Depending on Types

Stephanie Weirich

University of Pennsylvania

s GHC a dependently-typed
language?

YES

The Story of Dependently-typed Haskell

* The Present: Show how type system extensions work together
to make GHC a dependently-typed language*

* The Past: Put those extensions in context, and talk about how
they compare to dependent type theory

* The Future: Give my vision of where GHC should go and how
we should get there

*we cannot port every Agda/Coq/Idris

program to GHC, but what we can do is impressive

Example: Red-black Trees

Running example of a data
structure with application-specific
invariants

— Root is black

— Leaves are black

— Red nodes have black children

— From each node, every path to a
leaf has the same number of black
nodes

All code available at
http://www.github.com/sweirich/dth
See Conor McBride’s talk
“How to keep your neighbours in order” later today

Insertion [Okasaki, 1993]

data Color = R | B Fix the element type
data Tree = E | T Color Tree A Tree to be A for this talk
insert :: Tree -> A -> Tree : : :
Temporarily suspend invariant:
insert s x = blacken (ins s) Result of ins may create a red
where ins E = TR E x E node with a red child.

ins s@(T color a y b)

X <Yy = balance color (ins a) y b
X >y = balance color a y (ins b)
otherwise = s

blacken (T _a xb) =TBaxb

Two fixes:

- blacken if root is red at the end

- rebalance two internal reds

How do we know insert preserves
Red-black tree invariants?

Do it with types
insert :: RBT -> A -> RBT

Red-black Trees in Agda [Licata]

data Nl : Set where .
Zero : [N
Suc : N — [

stgr Arguments of indexed datatypes
like Vary by data constructor.

data Color : Set where

R : Color Data constructors have dependent types.
The types of later arguments depend on

SRR CI I | dexed datatype the values of earlier arguments.
(: \
data Tree : Color — Il — Set where

Agda doesn’t distinguish between

types and terms. Curly braces
E : Tree B Zero indicate inferred arguments

TR : {n : NN} - Tree B n - A — Tree B n — Tree R n
TB : {n : N} {c; ¢, : Color} —

Tree c;, n > A — Tree ¢, n — Tree B (Suc n)

Red-black Trees in GHC

data Tree : Color — [— Set where
E : Tree B Zero
TR : {n : N} - Tree B n > A — Tree B n — Tree R n
TB : {n : N} {c; ¢, : Color} —

Tree ¢, n > A — Tree ¢, n — Tree B (Suc n)

Agda
data Tree :: Color ->» Nat -> * where
E :: Tree B Zero
TR :: Tree B n -> A -> Tree B n -> Tree R n
TB :: Tree c1l n -> A -> Tree c2 n -> Tree B (Suc n)

GADTs - datatype arguments may vary by constructor
Datatype promotion — data constructors may be used as types

Static enforcement

ghci> let t1 = TR E al E
ghci> :type t1
tl :: Tree 'R 'Zero
ghci> let t2 = TB t1 a2 E
ghci> :type t2
t2 :: Tree 'B ('Suc 'Zero)
ghci> let t3 = TR t1 a2 E
<interactive>:38:13:
Couldn't match type ‘'R’ with ¢'B’
Expected type: Tree 'B 'Zero
Actual type: Tree 'R 'Zero
In the first argument of ‘TR’, namely °t1’
In the expression: TR t1 A2 E

Agda and Haskell look similar

* Tree reversal swaps the order of elements in the tree

* |Indexed types prove that black height is preserved and root
color unchanged

rev : {n : N} {c : Color} — Tree c h — Tree c n

rev E = E

rev (TR a x b) = TR (rev b) x (rev a) --a, b : Tree B n

r TB b) = TB (r b r

ev (TB a x b) (rev b) x (rev a) Agda
rev :: Tree c n -> Tree ¢ n Haskell

rev E = E
rev (TR a x b)
rev (TB a x b)

TR (rev b) x (rev a)]‘ For the application of TR to

TB (rev b) x (rev a) type check, we must know that
(rev b) and (rev a) are black trees

of equal height.

How are Agda and Haskell different?

