Stephanie Weirich

University of Pennsylvania

TDD

Type-Driven Development
with Dependent Types

The Agda Experience

On 2012-01-11 03:36, Jonathan Leivent wrote on the Agda mailing list:
> Attached is an Agda implementation of Red Black trees [..]
> The dependent types show that the trees have the usual
> red-black level and color invariants, are sorted, and

> contain the right multiset of elements following each function. [..]

> However, one interesting thing is that | didn't previously know or
> refer to any existing red black tree implementation of delete - |

> just allowed the combination of the Agda type checker and

> the exacting dependent type signatures to do their thing [..]

> making me feel more like a facilitator than a programmer.

Is Haskell a dependently-typed
language?

YES

Dependently-typed Haskell

 Show how type system extensions work together to make
GHC a dependently-typed language*

 The Past: Put those extensions in context, and talk about how
they compare to dependent type theory

e The Future: Give my vision of where GHC should go and how
we should get there

*we cannot port every Agda/Coq/Idris

program to GHC, but what we can do is impressive

Example: Red-black Trees

Running example of a data
structure with application-specific
invariants

— Root is black

— Leaves are black

— Red nodes have black children

— From each node, every path to a
leaf has the same number of black
nodes

All code available at
http://www.github.com/sweirich/dth

Insertion [Okasaki, 1993]

data Color = R | B
E| T

data Tree

insert :: Tree -> A -> Tree
insert s x = ins s
where ins E = T R E X E
ins s@(T color a y b)
X <y =
X >y =

otherwise = s

Fix the element type

Color Tree A Tree to be A for this talk

Temporarily suspend invariant:
Result of ins may create a red
node with a red child or red root.

T color (ins a) y b
T color ay (ins b)

Insertion [Okasaki, 1993]

data Color = R | B Fix the element type
data Tree = E | T Color Tree A Tree to be A for this talk
insert :: Tree -> A -> Tree

Temporarily suspend invariant:
Result of ins may create a red
where ins E = TR E x E node with a red child or red root.

insert s x = blacken (ins s)

ins s@(T color a y b)

X <Yy = balance (T color (ins a) y b)
X >y = balance (T color a y (ins b))
otherwise = s

blacken (T _a x b) =TB axb

Two fixes:

- blacken if root is red at the end

- rebalance two internal reds

How do we know insert preserves
Red-black tree invariants?

Do it with types
insert :: RBT -> A -> RBT

Red-black Trees in Agda [Licata]

data N : Set where
Zero : N
Suc : N » N

)

stgr Arguments of indexed datatypes
like Vary by data constructor.

data Color : Set where
R : Color Data constructors have dependent types.

The types of later arguments depend on

B : Color EFVISER datatype the values of earlier arguments.

A
[1

data Tree : Color - N - Set where

Agda doesn’t distinguish between
types and terms. Curly braces
E : Tree B Zero indicate inferred arguments.

TR : {n : N} > Tree B n > A > Tree B n > Tree R n
TB : {n : N} {¢; ¢, : Color} -

Tree ¢, n > A > Tree ¢, n » Tree B (Suc n)

Red-black Trees in GHC

data Tree : Color » N » Set where
E : Tree B Zero
TR : {n : N} > Tree B n > A > Tree B n > Tree R n
TB : {n : N} {¢; ¢, : Color} -

Tree ¢, n > A-> Tree ¢, n » Tree B (Suc n)

Agda
data Tree :: Color -> Nat -> * where
E :: Tree B Zero
TR :: Tree B n -> A -> Tree B n -> Tree R n
TB :: Tree c1l n -> A -> Tree c2 n -> Tree B (Suc n)

GADTs - datatype arguments may vary by constructor
Datatype promotion — data constructors may be used in types
(which are naturally dependent)

Static enforcement

ghci> let t1 = TR E al E
ghci> :type t1l
tl :: Tree 'R "Zero
ghci> let t2 = TB tl1 a2 E
ghci> :type t2
t2 :: Tree 'B ('Suc 'Zero)
ghci> let t3 = TR t1 a2 E
<interactive>:38:13:
Couldn't match type “'R’ with “'B’
Expected type: Tree 'B 'Zero
Actual type: Tree 'R 'Zero
In the first argument of ‘TR’, namely ‘tl’
In the expression: TR tl1l A2 E

Static enforcement

RBT: Top-leveltype forred-black trees
Hides the black height and forces the root to be black

data RBT : Set where
Root : {n : N} » Tree B n » RBT

insert : RBT » A - RBT

insert (Root t) x = ..

Agda

data RBT :: * where
Root :: Tree B n -> RBT

insert :: RBT -> A -> RBT

insert (Root t) x = ..

How are Agda and Haskell different?

