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From Inspiration to ...

data N = String
data Exp = Var N
| Lam N Exp

| App Exp Exp
fv (var x)
fv (Lam x e

)
fv (App e ¢’)

[x]
// (x]

e
e ++ fv e’

= fv
-y Bug source: may need

to freshen when recurring

under binders
Alpha-equivalence &

Capture-avoiding substitution

Frustration!
This should be “easy”



Declarative Specification for Binding

data N = Name Exp
data Exp = Var N
| Lam (Bind N Exp)
| App Exp Exp

Generic programming
available for

fv, aeq, substitution Monadic destructor for binding ensures

freshness
unbind :: fresh m => Bind N Exp -> m (N,Exp)

James Cheney,
Scrap Your Nameplate
ICFP 2005

Get right to the interesting part
of the implementation!!



Unbound Library
cabal install unbound

aeq :: (Alpha a) => a -> a -> Bool

data N = Name Exp
data Exp = Var N
| Lam (Bind N Exp)
| App Exp Exp

$(derive [“Exp])

instance Alpha Exp |5 |et x = stringzName “x” :: N

> let y = string2Name “y” :: N

> Lam x (Var x) ‘aeq’ Lam y (Var vy)
True




Unbound library

e Several small improvements to FreshLib:
— Documentation and cabal distribution
— Support for multiple atom sorts
— Improved substitution interface
— Two different monads for “freshness”

* Expressive general binding specification language
bind :: (Alpha b) => N -> b -> Bind N b
bind :: (Alpha a, Alpha b) => a -> b -> Bind a b

What sort of binding patterns can be
specified by type structure?




Beyond Single Binding

\xyz-> (xz)(yz)

data
data

N =
Ex
|
|

Name Exp
Var N

Xp =
Lam (Bind [N] Exp)
A

pp Exp (Exp]

\ (x, Justy) ->x+vy

All names in the pattern
expression are bound in the
body of the Bind

data
data

data

N
Pa
I
Ex
|
|
|

t =
PC
xp = Var N
La
Ap

Name Exp
Pvar N
on String (Pat)

am (Bind Pat Exp)
PP Exp Exp
Con String [Exp)




Embedded Terms in Patterns

letx=eine’

N

X bound in e’ but not e

let x1 = el
X2 =e2

ine

x1,x2... bound in e’

> (Bind N Exp)

AA'

-.i.-m-"mnﬁil“’o.‘:- exeept In cmopeas

adetaodxy in the body of the Binc
| 1let (Rind (N. Embed Exp) Exp)

data Exp = ...
| Let (Exp) (BindEdNEEXP))] Exp)

Can enforce equal number of
LHSs and RHSs




Double Binding (recursive)

letrecx=ein e’

X bound in e and e’

data Exp = ...
| Let (Bind N2AExpy, ExpPed Exp)) Exp)

All names in a rec pattern are
bound in both the Embeds and
the body of the Bind

let recx1l =el
X2 =e2

’

in e

x1, x2... bound in el,e2...
and e’

data Exp = ...
| Let (Bind (Ndc ([EXp)ErExpd) Exp)]) Exp)




Double Binding (non-recursive)

let* x1 =el
X2 =e2
x3 =e3

Vi

ine

x1 bound in e2, e3, e’
x2 bound in e3, e’
x3 bound in e’

data Exp = ...
| Let (Bind LetPat Exp)

data LetPat =
Nil
| Cons (Rebind (N, Embed Exp)
LetPat)




Binding Specification Language

Tro= (Terms)

| Primitive types, Int, Char, etc.

| Regular datatypes of terms, i.e. [T), (T,T)
| Name T

| Bind P T

Ry (Patterns)
| Name T

| Primitive types, Int, Char, etc.

| Regular datatypes of patterns, i.e. [P), (P,P)
| Embed T

| Rec P

| Rebind P P

| Shift P




Semantics

Paper gives precise semantics for fv, aeq and subst for terms
and patterns composed of these types

Semantics based on locally nameless representation
— Simple definitions of operations
— Rec/Shift inspired by semantics

Proofs of basic properties of the operations

Implementation follows semantics & uses ReplLib library for
generic programming (~2500 loc)



Future work

Scope preservation (see Pouillard and Westbrook)

Declarative semantics, independent of variable
representation

Alternative implementations (nominal, canonical,
optimized?)

Integration with theorem prover
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Cheney, FreshLib
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Charguéraud, The Locally Nameless
Representation

Sewell et al. OTT
Urban, General Bindings and Alpha-Equivalence
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Summary

Separate specification of binding structure from
implementation

Abstract types define a EDSL for binding
Type-generic programming automates boilerplate

Locally nameless representation simplifies semantics