Haskell distinguishes types from terms

Agda does not

Types are special in Haskell:

1. Type arguments are always inferred
(HM type inference)

2. Only types can be used as indices to GADTs

3. Types are always erased before run-time

GADTs: Type indices only

 Both Agda and GHC support indexed datatypes, but GHC
syntactically requires indices to be types

e Datatype promotion automatically creates new datakinds
from datatypes

data Color :: * where -- Color is both a type and a kind
R :: Color -- R and B can appear in both
B :: Color -- expressions and types
data Tree :: Color -> Nat -> * where
E :: Tree B Zero
TR :: Tree B n -> A -> Tree B n -> Tree R n

TB :: Tree c1l n -> A -> Tree c2 n -> Tree B (Suc n)

Types are erased

RBT: Top-level type for red-black trees
Hides the black height and forces the root to be black

data RBT : Set where
Root : {n : N} — Tree B n — RBT

bh : RBT -> [

bh (Root {n} t) =n Agda

data RBT :: * where
Root :: Tree B n -> RBT

bh :: RBT -> Nat

bh (Root t) = ??? \

-- No runtime access to black height

Where do these features come from?

Datatype promotion

* Recent extension
[Yorgey, Weirich, Cretin, Peyton Jones, Vytiniotis, Magalhaes;

TLDI 2012]
— Inspired by Strathclyde Haskell Extension (SHE) [McBride]

— Introduced in GHC 7.4 [Feb 2012]

* Makes the type-term separation less brutal
— Automatically allows data structures to be used in types

— Includes kind-polymorphism (for promoting lists...)
— Limitation: GADTs can't be promoted (*more on that later)

“It's crazy how cool the features in new GHC releases are. Other
languages get patches to prevent some buffer overflow, we get

patches to add an entirely new level of polymorphism.” -mbetter
on Reddit

GADTs

Introduced in GHC 6.4 [March 2005]

Many pre-cursors:

— [Cheney, Hinze 2003] First-class phantom types (Haskell encoding)
— [Xi, Chen, Chen 2003] Guarded Recursive Datatypes (ATS)

— [Sheard, Pasalic 2004] Equality qualified types (Qmega)

— [Peyton Jones, Washburn, Weirich 2004] Generalized Algebraic
Datatypes (Haskell primitive)

— [Simonet, Pottier 2005] Guarded Algebraic Types (OCaml)

Challenge: Integration with Hindley-Milner type inference
— [Pottier, Régis-Gianis; POPL 2006]

— [Peyton Jones, Vytiniotis, Washburn, Weirich; ICFP 2006]

— [Sulzmann, Chakravarty, Peyton Jones; TLDI 2007]

— [Schrijvers, Peyton Jones, Sulzmann, Vytiniotis; ICFP 2009]

Could have been added to GHC much earlier...

Silly Type Families*
DRAFT

Lennart Augustsson and Kent Petersson
Department of Computer Sciences
Chalmers University of Technology
S-412 96 Goteborg, Sweden
Email: augustss@cs.chalmers.se, kentp@cs.chalmers.se

September 10, 1994

Abstract

This paper presents an extension to standard Hindley-Milner type checking that
allows constructors in data types to have non-uniform result types. We use Haskell
as the sample language, [Hud92], but it should work for any language using H-M.
It starts with some motivating examples and then shows the type rules for a simple
language. Finally, it contains a sketch of how type deduction could be done.

1 Introduction

More of the usual ranting should go here.

This extension of H-M type checking has been floating around as a vague suggestion
in the FP community for many years, but we do not know of any attempt to work out the
details before. It has been inspired by how pattern matching works in ALF [Coq92, Mag],
but we want to do type deduction as well as type checking.®

Insertion

How do we temporarily suspend the
invariants during insertion?

What is the type
of this tree?

balance (

Split balance into two cases

A4 B

balancel balanceR

Decompose argument

balanceﬁ) = S ?
balancel([] A)= :

Specialize

balancelﬁ) = g }
balancelB(A)= :

balancelB : ??? — A — Tree c nh — ??°?

