Generic Programming with
Dependent Types

Stephanie Weirich
University of Pennsylvania




Work in progress:
Extending GHC to Agda




Outline of talk

What generic programming is

Why generic programming matters to
dependently-typed programming languages

Problems

Extensions to improve Haskell




Generic Programming

* Atruly Generic term? But what does it mean?

* To "lift algorithms and data structures from
concrete examples to their most general and
abstract form" (Stroustrup)

* Ok, how do we make algorithms and data-
structures more abstract (in typed, functional
programming languages)?




Generalize over values

 Add a new parameter to a function

onex f x f x
twox f x f (f x)
threex f x f (f (f x))

X
f (nx (n-1) f x)




Generalize over types

* Add a type parameter to a function

appInt :: (Int -> Int) -> Int -> Int
appInt £ x = f x

appBool :: (Bool -> Bool) -> Bool -> Bool
appBool f x = f x

app :: (a ->b) ->a ->b
app £ x = 1 x




Generalize over types

eqBool :: Bool -> Bool -> Bool
eqBool x y = .

egNat :: Nat -> Nat -> Bool
eqNat x y = .

eq :: a -> a -> Bool
eq X y = 1f bool? x then eqBool x ¥y

else if nat? x then eqNat else error




Generalize over values

twoApp f x f x x
threeAapp f x f x x x

nApp 0 £ x =1
nApp n £ x = nApp (n-1) (f x) x




Generic programming is a 'killer app'
for dependently-typed languages

* All generalization patterns available in
dependently-typed languages
— Type-dependent types -> functions
— Value-dependent types -> Strong elimination
— Type-dependent programming -> Universe

elimination

* Enabling technology: no distinction between

compile-time (types) and runtime (terms)




Strong eliminators

* A function from values to types
NAPP : Nat -> % -> %

NAPP O a = a

NAPP (suc n) a = a -> NAPP n a

nApp : {a:*} -> (n:Nat) ->

NAPP n a -> a -> a
nApp 0 £ x =
nApp (suc n)

f
f

nApp n (f x) x




Universe elimination

data Type = CNat | CBool

i : Type -> %
1 CNat = Nat

1 CBool = CBool

eq : (x:Type) -> i x -> i x -> Bool
eq CNat x y = .
eq CBool x y = .




Sounds great, what is the problem?




Universes & type inference

* Type-dependent functions can be expressed
but not conveniently used.

eq : (x : Type) -> i x -> i x -> Bool

eq Bool True False

* Implicit arguments don't help
eq : { x: Type } -> i x -> i x -> Bool

R -




Type classes & type inference

* Type classes support type-directed functions in Haskell

class Eq a where
eq :: a -> a -> Bool

* Only one instance per type
instance Eq Bool where
eq X y = 1f x then y else not y

Allows type checker to determine appropriate instance
at use site

eq True False




No explicit compile-time
specialization/parametricity

* Sometimes computation can be resolved
completely at compile-time

— Example: nApp 2 (+) x vy
 Sometimes arguments are not needed at
runtime
— Type parametricity
* Lack of staging makes dependently-typed
languages difficult to compile efficiently




Logical Soundness

Insistence on total correctness influences and
complicates the language

Agda restricted to predicative language, where
everything can be shown terminating

Workarounds exist, but discouraged:
--set-in-set --no-termination-check

Standard library designed for programming
without these flags




Two ways to make progress

* Improve Agda (partial evaluator?)
* Improve Haskell

— Agda: No distinction between compile-time
runtime

— Haskell: Strong distinction that interferes with
generic programming




GHC today: Type-dependent types

data Z _//////

data S n

type family NAPP (n :: *) (a :: *)
type instance NAPP Z a = a
type instance NAPP (S n) a = a -> (NAPP n a)

\
S




GHC today: Type-dependent values

/
data SNat n where

SZ :: SNat Z
SS :: SNat n -> SNat (S n)

napp :: Proxy a -> SNat n -> NAPP n a -> a -> a
napp a n f x = case n of

SZ -> f

(SS m) -> napp am (f x) x




Problems with example

* Type-level programming is weakly-typed
Z . X
S :: % > x
NAPP :: *x -> % -> x
* Duplication! Nats at term level (not shown), Nats
at type level, Singleton Nats

