Generic Programming with Dependent Types

Stephanie Weirich University of Pennsylvania

Work in progress: Extending GHC to Agda

Material in this talk based on discussions with Simon Peyton Jones, Conor McBride, Dimitrios Vytiniotis and Steve Zdancewic

Outline of talk

- What generic programming is
- Why generic programming matters to dependently-typed programming languages
- Problems
- Extensions to improve Haskell

Generic Programming

- A truly Generic term? But what does it mean?
- To "lift algorithms and data structures from concrete examples to their most general and abstract form" (Stroustrup)
- Ok, how do we make algorithms and datastructures more abstract (in typed, functional programming languages)?

Generalize over values

Add a new parameter to a function

```
onex f x = f x

twox f x = f (f x)

threex f x = f (f (f x))

nx 0 f x = x

nx n f x = f (nx (n-1) f x)
```

Generalize over types

Add a type parameter to a function

```
appInt :: (Int -> Int) -> Int -> Int
appInt f x = f x
```

```
appBool :: (Bool -> Bool) -> Bool -> Bool
appBool f x = f x
```

```
app :: (a \rightarrow b) \rightarrow a \rightarrow b
app f x = f x
```

Type-parametric function

Generalize over types

```
eqBool :: Bool -> Bool -> Bool eqBool x y = ...
```

Behavior of function depends on the type of the argument

```
eqNat :: Nat \rightarrow Nat \rightarrow Bool eqNat x y = ...
```

Type-indexed function

```
eq :: a -> a -> Bool
```

```
eq x y = if bool? x then eqBool x y
else if nat? x then eqNat else error
```

Generalize over values

```
oneApp f x = f x

twoApp f x = f x x

threeAapp f x = f x x x
```

```
nApp 0 f x = f

nApp n f x = nApp (n-1) (f x) x
```

The behavior of the function depends of the new argument

Type of the function depends on the new argument

Value-indexed type

Generic programming is a 'killer app' for dependently-typed languages

- All generalization patterns available in dependently-typed languages
 - Type-dependent types -> functions
 - Value-dependent types -> Strong elimination
 - Type-dependent programming -> Universe elimination
- Enabling technology: no distinction between compile-time (types) and runtime (terms)

Strong eliminators

A function from values to types

Universe elimination

```
data Type = CNat | CBool
i : Type -> *
                          A function from
i CNat = Nat
                          values to types
i CBool = CBool
eq : (x:Type) -> i x -> i x -> Bool
eq CNat x y = ...
eq CBool x y = ...
```

Sounds great, what is the problem?

Universes & type inference

 Type-dependent functions can be expressed but not conveniently used.

```
eq: (x: Type) -> i x -> i x -> Bool
eq Bool True False
```

Implicit arguments don't help

```
eq: { x: Type } -> i x -> i x -> Bool
eq True False
```

Type checker does not know that i is injective

Type classes & type inference

Type classes support type-directed functions in Haskell

```
class Eq a where
  eq :: a -> a -> Bool
```

Only one instance per type

```
instance Eq Bool where
  eq x y = if x then y else not y
```

Allows type checker to determine appropriate instance at use site

```
eq True False
```

No explicit compile-time specialization/parametricity

- Sometimes computation can be resolved completely at compile-time
 - Example: nApp 2 (+) x y
- Sometimes arguments are not needed at runtime
 - Type parametricity
- Lack of staging makes dependently-typed languages difficult to compile efficiently

Logical Soundness

- Insistence on total correctness influences and complicates the language
- Agda restricted to predicative language, where everything can be shown terminating
- Workarounds exist, but discouraged:
 - --set-in-set --no-termination-check
- Standard library designed for programming without these flags

Two ways to make progress

- Improve Agda (partial evaluator?)
- Improve Haskell
 - Agda: No distinction between compile-time runtime
 - Haskell: Strong distinction that interferes with generic programming

Of course, the answer is to do both, but in this talk, I'll concentrate on the second idea.

GHC today: Type-dependent types

data Z data S n

Natural numbers implemented with empty data declarations

```
type family NAPP (n :: *) (a :: *)
type instance NAPP Z a = a
type instance NAPP (S n) a = a -> (NAPP n a)
```

A function from types to types

GHC today: Type-dependent values

```
data SNat n where
```

SZ :: SNat Z

SS :: SNat n -> SNat (S n)

data Proxy a

Type inference aid: explicit type argument

```
napp :: Proxy a -> SNat n -> NAPP n a -> a -> a napp a n f x = case n of SZ -> f (SS m) -> napp a m (f x) x
```

Singleton GADT reflecting typelevel Nats to computation

Problems with example

Type-level programming is weakly-typed

```
Z :: *
S :: * -> *
NAPP :: * -> *
```