A non-empty tree
that may break the
color invariant

A non-empty
valid tree, of
unknown color
“HiddenTree”

at the root
“AlmostTree”

balancelB(A

~
Il

balancelB(A A)

Programming with types (Agda)

* A non-empty valid tree, of unknown color

data HiddenTree : N — Set where
HR : {m : N} — Tree R m — HiddenTree m

HB : {m : N} — Tree B (Suc m) — HiddenTree (Suc m)

* A non-empty tree that may break the invariant at the root

incr @ Color — [— Use a function to calculate the
incr B = Suc black height from the color
incr R = id

data AlmostTree :

N}{c, ¢, :
Tree ¢; h > A — Tree ¢, h — AlmostTree (incr c n)

AT :

{n :

N — Set where

Color} — (c : Color) —

balancelB : {n : N}{c : Color} —
AlmostTree n — A — Tree c¢ n — HiddenTree (Suc n)

balancelB (AT R (TR a x b) y c) z d =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT R a x (TR by c)) zd =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT B a x b) y r = HB (TB (TB a x b) y r)
balancelB (AT R E x E) y r = HB (TB (TR E x E) y r)
balancelB (AT R (TB awb) x (TBcyd)) ze-=

HB (TB (TR (TB a w b) x (TB c y d)) z e)

balancelB(A)=

GHC version of AlmostTree

type family Incr (c :: Color) (n :: Nat) :: Nat where
Incr R n =n
Incr B n = Suc n

data Sing :: Color -> * where
SR :: Sing R
SB :: Sing B
data AlmostTree :: Nat -> * where
AT :: Sing ¢ -> Tree c1l n -> A -> Tree c2 n ->

AlmostTree (Incr c n)

Type family
Singleton type

Singleton types

Standard trick for languages with a type-term distinction
[Hayashi 1991][Xi, Pfenning 1998]

data Sing :: Color -> * where
SR :: Sing R -- SR only non-.1l inhabitant of Sing R
SB :: Sing B

Can be as expressive as a full-spectrum language
[Monnier, Haguenauer; PLPV 2010]

(x : A) = B|=» forall (x :: A). Sing x -> B

In GHC

— Haskell library (singletons) automates translation, though limited by
datatype promotion restrictions™ [Eisenberg,Weirich; HS 2012]

— Extensive use of singletons is painful® [Lindley,McBride; HS 2013]

Type families

* Motivation
— Highly parameterized library interfaces

class IsList 1 where instance IslList Text where
type Item 1 type Item = Char
fromList :: [Item 1] -> 1 fromList = Text.pack
toList :: 1 -> Item 1 tolList = Text.unpack

— Generic programming (type-indexed types)

— Move to replace “logic programming” style of type-level computation
(MPTC+EFD) with “functional programming” style

* Challenge: Integration with Hindley-Milner type inference
[Chakravarty, Keller, Peyton Jones, Marlow; POPL 2005]
[Chakravarty, Keller, Peyton Jones; ICFP 2005]
[Schrijvers, Peyton Jones, Chakravarty, Sulzmann; ICFP 2008]
[Eisenberg, Vytiniotis, Peyton Jones, Weirich; POPL 2014]

Type families are not functions

e More restrictive:

type family Id (a :: *) where
— No lambdas (must be named) yp y ()

Id a = a
— Application must be saturated

— Restrictions on unification instance Monad Id where

* More expressive:

— Can pattern match types, not type family F (a :: Nat) where
just data F Zero = Int

— Equality testing is available for

any kind i :: Fa->Fa

type family Item (a :: *) where
Item Text = Char
Item [a] = a

type family Eq (a :: k) (b :: k) :: Bool where
Eq a a = True
Eq a b = False

balancelB : {n : N}{c : Color} —
AlmostTree n — A — Tree c¢ n — HiddenTree (Suc n)

balancelB (AT R (TR a x b) y c) z d =

HR (TR (TB a x b) y (TB ¢ z d))
balancelB (AT R a x (TR by c)) zd =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT B a x b) y r =HB (TB (TB a x b) y r)
balancelB (AT R E x E) y r = HB (TB (TR E x E) y r)
balancelB (AT R (TB awb) x (TBcyd)) ze-=

