RepLib: A library for derivable
type classes

Stephanie Weirich
University of Pennsylvania

Generic Programming

Aka Type-Directed Programming

Behavior of determined by
type information

Polymorphic equality, Read, Show

Reductions

Mapping
Behavior determined by type structure and type
name

Default case determined by structure
May be overridden by special case

Approaches to Generic Programming

Domain-Specific Language
Generic operation specified in external language,
compiled to Haskell

PolyP, Generic Haskell, Derivable type classes

Generic functions
Define generic fold/map for each datatype
Define generic operation in terms of fold
Bimap, Scrap Your Boilerplate, Spines

Type Reflection

Represent type structure with a datatype/GADT
Define operation with pattern matching & recursion
Typeable, First-class phantom types, RepLib

Representation types

Singleton types that reflect type
information in the term lanquage

Implemented in GHC with a GADT

data R a where
Int R Int
Unit =R(QO
Pair :Ra->Rb->R(ab)
Arrow :Ra->Rb->R(a->b)

Pair Int Unit :: R (Int, ()

Using Rep types

Data constructor determines the type
parameter

gsumRB :: Ra->a->Int

gsumR Int X =X

gsumR Unit x=0

gsumR (Pair t1 t2) (x1,x2) =
gsumR tl x1 + gsumR t& x2

gsumR (Arrow t1 t) f=0

Advantages of Rep types

Definition by pattern matching/recursion
Not limited to simple folds
SYB-style combinators still available
Arrow types

Dynamic types

Type-directed ops work even if type isn't
known statically

data Dynamic = forall a. Dyn (a, R a)

Problems with Rep Types

Using Rep types safely

Using Rep types conveniently
Representing datatypes generically
Specializing generic operations

Using Rep types safely

Not all operations are defined for all types

showR :: R a ->a -> String
showR (Arrow tl t2) f = “<closure>”

Other operations make even less sense for
functions

How to statically prevent showR from
being called on Arrow type reps?

Using Rep types conveniently

Often rep type argument is known
statically

gsumR ((Char Pair Char) Pair Bool)
((a’,’b’), True)

Constructing these reps by hand is tedious

Solution: type classes

Use type class to provide representation

class Rep awhererep: Ra

instance Rep Int where rep = Int

instance (Rep a, Rep b) => Rep (a,b) where
rep = Pair rep rep

class Rep a => GSum a where
gsum :: a -> Int
gsum = gsumR rep

Instances declare what types are safe for each
operation

instance GSum Int
instance (GSum a, GSum b) => GSum (a,b)

Generic datatype Reps

All datatypes are differentin Haskell

data Phone = Phone Int
data Age = Age Int
f:: Age > Age

f (Phone 1234567) x

Don’t want new data constructor for each new datatype

data R a where
Int R Int
Phone :: R Phone
Age :RAEge

Want datatype-generic programming

Datatype-Generic Representation types

Representation of a datatype constructor

data Cona= V1. Con (Embla) (RTupl)

Heterogeneous list
data Nil = Nil
dataa:*:1=a:*:1

Embedding/Projection pair

data Embla=Emb {to :1->a,
from :: a -> Maybel }

Rep of heterogeneous list
data RTup 1 where
RNil :: RTup Nil
(:+:) =2Repa=>Ra->RTupl->RTup (a:*:1)

Generic view of datatypes

Rep of data constructor
data Cona= V1. Con (Embla) (RTupl)

Example

data Tree a = Leaf a | Node (Tree a) (Tree a)

leafEmb :: Emb (a:*: Nil) (Leaf a)
leafEmb = {
to =\(a:*:Nil) ->Leafa,
from = \x -> case x of Leaf a -> Just (a :*: Nil)
_ -> Nothing
}
rLeaf :: forall a. Rep a => Con (Leaf a)
rLeaf = Con leafEmb ((rep::R a) :+: RNil)

Generic view of datatype

List of data constructor reps
data R a where

Data :: DT ->[Con a] > R a

Plus name and reps of type args
data DT = V1.DT String (RTup 1)

Example pTree :: forall a. Rep a.=> R (Tree a)
rTree = Data (DT “Tree” ((rep :: Ra) :+: RNil))
[rLeaf,rNode]

Using generic rep

gsumR :: Ra->a->Int
gsumR Int x =x
gsumR (Pair tl t2) (x1,x2) =gsum t1 x1 + gsum t2 x2
gsumR (Data dt cons) x = findCon cons
where
findCon :: [Con a] -> Int
findCon (Con emb reps : rest) =
case (from emb x) of
Just kids -> foldl_1 (\ra b -> gsumR r a +b) O reps kids
Nothing ->findCon rest
findCon [] = error “Impossible”
gsumR _x=0

Derivable type classes

e Provide instance of Rep class

instance Rep a => Rep (Tree a) where
rep =rlree

e Derive instance of GSum class

instance GSum a => GSum (Tree a)

o Call generic function
gsum (Node (Leaf4) (Leaf5))=9

Specializing Generic Functions

newtype M = M Int
(derive [M])

instance GSum M where
gsum (M x)=0

gsum (M 3)=0
gsum (M4, M3)="7

Solution

Problem is in definition of gsumR for Pairs (and Data)
If we could abstract over type classes...

data R ¢ a where
Int :: RInt
Pair: (ca,cb)=Rc (a,b)

gsumR :: R GSum a -> a -> String
gsumR Int x=x
gsumR Pair (x1,x2) = gsum x1 + gsum X2

instance (c a, ¢ b) => Rep ¢ (a, b) where
rep = Pair

instance Rep GSum a => GSum a where
gsum = gsumR rep

What is RepLib?

Definitions of Representation types
Both vanilla and parameterized reps

Template Haskell automatically creates
reps

Generic functions (e.g. gsum)

SYB-like combinators to define new ones
(e.qg. foldl_Il, gmapT, gmapQ)

Some support for type-constructor
indexed functions (see paper)

Limitations

Two different representation types

Parameterized representations not dynamic

Still other reps necessary for arity-2 and arity-3 generic
functions (map and zip)

No type-indexed types
Limited interaction between GADTs and MPTC

No kind polymorphism/kind-indexed types
Args to type constructors must all be kind type

Requires GHC extensions
Can‘t represent all GHC types
Dynamic type analysis

Conclusion

RepLib balances expressiveness and
simplicity

RepLib can define

generic functions that
analyze types in the
Haskell implementation.

Download now

Help add to the library!

New generic functions
New combinators

Available at:
http://www.cis.upenn.edu/~sweirich/RepLib

Required GHC extensions

Lexically-scoped type variables
Higher-rank polymorphism
Existential components
GADTs
Undecidable instances

Template Haskell (for rep generation)

