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Let's talk about constant functions



id : ∀ (A : Type) → A → A
id = λ A x. x



id = λ _ x. x

Erasure semantics for 
type polymorphism



Erasure semantics for polymorphism

data List (A : Type) : Type where
Nil  : List A
Cons : A → List A → List A

map : ∀ (A B : Type) → (A → B) → List A → List B
map = λ A B f xs. 

case xs of
Nil ⇒ Nil
Cons y ys ⇒ Cons (f y) (map A B f ys)



Erasure semantics for polymorphism

data
Nil   
Cons  

map = λ _ _ f xs. 
case xs of
Nil ⇒ Nil
Cons y ys ⇒ Cons (f y) (map _ _ f ys)



Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
Nil  : Vec Zero A
Cons : Π(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → ∀(n : Nat) → (A → B) 
→ Vec n A → Vec n B

map = λ A B n f v. 
case v of
Nil ⇒ Nil
Cons m x xs ⇒

Cons m (f x) (map A B m f xs)



Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
Nil  : Vec Zero A
Cons : ∀(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → ∀(n : Nat) → (A → B) 
→ Vec n A → Vec n B

map = λ A B n f v. 
case v of
Nil ⇒ Nil
Cons m x xs ⇒

Cons m (f x) (map A B m f xs)

Erasable data 



Erasure in dependently-typed languages

data
Nil  
Cons 

map = λ _ _ _ f v. 
case v of
Nil ⇒ Nil
Cons _ x xs ⇒

Cons _ (f x) (map _ _ _ f xs)



Refinement/Subset types

type EvenNat = { n : Nat | isEven n }

plusIsEven : Π(m n : Nat) → (isEven m) → (isEven n) 
→ (isEven (m + n))

plusIsEven = λ m n p1 p2. …

plus : EvenNat → EvenNat → EvenNat
plus = λ en em. case en, em of

(n, np), (m, mp) ⇒ (n + m, plusIsEven n m np mp)

Erasable proof 



Refinement/Subset types

plus = λ en em. case en, em of
(n, _), (m, _) ⇒ (n + m, _)



Erasable code is irrelevant

• Not all terms are needed for computation: some 
function arguments and data structure 
components are present only for type checking 

• Especially common in dependently-typed 
programming 

• We call such code irrelevant



Why care about irrelevance?

1. The compiler can produce faster code
– Erase arguments and their computation

2. The type checker can run more quickly
– Comparing types for equality requires reduction, which 

can be sped up by erasure
3. Verification is less work for programmers

– Proving that terms are equal may not require reasoning 
about irrelevant components

4. More programs type check
– Sound to ignore irrelevant components when checking 

type equality



Less work for verification: proof irrelevance

type EvenNat = { n : Nat | isEven n }

-- prove equality of two EvenNats
congEvenNat : (n m : Nat) 

→ (np : isEven n) 
→ (mp : isEven m) 
→ (n = m)
-- no need for proof of np = mp
→ ((n, np) = (m, mp) : EvenNat)

congEvenNat = λ n m en em p. …

All proofs of equal
properties are equal



More programs type check

Sound for the type checker to 
decide that these terms are equal

Proof of equality comes
directly from type checker

type tells us that f is a 
constant function

…when more terms are equal, by definition

example : ∀(f : ∀ (x : Bool) -> Bool) 
→ (f True = f False)

example = λ f . Refl



Why care about irrelevance?

1. The compiler can produce faster code
– Erasure / Run-time irrelevance

2. The type checker can run more quickly
– Type checker optimizations

3. Verification is less work for programmers
– Proof irrelevance, propositional irrelevance

4. More programs type check
– Compile-time irrelevance, definitional proof irrelevance



Type checkers for dependently-typed 
languages should identify irrelevant 
code

But how?



How should type checkers for 
dependently-typed languages identify 
irrelevant code?

1. Erasure
2. Modes
3. Dependency



Core dependent type system



Erasure
You can't use something 
that is not there

Miquel, TLCA 01
Barras and Bernardo, FoSSaCS 2008

Trellys [Kimmel et al. MSFP 2012]
Dependent Haskell [Weirich et al. ICFP 2018]



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking
• Irrelevant parameters must not appear relevantly 
• Erasure operation |a| removes irrelevant terms



Erasure during conversion 

• Conversion between erased types 
• Compile-time irrelevance: erased parts ignored when 

comparing types for equality  



Erasure: Implicit Calculus of Constructions

• Benefits
– Simple!
– Orthogonal: new features independent from the rest of 

the system
– Directly connects to erasure in compilation

• Drawbacks
– Direct implementation inefficient
– Can't add irrelevant projections



Filter is lazy in Haskell

filter : ∀(A:Type) → (A → Bool) → (List A) → (List A)
filter = λ A f v. 

case v of
Nil ⇒ Nil
Cons x xs ⇒

let r = filter A f xs in
if f x 

then (Cons x r) 
else r

Example:
take 3 (filter isEven nats) à [0;2;4]

Computed only 
when needed



Pattern matching : too strict!

vfilter : ∀(A:Type) → ∀(n:Nat) 
→ (A → Bool) → (Vec n A) → ∃(m:Nat) ⨯ (Vec m A)

vfilter = λ A n f v. 
case v of

Nil ⇒ (0, Nil)
Cons m x xs ⇒

case vfilter A m f xs of
(m', r) ⇒ if f x 

then (Succ m', Cons m' x r) 
else (m', r)