Haskell distinguishes types from terms

Agda does not

Types are special in Haskell:

1. Typeargumentsare always inferred
(HM type inference)

2. Only typescan be used as indicesto GADTs

3. Typesare always erased before run-time

GADTs: Type indices only

 Both Agda and GHC supportindexed datatypes, but GHC
syntactically requires indices to be types

* Datatype promotionautomatically creates new datakinds
from datatypes

data Color :: * where -- Color is both a type and a kind
R :: Color -- R and B can appear in both
B :: Color -- expressions and types
data Tree :: Color -> Nat -> * where
E :: Tree B Zero
TR :: Tree B n -> A -> Tree B n -> Tree R n

TB :: Tree cl n -> A -> Tree c2 n -> Tree B (Suc n)

Types are erased

RBT: Top-leveltype forred-black trees
Hides the black height and forces the root to be black

data RBT : Set where
Root : {n : N} » Tree B n » RBT

bh : RBT -> N

bh (Root {n} t) =n Agda

data RBT :: * where
Root :: Tree B n -> RBT

bh :: RBT -> Nat

bh (Root t) = ??? \—— No runtime access to black height

Insertion

How do we temporarily suspend the
invariants duringinsertion?

What is the type
of this tree? \

balance () =

Split balance into two cases

A4 B

balancel

balanceR

Decompose argument

balanceLg(g) = g }
balancel (® A) = :

Specialize Color

balanceLg(g) = g }
balancelB(A) = :

balancelB : ??? - A > Tree c n » ??°?

A non-empty tree)

that may break the ‘
color invariant

A non-empty
valid tree, of
unknown color
“HiddenTree”

at the root
“AlmostTree”

~
Il

balancelB(A

balancelB(A A)

Programming with types (Agda)

* A non-empty valid tree, of unknown color

data HiddenTree : N -» Set where
HR : {m : N} - Tree R m -» HiddenTree m
HB : {m : N} > Tree B (Suc m) - HiddenTree (Suc m)

* A non-emptytreethat may break theinvariant at the root

incr : Color - N - N Use a function to calculate the

incr B = Suc black height from the color
incr R = id

data AlmostTree : N -» Set where
AT : {n : N}{c; ¢, : Color} -» (c : Color) -

Tree ¢c; n > A > Tree ¢, n » AlmostTree (incr c n)

balancelB : {n : N}{c : Color} -» Agda
AlmostTree n » A » Tree ¢ n » HiddenTree (Suc n)

balancelB (AT R (TR a x b) yc) z d =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT R a x (TR b y c)) z d =

HR (TR (TB a xb) y (TB c z d))
balancelB (AT B a xb) yr =HB (TB (TB a x b) y r)
balancelB (AT R E x E) y r = HB (TB (TR E X E) y r)
balancelB (AT R (TB awb) x (TBcyd)) ze-=

HB (TB (TR (TB a w b) x (TB c y d)) z e)

balancelB(A) =

GHC version of AlmostTree

type family Incr (c :: Color) (n :: Nat) :: Nat where
Incr R n = n
Incr B n = Suc n

data Sing :: Color -> * where
SR :: Sing R
SB :: Sing B

data AlmostTree :: Nat -> * where
AT :: Sing ¢ -> Tree cl n -> A -> Tree c2 n ->

AlmostTree (Incr c n)

Ty pe family Type-term separation:
Singleton type Singleton types provides runtime access

to the color of the node in GHC.

balancelB : {n : N}{c : Color} » Agda
AlmostTree n » A » Tree ¢ n » HiddenTree (Suc n)

balancelB (AT R (TR a x b) yc) z d =

HR (TR (TB a x b) y (TB ¢ z d))
balancelB (AT R a x (TR by <c)) zd =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT B a xb) yr =HB (TB (TB a x b) y r)
balancelB (AT R E x E) y r = HB (TB (TR E X E) y r)
balancelB (AT R (TBawb) x (TBcyd)) ze =

HB (TB (TR (TB a w b) x (TB c y d)) z e)

balancelB(A) =

balancelB ::
AlmostTree n -> A -> Tree ¢ n -> HiddenTree (Suc n)

balancelLB (AT SR (TR a x b) y c) z d =

HR (TR (TB a x b) y (TB ¢ z d))
balancelB (AT SR a x (TR by «c)) z d =

HR (TR (TB a x b) y (TB c z d))
balancelLB (AT SB a x b) y r = HB (TB (TB a x b) y r)
balancelB (AT SR E X E) y r = HB (TB (TR E X E) y r)
balancelLB (AT SR (TB a wb) x (TBcyd)) z e =

HB (TB (TR (TB a w b) x (TB c y d)) z e)

balancelB(A) =

Implementation of insert

The Haskell version of insert is in lock-step with Agda version!
But, are they the same? Not quite...
Agda:

insert : RBT » A » RBT

given a (valid) red-black tree and an element,
insert will produce a valid red-black tree

Haskell:

insert :: RBT -> A -> RBT

given a (valid) red-black tree and an element,
if insert produces a red-black tree, then it will be valid

Difference: Totality

Adga requires all functions to be proved total

Haskell does not

* Ononehand, Agda provide stronger guarantees about
execution.

