
Type inference and
modern type systems

Stephanie Weirich
University of Pennsylvania

Type inference
• What is the role of type inference in the

design of programming languages?
• Old answer (for many FP languages):

Part of the language specification
– Defines what valid programs
– Disabling technology for advanced type

systems

A different philosophy
• Type inference as an afterthought:

– Expressive (but wordy) language is the
standard

– Inference is a tool to help programmers
produce programs, but no more

– Other means of program generation may
use different tools

• Allows more sophisticated type systems

Studying the tool
• But that doesn’t mean we shouldn’t study

type inference
• Need a specification of the tool
• Opportunities for research into type system

design
– This talk: examples from AspectML, Haskell
– My goal this week: more examples from type

systems for program generation

Specific examples
• AspectML, aspect-oriented functional

programming language
– polymorphic aspects and first-class

pointcuts
– run-time type analysis

• Haskell
– GADTs
– Higher-rank/impredicative polymorphism

Trade off
• Unifying theme

– All of these languages use typing annotations to
augment HM type system

– Each type system distinguishes between “known”
and “guessed” type information, with more or less
precision.

• Trade-off between simple specification and
pithy language

• This talk: some details about AspectML,
highlights of rest

AspectML
• Aspects = advice + pointcuts
• Pointcuts

– “where” advice happens
– Currently: sets of function names (other

joinpoints possible)
• Advice

– “what” happens before/after/around
joinpoints

First-class pointcuts
• Code to install advice may be used for many

different pointcuts
– example: a “debugger” aspect can use a single

function to install tracing code
• Pointcuts must have types

– specify interface between joinpoints and advice
– advice may be polymorphic
pc : pointcut (all a. a → Int)
advice before pc [a] (x:a, …) { … }

Polymorphic pointcut typing
• May assume joinpoint is more

polymorphic
let pc = { f } : pointcut (Int → Int)
advice after pc [a] (x:a,…) { …. }

• Can’t assume joinpoint is less
polymorphic
let pc = { g } : pointcut (a. a → a)
advice before pc (x:int,…) { … }

Pointcut typing
• Computing pointcut type requires
anti-unification
f : Int → Int
g : a → Int
let pc = { f, g } : pointcut (a. a → Int)

Typecase
let add_tracing (pc : pointcut (ab. a -> b)) =
 let print[a] (x:a) =
 (typecase[unit] a of
 int => print_int x
 bool => print_bool x
 (b,c) => print (fst x); print (snd x)
 (b->c) => print “<function>”) in
 advice before pc [a] (x:a, f,s) {

 print x; x
 }

Type inference problems in
Aspect ML

• Pointcuts
– anti-unification/unification
– Can’t guess pointcut type - like first-class

polymorphism
– Specification of HM let-polymorphism is too

flexible, functions have multiple types
• Typecase

– Most examples require polymorphic recursion
– Can be difficult to determine result type
– Pathological examples with no most-general type

Let polymorphism
Specification in HM:

Γ├ e : t Gen(Γ,t) = s Γ, x:s├ e’ : t’
--

Γ ├ let x = e in e’ : t’
Allows multiple derivations:

├ λx.x : int → int
Gen(int → int) = int →int

f : int → int ├ f 3 : int

├ let f = λx . x in f 3 : int

├ λx.x : a → a
Gen(a → a) = ∀a. a → a
f : ∀a. a → a ├ f 3 : int

├ let f = λx . x in f 3 : int

What is type of {f} ?

Pathological typecase
f x = typecase a of
 int => 2 + x

• Does f have type
– int -> int
– forall a. a -> int
– forall a. int -> a
– forall a. a -> a

• Most general type is not expressible:
– forall a. (a=int) => a -> a

Simple, fairly conservative
solution

• Typing annotations resolve ambiguity
– typecase

• Annotate for polymorphic recursion
• Annotate return type, variables with “refined” types

– pointcuts
• When created or used
• When arguments to functions

• Typing spec distinguishes “known” and
“inferred” types
– Context distinguishes types of variables

• Investigating how well this simple spec works

GADTs
A small bit of typesafe metaprogramming
data Exp a where
 Lit : a -> Exp a
 If : Exp Bool -> Exp a -> Exp a
 App : Exp (a -> b) -> Exp a -> Exp b
 Plus : Exp (Int -> Int -> Int)

eval :: Exp a -> a
eval (Lit x) = x
eval (If x y z) = if (eval x) then (eval y) else (eval z)
eval (App x y) = (eval x) (eval y)
eval (Plus) = +

Type inference and GADTs
• Similar problems as typecase
• Annotations more burdensome here

– typecase
• always know scrutinee from program text
• not that common (?)

– GADTs
• may not know type of scrutinee
• must generalize normal case analysis (and deal

with nested case analysis, existentials, etc.)

Wobbly types
• GADT type system distinguishes

between “wobbly” and “rigid” types.
– Typing rules push rigid types into the

judgment
– A type is wobbly if any part of it must be

guessed
• Special rules also propagate “rigidity”

through polymorphic function
application

Higher-rank / impredicative
polymorphism

• Allows polymorphic values to be stored in
data structures and passed to functions

• Example: polymorphic, reified code
– Now : code(tau)
– Allows: code(sigma)

• Is this useful in practice?
– polymorphism in meta-language allows

polymorphism in object language
– forall a. code (a -> a) vs. code (forall a. a -> a)

Boxy types
• Most precise system: boxes in the type

separate “known” and “guessed” type
information

• Essential for specification of
impredicative instantiation

• Annotations propagated throughout the
typing judgment

For more information
• Papers available from my website
• AspectML

– with David Walker, Geoff Washburn, Dan Dantas
• GADTs - wobbly types

– with Simon Peyton Jones, Dimitrios Vytiniotis,
Geoff Washburn

• Impredicativity/Higher rank - boxy types
– with Simon Peyton Jones, Dimitrios Vytiniotis