Irrelevant projections preserve laziness

vfilter : ∀(A:Type) → ∀(n:Nat) 
→ (A → Bool) → (Vec n A) → ∃(m:Nat) ⨯ (Vec m A)

vfilter = λ A n f v. 
case v of

Nil ⇒ (0, Nil)
Cons m x xs ⇒

let p = vfilter A m f xs in
if f x 

then (Succ p.1, Cons p.1 x p.2) 
else p

Irrelevant projections: 
UNSOUND addition to an 
erasure-based calculus

| Vec p.1 A | = | Vec q.1 A |



Modes
Distinguish relevant and irrelevant 
abstractions through modes

Pfenning, LICS 01
Mishra-Linger and Sheard, FoSSaCS 08
Abel and Scherer, LMCS 12

DDC, Choudhury and Weirich, ESOP 22
DE, Liu and Weirich, ICFP 23



Modal types and modes

• Modal type marks irrelevant code: ☐A
• Type system controlled by modes: m ::= R | I

– Variable annotated in Γ, only R tagged usable
Γ ::= ɛ | Γ, x :mA

– Resurrection (Γm): replace all m tags with R
– Uniformity in abstractions: 
Πx:mA.B unifies Πx:A.B and ∀x:A.B



Modal types for irrelevance

Only relevant variables
can be used

Modal types mark irrelevant 
subterms. 
Resurrection means that any 
variable can be used inside a box.

The contents of the box are 
accessible only in other boxes. 



Modes annotate functions

Only relevant variables
can be used

Mode on Π-type determines 
mode in the context 

Types checked 
with "resurrected" 
context

Irrelevant arguments checked 
with resurrected context

Π-bound variables always 
relevant in the type

Conversion ignores
irrelevant arguments



Compile-time irrelevance

• Usual rules for beta-equivalence, plus
– compare arguments marked R
– ignore arguments marked I or inside a box



Modes for irrelevance

• Benefits
– Modes identify patterns in the semantics: don't need 

two different functions
– More direct implementation: mark variables when 

introduced in the context, mark the context for 
resurrection

• Drawbacks
– Still no irrelevant projections
– Formation rule for Π-types looks a bit strange

• Conjecture: equivalent to ICC*



Dependency

Track when outputs depend on inputs

DCC, Abadi et al., POPL 99
DDC, Choudhury and Weirich, ESOP 22
DCOI, Liu, Chan, Shi, Weirich, POPL 24



Dependency tracking

• Type system parameterized by ordered set of levels
– Relevance (R < I) 
– Other examples: Security levels (Low < Med < High)

Staged computation (0 < 1 < 2…) 

• Typing judgment ensures that low-level outputs do not 
depend on high-level inputs 

x :H Bool ⊢ a :L Int
Observer level
a can only use variables 
whose levels are ≤ L

Input level
x can only be used when 
observer level is ≥ H



Typing rules with dependency levels
Variable usage
restricted by 
observer level 

Π-types record the dependency 
levels of their arguments 

Application requires compatible
dependency levels

Vars have same 
level in terms 

and types

Terms do not 
observe types, 
level 
unimportant



DCOI: irrelevant projections

vfilter : (A:I Type) → (n:I Nat) 
→ (A → Bool) → (Vec n A) → (m:I Nat) ⨯ (Vec m A)

vfilter = λ A n f v. 
case v of

Nil ⇒ (0I, Nil)
Cons mI x xs ⇒

let p = vfilter AI mI f xs in
if f x 

then ((Succ p.1)I, Cons p.1I x p.2) 
else p

Type is checked with I-observer

Definition checks with R observer, but
contains I-marked subterms

First projection allowed in 
I-marked subterms only



Indistinguishability: indexed definitional equality

Observer cannot distinguish
between terms

If observer has a higher level 
than the argument, 
arguments must agree

If observer does not have a 
higher level, arguments are
ignored



Conversion can be used at any observer level

Type system is sound because we cannot equate types with 
different head forms at any dependency level 



DCOI: Dependent Calculus of Indistinguishability 

• Liu, Chan, Shi and Weirich. Internalizing Indistinguishability with 
Dependent Types. POPL 2024 
– PTS version 
– Key results: Syntactic type soundness, noninterference

• Liu, Chan and Weirich. Work in progress
– Predicative universe hierarchy 
– Observer-indexed propositional equality, J-eliminator
– Key results: Consistency, normalization and decidable 

equality

• All results mechanized using Coq/Rocq proof assistant



DCOI: Dependent Calculus of Indistinguishability

• Benefits
– Irrelevant projection is sound!
– General mechanism for dependency: applications besides 

irrelevance
– Can reason about indistinguishability as a proposition

• Drawbacks (Future work) 
– Unknown compatibility with type-directed equality 
– Unknown compatibility with inductive datatypes
– Unknown language ergonomics

• Dependency level inference?
• Dependency level quantification? 



Related work on Irrelevance

• Erasure-based
– Miquel 2001,  Barras & Bernardo 2008

• Mode-based
– Pfenning 2001, Mishra-Linger & Sheard 2008, Abel & Scherer 2012

• Dependency tracking
– Type theory in color: Bernardy & Moulin 2013
– Two level type theories: Kovács 2022, Annenkov et al. 2023

• sProp (Definitional proof irrelevance)
– Gilbert et al. 2019 

• Quantitative Type Theory 
– McBride 2016, Atkey 2018, Abel & Bernardy 2020, 

Choudhury et al. 2021, Moon et al. 2021 



Conclusions

• In dependent type systems, identifying irrelevant 
computations is important for efficiency and expressivity

• Type systems can track more than "types", they can also 
tell us what happens during computation

• Dependency analysis is a powerful hammer in type system 
design


