Dependent types and program
equivalence

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjéberg

What are dependent types?

» Types that depend on values of other types

» Used to statically enforce expressive program
properties
» Examples:
vec n — type of lists of length n, static bounds checks
Binary Search Tree
PADS, data format invariants
ASTs that enforce well-typed code
CompCert compiler

Types that contain

computation

2 2/5/10

What about nontermination?

» Treatment of nontermination divides design space

» Affects decidability of type checking, correctness
guarantees, and complexity of language

» Independent of type soundness

» Unclear impact on practicality

Only total Types restricte No restrictions \
computation to total
allowed computation
Examples Coq, Agda2 | DML, ATS, {2 mega, Cayenne, Epigram,
Haskell Mz
Type checking Decidable Undecidable
Correctness
Total :
guarantee Partial c'brrectness
correctness
A

1/21/10

Program equivalence

» When types depend on programs, type equivalence
depends on program equivalence
» Definition of program equivalence is controversial
Even when the language is not Turing-complete!

» Many possible definitions

Reduce and compare

What reduction relation? (evaluation, parallel reduction, eta-
reduction?)

Type-based equivalence
Behavioral equivalence
Contextual equivalence
Something else!?

4 2/5/10

M=: Parameterized program equivalence

» A call-by-value language with an abstract term equivalence
relation

» Goals for language design

Simple type soundness proof based on progress and
preservation

Uniformity---program equivalence used by type system must
be compatible with CBV

» What requirements for equivalence relation?
Strong enough to prove type soundness / More difficult than we
Weak enough to allow desired definitions SR cO

5 1/21/10

"Pure everywhere" type system - PTS

» No syntactic distinction between types, terms, kinds
e, T,k == x| Are|lee | (vt) =1 | * | O
| T | C |casee{ C x, = ¢ }
» One set of formation rules

I'~e: 1 beta-
convertible

7, and 7, are

» Conversion rule uses beta-equivalence
I'Fe: 7t I'Fz,:8 7, =7,
I'Fe: 7,
» Term equivalence is fixed by type system (and defined to
be the same as type equivalence).

6 2/5/10

M=: Parameterized program equivalence

» Syntactic distinction between terms, types, and kinds

ko= =|(zt) — =
tu=(xt,) > 1,| T|te|lcase e{Te')of { C,z,=> 7, }
ex=uc|fun f(z) =e|ee'| Ce|case eof { C,z,> ¢}

» Key syntactic changes
Term language includes non-termination
Curry-style, no types in expressions
» Convenient simplifications
Datatypes have one index, data constructors have one argument
(unit/products in paper)

No polymorphism, no higher-kinded types (future work)

7 2/5/10

Parameterized term equivalence

» Given an "equivalence context”
Ac=.|A e =e

» Assume the existence of program equivalence predicate
iskEq (A, e, e))

» Equality is untyped
No guarantee that ¢, and ¢, have the same type

No assumptions about the types of the free variables

» Context may make unsatisfiable assumptions

8 2/5/10

Type system overview

» Two sorts of judgments
Equality for types, contexts, and kinds A 1g=1
Formation for contexts, kinds, typesandterms T e: T
» Typing context: Equivalence and typing assumptions
o= .|T,e=¢ |1 xt

» All judgments derivable from an inconsistent context

incon (A) if there exist pure terms C; w; and C; w; such that
isEq (A, C;w, C;w;)and C; # C;

» Pure terms

w:=z|fun f(x) = e| Cw

9 2/5/10

Type system excerpt

''e:rT T"bFr=74 T+ x

. /
Extract equivalence ['Fe:T
context

ArFT=71 isEq(A,e,e)
AFT1Te=17¢

incon (A)
AFT1T=T1

- I incon (I'™)
'Fe:T

10 2/5/10

Questions to answer

What properties of iskiq must hold to show
preservation & progress!?

What instantiations of isEq satisfy these properties!?

|l 2/5/10

Necessary assumptions about iskEq

Is an equivalence relation
Preserved under contextual operations

Cut:...
Weakening: ... Preservation
Context Conv: ... eje, > eel

Contains evaluation: e~ e’ implies isEq (A, e, €')
Data constructors are injective for pure arguments

isEq (A, C w, C w') implies isEq (A, w, w') Transitivity of
Empty context is consistent AFn=m

C # C'implies =~isEq(. , C w, C' w’

implies =isEq(. w. w’) “Nat = Bool

Closed under pure substitution

isEq (A, e, e/) implies isEq (A{w/x}, e{w/z}, e{w/x})

Preservation of beta =~ Does not need to
12 hold for arbitrary e

Typing rules don't use substitution

LEoe:(z:T) =T L be:(vt)— T
['Fe:T ' e @ T
. ' z=eF1,=1
— I' =7: %
Substitutes an arbitrary
expression into the type I |—61 S

Adds assumption to

x does not escape
the context

13 2/5/10

Assumptions also for case expression

» Do not need a substitution to type the branches

Type check Lookup data.
scrutinee constructors in
signature
T~ —t€l..n
F'Fe: Tu CrOf(T)=C;
t€l..n
C'E7:x Cp:(zim) — Tu €%
t€l..n

/F,xi:n,u/guz‘,e%’ i T et T
: i€l..n
[' - cas eof{C’z-/b,;=>eq: booT
don't escape Data constructor
pattern

Data type index

14 2/5/10

What satisfies the isEq properties?

» Compare normal forms (ignoring A)
Only types STLC terms
» Contextual equivalence (ignoring A)
Only types STLC terms
» RST-closure of evaluation, constructor injectivity, and
equivalence assumptions

» CBV Contextual equivalence modulo A
» Some strange equalities that identify nonterminating
terms with terminating terms

Safe to conclude isEq(let x = loop in 3, 3) as long as we
don’t conclude isEq(let x = loop in 3, loop)

Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4)

15 2/5/10

What about decidable type checking?

» All instantiations of isEq are undecidable

Must contain evaluation relation

» Decidable approximations are type safe, but don'’t satisfy
preservation

Any types system that checks strictly fewer terms than a safe
type system is safe

» Preservation important for compiler transformations

Want to know that inlining always produces safe code
Not really an issue: Decidable doesn't mean tractable

16 2/5/10

What about termination analysis?

» Like most type systems, only get "partial correctness”
results:

Yz:t. P(x) means “If this expression terminates, then it
produces a value of type t such that P holds”

Implications (P1 — P2) may be bogus
» Termination analysis produces total correctness

» Termination/stage analysis is an optimization
permits proof erasure in CBV language

|7 2/5/10

Future work

» Add polymorphism, higher-order types
Keep curry-style system for simple specification of isEq
» Annotated external language to aid type checking

Similar to ICC* [Barras and Bernardo]

Terms contain type annotations, but equality defined for erased
terms

Type checking still undecidable but closer to an algorithm
» Add control/state effects to computations

Should we limit domain of iskEq?

Non-termination ok in types, but exceptions are not!?

» Can we provide type/termination information to
strengthen equivalence!

18 2/5/10

Conclusions — What have we achieved?

» Uniform design
Same reasoning for compile time as run time
Not easy for CBV!

» Simple design
Program equivalence isolated from type system

Proved all metatheory in Coq in ~2 weeks (OTT + LNgen)

» General design
Program equivalence not nailed down

Lots of examples that satisfy preservation, not just type
soundness

19 2/5/10

» 20 2/5/10

Type equivalence for case

At casee(Tu)of{C;z = T

21

1€1..n

2/5/10