- Duplication! Nats at term level (not shown), Nats at type level, Singleton Nats
- Ambiguity in type inference
 - All compile-time arguments must be inferred
 - If a type variable does not appear outside a type function application, it cannot be inferred

```
{-# LANGUAGE IDEAL #-}

data Nat = Z | S Nat

type family NAPP (n ::
type instance NAPP Z a
```

Can appear in expressions and types

Informative kind

```
type family NAPP (n :: Nat) (a :: *)
type instance NAPP Z a = a
type instance NAPP (S n) a = a -> (NAPP n a)
```

```
napp :: forall a n. RT Nat n => NAPP n a -> a -> a napp f x = case \%n of Class constraint ensures
```

Z -> f

 $(S m) \rightarrow napp @a @m (f x) x$

Analysis of type variable

Explicit type application

parametricity

New Haskell Extensions: Summary

- Datatype lifting
 - Allow datatype constructors to appear in types
 - And datatypes to appear in kinds
- Case analysis of lifted datatype
 - Informative dependent case analysis
 - Compiler automatically replaces with case analysis of singleton
- Explicit type application
 - Tame ambiguity with type family usage

Datatype lifting

- Allow data constructors to appear in types
- Allow data types to appear in kinds
- Coalesce types & kinds together

New type language

```
Variables
t, s ::= a
                  Constants (List, Int)
                  Data constr. (Cons, Z)
       s t Application
       F t1 .. tn Indexed type (i.e. NAPP)
                 Kind 'type'
       s -> t Arrow type/kind
       all a. t Polymorphism
       C => t Constrained type
 Type formation: G | - t : s
```

Advantage of coalesced types

• Simple kind polymorphism (for terms & types)

```
Cons :: all a. a -> List a -> List a
```

Data-structures available for type level programming

```
Cons Int (Cons Bool Nil) :: List *
```

Type families indexed by kinds

```
F :: all k. k -> *
```

Typecase

- Idea: allow case analysis of 'types'
 - -case %t of
 - Constrained by type class RT
- Implemented by desugaring to case analysis of singleton type
 - RT type class is just a carrier for singleton type!
- Singleton type automatically defined by compiler

Questions and Difficulties

- What datatypes can be lifted to types?
 - Only simple, regular datatypes? (List)
 - Existentials?
 - GADTs?
 - Those using type families?
 - Class constraints?
- What kinds have singleton types?
 - Only lifted datatypes?
 - Also kind *?
 - Other kinds (k1 => k2, all a. k)?

Run-time Nats

Can we coerce a runtime Nat type into an expression?

```
f:: all n. RT Nat n => Nat
f = case %n of
    Z -> 0
    S m -> %m
```

What about an indexed type function?

```
%(PLUS m (S Z))
```

Do we need singletons?

- Given a type t, do programmers ever need to explicitly use the singleton type?
 - CSP covers non-dependent use
 - RT class constraint implicitly covers any singleton used as an argument
 - What about singletons returned from functions? forall a. RT Nat a => Singleton (FACT a) Where it is eventually used, replace with %FACT?

Observations

- Singletons key to dependent case analysis
- Dependency mostly independent of staging
 - compile-time, dependent arg: all n:Nat. t
 - runtime, dependent arg:

```
all n:Nat. RT Nat n => t
```

- runtime, nondependent arg: Nat -> t
- compile-time, nondependent arg?
 - doesn't make sense?

What about compile time specialization?

- Haskell Type class resolution is a form of compile-time programming
- How does this mechanism interact with new vision?

Compile time specialization

```
class Napp n a where
   snapp :: NAPP n a -> a -> a

instance Napp Z a where
   snapp f x = f
```

- Explicit type application
- Scoped variables in instances

```
instance Napp n a => Napp (S n) a where snapp f x = \text{snapp @n @a (f x) } x
```

```
x :: Int
x = snapp @(S (S Z)) (+) 1 2
```

Misgivings about type classes

- Certainly useful, but do they fit into the programming model?
- Should they?
 - Non-uniformity: Logic programming instead of FP
 - Duplication of mechanism: "Eq t" is an implicit runtime argument
- Is there a more orthogonal language feature?
 Default implicit arguments, irrelevant arguments, injectivity?

Current progress & future work

- Integrate dependency into FC
 - Intermediate language for type functions, GADTs with explicit type coercions
 - Current struggle between complexity and expressiveness
- Formalize singleton type translation
 - New coercion in FC from singleton to regular type?
- Integrate with source language & type inference
 - Dependent case analysis relies on singleton translation

Conclusion

• This slide intentionally left blank.