HB (TB (TR (TB awb) x (TBcy d)) z e)

balancelB(A)=

balancelB ::
AlmostTree n -> A -> Tree ¢ n -> HiddenTree (Suc n)

balancelLB (AT SR (TR a x b) y ¢c) z d =

HR (TR (TB a x b) y (TB ¢ z d))
balancelB (AT SR a x (TR by c)) z d =

HR (TR (TB a x b) y (TB c z d))
balancelB (AT SB a x b) y r = HB (TB (TB a x b) y r)
balancelB (AT SR E x E) y r = HB (TB (TR E X E) y r)
balancelLB (AT SR (TB awb) x (TBcyd)) ze =

HB (TB (TR (TB awb) x (TBcy d)) z e)

balancelB(A)=

Implementation of insert

 The Haskell version of insert is in lock-step with Agda version!
* But, are they the same? Not quite...
Agda:

insert : RBT = A — RBT

given a (valid) red-black tree and an element,
insert will produce a valid red-black tree

Haskell:

insert :: RBT -> A -> RBT

given a (valid) red-black tree and an element,
if insert produces a red-black tree, then it will be valid

Difference: Totality

Adga requires all functions to be proved total

Haskell does not

* Onone hand, Agda provide stronger guarantees about
execution.

* On the other hand, totality checking is inescapable.
Sometimes not reasoning about totality simplifies
dependently-typed programming.

It is simpler not to prove totality

e (QOkasaki’s version of insert (simply typed): 12 lines of code

* Haskell version translated from Agda

— 49 loc (including type defs & signatures)
— precise return types for balance functions

balancelLB :: AlmostTree n -> A -> Tree ¢ n -> HiddenTree (Suc n)
balancelLR :: HiddenTree n -> A -> Tree ¢ n -> AlmostTree n

* Haskell version from scratch (see repo)

— 32 loc (including type defs & signatures)
— more similar to Okasaki’s code
— less precise return type for balance functions

balanceL :: Sing ¢ ->
AlmostTree n -> A -> Tree ¢ n -> AlmostTree (Incr c n)

What’s next for GHC

Extensions in Progress®

Datatype promotion only works once

— Cannot use dependently-typed programming at the type level
— Some Agda programs have no GHC equivalent

— Solution for GHC Core [Weirich,Hsu,Eisenberg; ICFP 2013]

— Current status: Richard has core implementation done, mtegratlon
with type inference in progress o P T

— Haskell Implementors Workshop talk
“Dependent Haskell”

GHC should have a real dependent type

— Plan: Identify a shared subset of types and terms,
introduce a new quantifier over that subset

— Adam Gundry's dissertation provides a road map

Type-Driven Development

The Agda Experience

On 2012-01-11 03:36, Jonathan Leivent wrote on the Agda mailing list:
> Attached is an Agda implementation of Red Black trees [..]

> The dependent types show that the trees have the usual

> red-black level and color invariants, are sorted, and

> contain the right multiset of elements following each function. [..]

> However, one interesting thing is that | didn't previously know or
> refer to any existing red black tree implementation of delete - |

> just allowed the combination of the Agda type checker and

> the exacting dependent type signatures to do their thing [..]

> making me feel more like a facilitator than a programmer.

The ICFP 2015 program?

e (Optional) Totality checking for GHC
— Pattern match exhaustiveness and termination
— Language should give programmers the choice [Trellys]

* Extended type inference
— Unsaturated/injective type families
— Special purpose constraint solvers [TypeNats, lavor Diatchki]
— Programmable error messages

* |DE support
— Automatic case splitting
— Automatic code completion and code synthesis

Conclusion

GHC programmers can use dependent types*

... and we’re actively working on the *

... but it is exciting to think about how dependent-
type structure can help design programs

Thanks to: Simon Peyton Jones, Dimitrios Vytiniotis, Richard
Eisenberg, Brent Yorgey, Geoffrey Washburn, Conor McBride, Adam
Gundry, lavor Diatchki, Julien Cretin, José Pedro Magalhaes, David
Darais, Dan Licata, Chris Okasaki, Matt Might, NSF

http://www.github.com/sweirich/dth

