
Dependent types and program
equivalence

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

What are dependent types?

  Types that depend on values of other types
  Used to statically enforce expressive program

properties
  Examples:

  vec n – type of lists of length n, static bounds checks
  Binary Search Tree
  PADS, data format invariants
  ASTs that enforce well-typed code
  CompCert compiler

2/5/10 2

Types that contain
computation

What about nontermination?

1/21/10 3

  Treatment of nontermination divides design space
  Affects decidability of type checking, correctness

guarantees, and complexity of language
  Independent of type soundness
  Unclear impact on practicality

Only total
computation

allowed

Types restricted
to total

computation

No restrictions

Examples Coq, Agda2 DML, ATS, Ωmega,
Haskell

Cayenne, Epigram,
ΠΣ

Type checking Decidable Undecidable

Correctness
guarantee Total

correctness Partial correctness

Program equivalence

  When types depend on programs, type equivalence
depends on program equivalence

  Definition of program equivalence is controversial
  Even when the language is not Turing-complete!

  Many possible definitions
  Reduce and compare

  What reduction relation? (evaluation, parallel reduction, eta-
reduction?)

  Type-based equivalence
  Behavioral equivalence
  Contextual equivalence
  Something else?

2/5/10 4

λ≈: Parameterized program equivalence

1/21/10 5

  A call-by-value language with an abstract term equivalence
relation

  Goals for language design
  Simple type soundness proof based on progress and

preservation
  Uniformity---program equivalence used by type system must

be compatible with CBV

  What requirements for equivalence relation?
  Strong enough to prove type soundness
  Weak enough to allow desired definitions

More difficult than we
expected

"Pure everywhere" type system - PTS

  No syntactic distinction between types, terms, kinds
 e, τ, k ::= x | λx.e | e e' | (x:τ1) → τ2 | ∗ | ◻
 | T | C | case e { Ci xi ⇒ ei }
  One set of formation rules
 Γ ⊢ e : τ

  Conversion rule uses beta-equivalence
Γ ⊢ e : τ1 Γ ⊢ τ2 : s τ1 ≃τ2

Γ ⊢ e : τ2

  Term equivalence is fixed by type system (and defined to
be the same as type equivalence).

τ1 and τ2 are
beta-

convertible

2/5/10 6

λ≈: Parameterized program equivalence

  Syntactic distinction between terms, types, and kinds
k ::= ∗ | (x:τ) → ∗
τ ::= (x:τ1) → τ2 | T | τ e | case e ⟨T e' ⟩ of { Ci xi ⇒ τi }
e ::= x | fun f (x) = e | e e' | C e | case e of { Ci xi ⇒ ei }

  Key syntactic changes
  Term language includes non-termination
  Curry-style, no types in expressions

  Convenient simplifications
  Datatypes have one index, data constructors have one argument

(unit/products in paper)
  No polymorphism, no higher-kinded types (future work)

2/5/10 7

Parameterized term equivalence

  Given an "equivalence context"
  Δ ::= . | Δ , e1 = e2

  Assume the existence of program equivalence predicate
  isEq (Δ, e1, e2)

  Equality is untyped
  No guarantee that e1 and e2 have the same type
  No assumptions about the types of the free variables

  Context may make unsatisfiable assumptions

2/5/10 8

Type system overview

  Two sorts of judgments
  Equality for types, contexts, and kinds
  Formation for contexts, kinds, types and terms

  Typing context: Equivalence and typing assumptions
  Γ ::= . | Γ , e1 = e2 | Γ, x:τ

  All judgments derivable from an inconsistent context
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that

isEq (Δ , Ci wi, Cj wj) and Ci ≠ Cj

  Pure terms
  w ::= x | fun f (x) = e | C w

2/5/10 9

Γ ⊢e : τ
Δ ⊢ τ1 ≡ τ2

Type system excerpt

2/5/10 10

Extract equivalence
context

Questions to answer

  What properties of isEq must hold to show
preservation & progress?

  What instantiations of isEq satisfy these properties?

2/5/10 11

Necessary assumptions about isEq

  Is an equivalence relation
  Preserved under contextual operations

  Cut: …
  Weakening: …
  Context Conv: …

  Contains evaluation: e ↦ e' implies isEq (Δ, e, e')
  Data constructors are injective for pure arguments

  isEq (Δ, C w, C w') implies isEq (Δ, w, w')
  Empty context is consistent

  C ≠ C' implies ¬isEq(. , C w, C' w’)
  Closed under pure substitution

  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x})

12 1/21/10

 ⊢Nat ≡ Bool

Preservation
e1e2 ↦ e1e'2

Transitivity of
Δ ⊢ τ1 ≡ τ2

Preservation of beta Does not need to
hold for arbitrary e

Typing rules don't use substitution

2/5/10 13

Γ ⊢ e1 : (x :τ1) → τ2

Γ ⊢e1 e2 : τ2 {e2/x}

Γ ⊢e2 : τ1
Γ ⊢e1 : (x:τ1)→ τ2

Γ*, x ≅ e2⊢τ2 ≡ τ

Γ ⊢e1 e2 : τ

Γ ⊢τ : ∗

Γ ⊢e2 : τ1

Standard rule Our rule

Substitutes an arbitrary
expression into the type

x does not escape Adds assumption to
the context

Assumptions also for case expression

2/5/10 14

  Do not need a substitution to type the branches

Data type index

Data constructor
pattern

Lookup data
constructors in

signature

Type check
scrutinee

Pattern variables
don't escape

What satisfies the isEq properties?

  Compare normal forms (ignoring Δ)
  Only types STLC terms

  Contextual equivalence (ignoring Δ)
  Only types STLC terms

  RST-closure of evaluation, constructor injectivity, and
equivalence assumptions

  CBV Contextual equivalence modulo Δ
  Some strange equalities that identify nonterminating

terms with terminating terms
  Safe to conclude isEq(let x = loop in 3, 3) as long as we

don’t conclude isEq(let x = loop in 3, loop)
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4)

2/5/10 15

What about decidable type checking?

  All instantiations of isEq are undecidable
  Must contain evaluation relation

  Decidable approximations are type safe, but don’t satisfy
preservation
  Any types system that checks strictly fewer terms than a safe

type system is safe

  Preservation important for compiler transformations
  Want to know that inlining always produces safe code
  Not really an issue: Decidable doesn't mean tractable

2/5/10 16

What about termination analysis?

  Like most type systems, only get "partial correctness"
results:
  Σx:t. P(x) means “If this expression terminates, then it

produces a value of type t such that P holds”
  Implications (P1 → P2) may be bogus

  Termination analysis produces total correctness
  Termination/stage analysis is an optimization

  permits proof erasure in CBV language

2/5/10 17

Future work

  Add polymorphism, higher-order types
  Keep curry-style system for simple specification of isEq

  Annotated external language to aid type checking
  Similar to ICC* [Barras and Bernardo]
  Terms contain type annotations, but equality defined for erased

terms
  Type checking still undecidable but closer to an algorithm

  Add control/state effects to computations
  Should we limit domain of isEq?
  Non-termination ok in types, but exceptions are not?

  Can we provide type/termination information to
strengthen equivalence?

2/5/10 18

Conclusions – What have we achieved?

  Uniform design
  Same reasoning for compile time as run time
  Not easy for CBV!

  Simple design
  Program equivalence isolated from type system
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen)

  General design
  Program equivalence not nailed down
  Lots of examples that satisfy preservation, not just type

soundness

2/5/10 19

2/5/10 20

Type equivalence for case

2/5/10 21

