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 Coercions are proof witnesses of equality between terms

[CAF~v:a~Db




Coercion abstraction
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Coercion proofs

[CAF~y:a~Db

* Coercions show that type equality...
— is an equivalence relation
— 1S congruent

— is injective for type constructors (needed for
preservation proof)

— ignores coercionsin terms (type conversionis
irrelevant)

— contains reduction (now type checkingis
decidable!)

o 21 different coercion rules total




Coercion proofs and types

* Design decision: if we can prove two terms equal, what
do we know about their types?

[CAF~y:a~Db

— Nothing?
— They have the same type?

— There is a coercion between their types?
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Consistency

* Progress lemma requires consistency

DEFINITION 1 (Consistency). Define consistent A B to mean
that if A and B are both types (i.e. of the form x, Illz : A.B or
Vc:¢.A) then they have the same form.

* Proof based on confluence of parallel reduction

DEFINITION 2 (Joinable).

I—a1:>*b
I—a2:>*b

|_a1¢>a2

JOIN

THEOREM 3 (Joinability implies consistency). If = A < B then
consistent A B.

THEOREM 4 (Equality implies Joinability). If 0;0 + v : a ~ b
then = a < .




A Difficulty

Consider this equality

VYe:(Int ~, Bool).Int = Vc: (Int ~, Bool).Bool

Cannot be derived via parallel reduction...

Solution: restrict type system to rule out above
equivalence

Judgment form includes set of "available" coercions
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Equality for cpi
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Implicit Dependent FC

* Curry-style language: type annotations and coercions
not present in terms

terms, types a,b,A,B 1= x|z |Azx.b|ab

| Ilz:A.B

| Ac.a|aly]|Vc:9.A
propositions ¢ = ar~ab

COETclons Y °

* Coercion replaced by definitional equality between types

I'Fa:A
[5domI') F A= B : %

I'Fa:B

E CoONV




Erasure & Annotation

LEMMA 5 (Erasure). e IfI'F a: Athen|['| F |a|: |A]
e IfI"A F v : a ~ band I' F a : A, then
T); AE |a| = [b] : [A]

LEMMA 6 (Annotation). e IfI' = a : A, then for all I'g such
that \I'g| = T, there exists ap and Ao, such that |ap| = a,
|Ao| = A, and T'o F ao : Ao.

e IfI;A E a = b : A, then for all Ty such that |I'g| = T,
there exists vy, ao, bo, and Ao, such that |ao| = a, |bo| = b,
|Ao| = A, and To; AF~v:ap ~ boandT'o - ag : Ao.




Current status

* Proofsin Coq (24k LOC, 11k generated)

— Preservation & progress for implicit and explicit languages
— Types are unique for explicit language

— Erasure and annotation theorems

— Many, many design changes

— Me + 2 students since April

* Extensions in flight
— Implicit quantification (erasure for parametric arguments)
— Recursion/type families
— Datatypes and pattern matching




O

pen problem: Consistency

Can we prove a stronger, less syntactic
consistency result?

— Get rid of "available set"

~A
ec

low richer equalities in coercions (eta
uivalence, induction principles, contextual

(S0

uivalence)

— Enable parametricity-like reasoning for
implicit quantification (i.e. free theorems)