 Ambiguity in type inference
— All compile-time arguments must be inferred

— If a type variable does not appear outside a type
function application, it cannot be inferred




{-# LANGUAGE IDEAL # /

data Nat = Z | S Nat

///”////////

type family NAPP (n :: Nat) (a :: *)

type instance NAPP Z a = a
type instance NAPP (S n) a = a -> (NAPP n a)

napp :: forall a n. RT Nat n => NAPP n a -> a -> a

napp f x = case /n of D
Z -> f

(S m) -> napp @a Om (f X) X




New Haskell Extensions: Summary

* Datatype lifting
— Allow datatype constructors to appear in types
— And datatypes to appear in kinds

e Case analysis of lifted datatype

— Informative dependent case analysis

— Compiler automatically replaces with case analysis
of singleton

* Explicit type application
— Tame ambiguity with type family usage




Datatype lifting

* Allow data constructors to appear in types
* Allow data types to appear in kinds
* Coalesce types & kinds together




New type language

T
T

1 .. tn

S -> t
all a. t
C =>1t

Type formation:

Variables
Constants (List, Int)

Data constr. (Cons, Z)
Application

Indexed type (i.e. NAPP)
Kind 'type'

Arrow type/kind
Polymorphism

Constrained type




Advantage of coalesced types

e Simple kind polymorphism (for terms & types)
Cons :: all a. a -> List a -> List a

* Data-structures available for type level
programming

Cons Int (Cons Bool Nil) :: List x*

* Type families indexed by kinds
F :: all k. k -> x




Typecase

* |dea: allow case analysis of 'types'
— case %t of ...
— Constrained by type class RT
* Implemented by desugaring to case analysis of
singleton type
— RT type class is just a carrier for singleton type!

* Singleton type automatically defined by
compiler




Questions and Difficulties

 What datatypes can be lifted to types?
— Only simple, regular datatypes? (List)
— Existentials?
— GADTs?
— Those using type families?
— Class constraints?

 What kinds have singleton types?

— Only lifted datatypes?
— Also kind *?
— Other kinds (k1 => k2, all a. k) ?




Run-time Nats

* Can we coerce a runtime Nat type into an
expression?

f :: all n. RT Nat n => Nat
f = case ’n of
Z -> 0
Sm -> Jm
 What about an indexed type function?
%»(PLUS m (S Z))




Do we need singletons?

* Given atype t, do programmers ever need to
explicitly use the singleton type?

— CSP covers non-dependent use

— RT class constraint implicitly covers any singleton

used as an argument
— What about singletons returnec
forall a. RT Nat a => Singleton (

from functions?
FACT a)

Where it is eventually used, rep

ace with %FACT ?




Observations

* Singletons key to dependent case analysis
* Dependency mostly independent of staging

— compile-time, dependent arg: all n:Nat. t

— runtime, dependent arg:
all n:Nat. RT Nat n => t

— runtime, nondependent arg: Nat -> t

— compile-time, nondependent arg?
* doesn't make sense?




What about compile time
specialization?

* Haskell Type class resolution is a form of
compile-time programming

* How does this mechanism interact with new
vision?




Compile time specialization

class Napp n a where

snapp :: NAPP n a -> a -> a

instance Napp Z a where

snapp f x = £

instance Napp n a => Napp (S n) a where

snapp £ x = snapp @n @a (f x) x
x :: Int
x = snapp @(S (S Z2)) (+) 1 2




Misgivings about type classes

e Certainly useful, but do they fit into the
programming model?

e Should they?

— Non-uniformity: Logic programming instead of FP
— Duplication of mechanism: "Eqg t" is an implicit
runtime argument
* Isthere a more orthogonal language feature?

Default implicit arguments, irrelevant
arguments, injectivity?




Current progress & future work

* |ntegrate dependency into FC

— Intermediate language for type functions, GADTs with
explicit type coercions

— Current struggle between complexity and
expressiveness

* Formalize singleton type translation
— New coercion in FC from singleton to regular type?

* Integrate with source language & type inference

— Dependent case analysis relies on singleton
translation




Conclusion

* This slide intentionally left blank.







