Binders Unbound

Stephanie Weirich
Brent Yorgey
Tim Sheard

Noah David Yorgey,
Sat Sept 17, 10:24 PM

From Inspiration to ...

data N = String
data Exp = Var N
| Lam N Exp

| App Exp Exp
fv (var x)
fv (Lam x e

)
fv (App e ¢’)

[x]
// (x]

e
e ++ fv e’

= fv
-y Bug source: may need

to freshen when recurring

under binders
Alpha-equivalence &

Capture-avoiding substitution

Frustration!
This should be “easy”

Declarative Specification for Binding

data N = Name Exp
data Exp = Var N
| Lam (Bind N Exp)
| App Exp Exp

Generic programming
available for

fv, aeq, substitution Monadic destructor for binding ensures

freshness
unbind :: fresh m => Bind N Exp -> m (N,Exp)

James Cheney,
Scrap Your Nameplate
ICFP 2005

Get right to the interesting part
of the implementation!!

Unbound Library
cabal install unbound

aeq :: (Alpha a) => a -> a -> Bool

data N = Name Exp
data Exp = Var N
| Lam (Bind N Exp)
| App Exp Exp

$(derive [“Exp])

instance Alpha Exp |5 |et x = stringzName “x” :: N

> let y = string2Name “y” :: N

> Lam x (Var x) ‘aeq’ Lam y (Var vy)
True

Unbound library

e Several small improvements to FreshLib:
— Documentation and cabal distribution
— Support for multiple atom sorts
— Improved substitution interface
— Two different monads for “freshness”

* Expressive general binding specification language
bind :: (Alpha b) => N -> b -> Bind N b
bind :: (Alpha a, Alpha b) => a -> b -> Bind a b

What sort of binding patterns can be
specified by type structure?

Beyond Single Binding

\xyz-> (xz)(yz)

data
data

N =
Ex
|
|

Name Exp
Var N

Xp =
Lam (Bind [N] Exp)
A

pp Exp (Exp]

\ (x, Justy) ->x+vy

All names in the pattern
expression are bound in the
body of the Bind

data
data

data

N
Pa
I
Ex
|
|
|

t =
PC
xp = Var N
La
Ap

Name Exp
Pvar N
on String (Pat)

am (Bind Pat Exp)
PP Exp Exp
Con String [Exp)

Embedded Terms in Patterns

letx=eine’

N

X bound in e’ but not e

let x1 = el
X2 =e2

ine

x1,x2... bound in e’

> (Bind N Exp)

AA'

-.i.-m-"mnﬁil“’o.‘:- exeept In cmopeas

adetaodxy in the body of the Binc
| 1let (Rind (N. Embed Exp) Exp)

data Exp = ...
| Let (Exp) (BindEdNEEXP))] Exp)

Can enforce equal number of
LHSs and RHSs

Double Binding (recursive)

letrecx=ein e’

X bound in e and e’

data Exp = ...
| Let (Bind N2AExpy, ExpPed Exp)) Exp)

All names in a rec pattern are
bound in both the Embeds and
the body of the Bind

let recx1l =el
X2 =e2

’

in e

x1, x2... bound in el,e2...
and e’

data Exp = ...
| Let (Bind (Ndc ([EXp)ErExpd) Exp)]) Exp)

Double Binding (non-recursive)

let* x1 =el
X2 =e2
x3 =e3

Vi

ine

x1 bound in e2, e3, e’
x2 bound in e3, e’
x3 bound in e’

data Exp = ...
| Let (Bind LetPat Exp)

data LetPat =
Nil
| Cons (Rebind (N, Embed Exp)
LetPat)

Binding Specification Language

Tro= (Terms)

| Primitive types, Int, Char, etc.

| Regular datatypes of terms, i.e. [T), (T,T)
| Name T

| Bind P T

Ry (Patterns)
| Name T

| Primitive types, Int, Char, etc.

| Regular datatypes of patterns, i.e. [P), (P,P)
| Embed T

| Rec P

| Rebind P P

| Shift P

Semantics

Paper gives precise semantics for fv, aeq and subst for terms
and patterns composed of these types

Semantics based on locally nameless representation
— Simple definitions of operations
— Rec/Shift inspired by semantics

Proofs of basic properties of the operations

Implementation follows semantics & uses ReplLib library for
generic programming (~2500 loc)

Future work

Scope preservation (see Pouillard and Westbrook)

Declarative semantics, independent of variable
representation

Alternative implementations (nominal, canonical,
optimized?)

Integration with theorem prover

Related Work

Cheney, FreshLib
Pottier, CaML

Charguéraud, The Locally Nameless
Representation

Sewell et al. OTT
Urban, General Bindings and Alpha-Equivalence
in Nominal Isabelle

Summary

Separate specification of binding structure from
implementation

Abstract types define a EDSL for binding
Type-generic programming automates boilerplate

Locally nameless representation simplifies semantics

