
RepLib: A library for derivable
type classes

Stephanie Weirich
University of Pennsylvania

Generic Programming

 Aka Type-Directed Programming
 Behavior of generic functions determined by

type information
 Polymorphic equality, Read, Show
 Reductions
 Mapping

 Behavior determined by type structure and type
name
 Default case determined by structure
 May be overridden by special case

Approaches to Generic Programming

 Domain-Specific Language
Generic operation specified in external language,

compiled to Haskell
PolyP, Generic Haskell, Derivable type classes

 Generic functions
Define generic fold/map for each datatype
Define generic operation in terms of fold
Bimap, Scrap Your Boilerplate, Spines

 Type Reflection
Represent type structure with a datatype/GADT
Define operation with pattern matching & recursion
Typeable, First-class phantom types, RepLib

Representation types

Singleton types that reflect type
information in the term language

 Implemented in GHC with a GADT

data R a where
Int :: R Int
Unit :: R ()
Pair :: R a -> R b -> R (a,b)
Arrow :: R a -> R b -> R (a -> b)

Pair Int Unit :: R (Int, ())

Using Rep types

Data constructor determines the type
parameter

gsumR :: R a -> a -> Int
gsumR Int x = x
gsumR Unit x = 0
gsumR (Pair t1 t2) (x1,x2) =
 gsumR t1 x1 + gsumR t2 x2
gsumR (Arrow t1 t2) f = 0

Advantages of Rep types

Definition by pattern matching/recursion
Not limited to simple folds
SYB-style combinators still available
Arrow types

Dynamic types
Type-directed ops work even if type isn’t

known statically

data Dynamic = forall a. Dyn (a, R a)

Problems with Rep Types

Using Rep types safely
Using Rep types conveniently
Representing datatypes generically
Specializing generic operations

Using Rep types safely

Not all operations are defined for all types

Other operations make even less sense for
functions

How to statically prevent showR from
being called on Arrow type reps?

showR :: R a -> a -> String
showR (Arrow t1 t2) f = “<closure>”

Using Rep types conveniently

O'en rep type argument is known
statically

Constructing these reps by hand is tedious

gsumR ((Char `Pair` Char) `Pair` Bool)
 ((‘a’,’b’), True)

Solution: type classes

 Use type class to provide representation

 Instances declare what types are safe for each
operation

class Rep a where rep :: R a
instance Rep Int where rep = Int
instance (Rep a, Rep b) => Rep (a,b) where
 rep = Pair rep rep
class Rep a => GSum a where
 gsum :: a -> Int
 gsum = gsumR rep

instance GSum Int
instance (GSum a, GSum b) => GSum (a,b)

Generic datatype Reps

 All datatypes are different in Haskell

 Don’t want new data constructor for each new datatype

 Want datatype-generic programming

data Phone = Phone Int
data Age = Age Int
f :: Age -> Age
f (Phone 1234567) 

data R a where
 Int :: R Int
 Phone :: R Phone
 Age :: R Age
 …

Datatype-Generic Representation types

 Representation of a datatype constructor

 Heterogeneous list

 Embedding/Projection pair

 Rep of heterogeneous list

data Emb l a = Emb { to :: l -> a,
 from :: a -> Maybe l }

data Nil = Nil
data a :*: l = a :*: l

data RTup l where
 RNil :: RTup Nil
 (:+:) :: Rep a => R a -> RTup l -> RTup (a :*: l)

data Con a = ∀ l. Con (Emb l a) (RTup l)

Generic view of datatypes

Rep of data constructor

Example
data Tree a = Leaf a | Node (Tree a) (Tree a)

leafEmb :: Emb (a :*: Nil) (Leaf a)
leafEmb = {
 to = \(a :*: Nil) -> Leaf a,
 from = \x -> case x of Leaf a -> Just (a :*: Nil)
 _ -> Nothing
}
rLeaf :: forall a. Rep a => Con (Leaf a)
rLeaf = Con leafEmb ((rep::R a) :+: RNil)

data Con a = ∀ l. Con (Emb l a) (RTup l)

Generic view of datatype

 List of data constructor reps

 Plus name and reps of type args

 Example

data R a where
 …
 Data :: DT -> [Con a] -> R a

data DT = ∀l.DT String (RTup l)

rTree :: forall a. Rep a => R (Tree a)
rTree = Data (DT “Tree” ((rep :: R a) :+: RNil))
 [rLeaf,rNode]

Using generic rep

gsumR :: R a -> a -> Int
gsumR Int x = x
gsumR (Pair t1 t2) (x1,x2) = gsum t1 x1 + gsum t2 x2
gsumR (Data dt cons) x = findCon cons
 where
 findCon :: [Con a] -> Int
 findCon (Con emb reps : rest) =
 case (from emb x) of
 Just kids -> foldl_l (\r a b -> gsumR r a + b) 0 reps kids

 Nothing -> findCon rest
 findCon [] = error “Impossible”
gsumR _ x = 0

•Provide instance of Rep class

•Derive instance of GSum class

•Call generic function

Derivable type classes

instance Rep a => Rep (Tree a) where
 rep = rTree

instance GSum a => GSum (Tree a)

gsum (Node (Leaf 4) (Leaf 5)) = 9

Specializing Generic Functions

newtype M = M Int
(derive [``M])

instance GSum M where
 gsum (M x) = 0

gsum (M 3) = 0
gsum (M 4, M 3) = 7

Solution

 Problem is in definition of gsumR for Pairs (and Data)
 If we could abstract over type classes…

data R c a where
 Int :: R Int
 Pair :: (c a, c b) => R c (a,b)
 …

gsumR :: R GSum a -> a -> String
gsumR Int x = x
gsumR Pair (x1,x2) = gsum x1 + gsum x2
…

instance (c a, c b) => Rep c (a, b) where
 rep = Pair
instance Rep GSum a => GSum a where
 gsum = gsumR rep

What is RepLib?

Definitions of Representation types
Both vanilla and parameterized reps

Template Haskell automatically creates
reps

Generic functions (e.g. gsum)
SYB-like combinators to define new ones
(e.g. foldl_l, gmapT, gmapQ)

Some support for type-constructor
indexed functions (see paper)

Limitations

 Two different representation types
Parameterized representations not dynamic
Still other reps necessary for arity-2 and arity-3 generic

functions (map and zip)
 No type-indexed types

Limited interaction between GADTs and MPTC
 No kind polymorphism/kind-indexed types

Args to type constructors must all be kind type
 Requires GHC extensions
 Can’t represent all GHC types
 Dynamic type analysis

Conclusion

RepLib balances expressiveness and
simplicity

RepLib can define
many common generic functions that
analyze many common types in the most
popular Haskell implementation.

Download now

Help add to the library!
New generic functions
New combinators

Available at:
http://www.cis.upenn.edu/~sweirich/RepLib

Required GHC extensions

Lexically-scoped type variables
Higher-rank polymorphism
Existential components
GADTs
Undecidable instances
Template Haskell (for rep generation)