* Ontheotherhand, totality checkingisinescapable.
Sometimes not reasoning about totality simplifies
dependently-typed programming.

Not proving things is simpler

* QOkasaki’s version of insert (simply typed): 12 lines of code

* Haskell version translated from Agda
— 49 |oc (including type defs & signatures)

— precise return types for balance functions

balancelB :: AlmostTree n -> A -> Tree ¢ n -> HiddenTree (Suc n)
balancelLR :: HiddenTree n -> A -> Tree ¢ n -> AlmostTree n

* Haskell version from scratch (see git repo)
— 32 loc (including type defs & signatures)
— more similar to Okasaki’s code
— less precise return type for balance functions

balanceL :: Sing ¢ ->
AlmostTree n -> A -> Tree ¢ n -> AlmostTree (Incr c n)

What is Dependently-Typed Haskell,
really?

Dependently-Typed Haskell

* Flow sensitive type checking (e.g. GADTs)
— Typesinfluenced by pattern matching
— "Singleton types" encode "dependent types”
— Improvements to coverage checkerimprove TDD

* Rich type-level language enabling application
specificinvariants

— Promoted datatypes

— Type families (i.e. functions)

— Type-level symbols & numbers
— Pluggable constraint solvers

lvory: Safe bit-level programming

-- | Convert an array of four 8-bit integers into a 32-
bit integer.

test2 :: Def ('[Ref s (Array 4 (Stored Uint8))]
:-> Uint32)
test2 = proc "test2" $ \arr -> body $ do
a <- deref (arr ! 09)
b <- deref (arr ! 1)
c <- deref (arr ! 2)
d <- deref (arr ! 3)
ret $ ((safeCast a) ~iShiftL™ 24) .|
((safeCast b) “iShiftL" 16) .|
((safeCast c) “iShiftL™ 8) .|
((safeCast d) " iShiftL" 0)

https://github.com/GaloisInc/ivory

Length-preserving Convolution

convolve :: V¥ a b n. Vec na ->Vec nb -> Vec n (a,b)
convolve Xxs ys =
case walk xs of
(r, Nil) -> r
-- precondition [1]: ¥ n & N, m = n implies n - m = ©
-- therefore this is an exhaustive match
where
walk :: %V ma. (m <= n) => Vec ma ->
(Vec m (a,b), Vec (n - m) b)
walk Nil = (Nil, ys)
walk (a :. as) =
case walk as of
(r, b :. bs) -> ((a,b) :. r, bs)
-- precondition [2]: ¥V n, m e N, n-m+ 1 >0
-- therefore the list is non-empty

[Kenny Foner, Compose 2016]

Safe Database Access

type NameSchema = [Col "first" String, Col "last" String]

printName :: Row NameSchema -> IO ()
printName (first ::> last ::>) = putStrLn (first ++ " " ++ last)

readDB classes sch students sch = do
classes tab <- loadTable "classes.table" classes sch
students_tab <- loadTable "students.table" students_sch

putStr "Whose students do you want to see? "
prof <- getlLine

let joined =
Project
(Select (field @"id" @Int "“ElementOf” field @"students")
(Product
(Select (field @"prof" :== Literal prof) (Read classes tab))

(Read students_tab)))

rows <- query joined
mapM_ printName rows Haskell infers what rows need to be in the two

different schemas. If these rows are not present, then
the program will fail (at either compiletime or runtime).

[Richard Eisenberg, 2016]

Extensions in Progress (Eisenberg)

Datatype promotiononly works once

— Cannot use dependently-typed programming at the type level

— Some Agda structures have no GHC equivalent

— Solution: Combine type and kind language together (-XTypelnType)
— Current status: Merged into GHC HEAD, release coming soon!

Typeinference doesn't work well for type-level
programming

— Solution: Explicit type application

— Nice interaction with HM, see ESOP 2016 paper

— Current status: Merged into GHC HEAD, release
coming soon!

Singletons required
— Solution: Add a Pl type
— Current status: planning stage, see Richard's dissertation draft

Conclusion

Haskell programmers can use dependent types*
... and we’re actively working on the *

... but it is exciting to think about how dependent-
type structure can help design programs

Thanks to: Simon Peyton Jones, Dimitrios Vytiniotis, Richard
Eisenberg, Brent Yorgey, Geoffrey Washburn, Conor McBride, Adam
Gundry, lavor Diatchki, Julien Cretin, José Pedro Magalhaes, David
Darais, Dan Licata, Chris Okasaki, Matt Might, NSF

http://www.github.com/sweirich/dth

