
DON’T MIND THE FORMALIZATION GAP:
THE DESIGN AND USAGE OF HS-TO-COQ

Antal Spector-Zabusky

A DISSERTATION
in

Computer and Information Science
Presented to the Faculties of the University of Pennsylvania

in
Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
2021

Supervisor of Dissertation
Stephanie Weirich
Professor of Computer and Information Science

Graduate Group Chairperson
Mayur Naik, Professor of Computer and Information Science

Dissertation Commitee
Steve Zdancewic, Professor of Computer and Information Science, Chair
Benjamin Pierce, Professor of Computer and Information Science
Mayur Naik, Professor of Computer and Information Science
Andrew Appel, Professor of Computer Science, Princeton

DON’T MIND THE FORMALIZATION GAP:
THE DESIGN AND USAGE OF HS-TO-COQ

COPYRIGHT

2021

Antal Spector-Zabusky

This work is licensed under a Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International (CC BY-NC-SA 4.0) License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Acknowledgments

First and foremost, I want to extend my deepest thanks to my advisor, Stephanie
Weirich. I still remember being an uncertain PhD student coming into her office to
change projects and hearing her say, “I have a great project for you”. I was nervous it
wouldn’t be a good fit, but from the moment the next words were out of her mouth I
knew it was perfect. She understood me from the get-go, both as a researcher and
as a person, and the lessons I took from her mentorship in research, programming,
theorem proving, and writing made me the programming language theorist I am
today. Stephanie’s keen mind, her insightful problem-solving skills, her persistence,
her eagerness to get hands on with code, and her patience made her the best advisor I
could have asked for. And her passion for board games was crucially important icing
on the cake! Without you, Stephanie, this document – and everything it stands for –
wouldn’t be here.

In a similar vein, I want to extend my thanks to Benjamin Pierce, with whom I
worked when I first arrived at Penn. Benjamin knew how to get me involved with
research, bringing me into collaborations both inside and outside Penn and ensuring
my entry into the programming language research community; he also gave me my first
graduate-level lessons in writing good research papers and giving high-quality talks,
skills which I have taken to heart and have kept cultivating. Benjamin also helped
me through my struggle to find a thesis project that suited me, and was dedicated to
helping me find that project no matter who was running it. Thank you, Benjamin, for
getting me started, and for knowing when to let me fly.

I also want to thank the rest of my committee, for reading this dissertation and
more. Thank you to Steve Zdancewic, who has been there since the beginning; beyond
this thesis, he’s helped me with many a presentation and sparred with me in many
a board game. Thank you to Andrew Appel, whose presence and advice as part of
DeepSpec helped bring a different perspective to my research goals. And thank you
to Mayur Naik for stepping into the DeepSpec world to understand my work.

Beyond my committee, I have been supported by more people than I can name.
Thank you to my Penn PL cohort, who entered the PhD with me: Leonidas Lam-
propoulos, Jennifer Paykin, and Robert Rand. It was a sincere pleasure to navigate
the PhD together with them, from classes to Quizzo to research and finally (finally!)
to graduating. I’m glad to call them my colleagues, but I’m even more grateful to call
them my friends. And thank you as well to Kenny Foner, Alex Burka, Sonia Roberts,
and my other Penn friends for their academic, institutional, and personal support.

In the same vein, my thanks go out to all my other collaborators, because research
is not an island. Thank you to the hs-to-coq team, without whom the work in
this dissertation wouldn’t have been possible: Stephanie, Yao Li, Joachim Breitner,

iii

Christine Rizkallah, and John Wiegley. Going back further, thank you to my earliest
collaborators, on testing and micro-policies: Benjamin, Leo, Arthur Azevedo de
Amorim, Cătălin Hrit,cu, John Hughes, Dimitrios Vytiniotis, Nick Giannarakis, and
Andrew Tolmach. And of course, my thanks to everyone in Penn PL Club not just for
their academic support, but also for making Fridays (and other days) better.

Even before Penn, my thanks to the Williams CS department for nurturing me and
my love of computer science. In particular, my thanks to my undergraduate advisor
Steve Freund, for teaching me about programming language theory, introducing me to
PL research, and for helping me navigate my path forward; and to Jeannie Albrecht,
for giving me the opportunity to do my very first computer science research project.

I also want to thank GET-UP for supporting all the graduate students at Penn.
I’m proud of what we built in solidarity with each other, and although we didn’t win,
I believe we can change that next time.

On a less academic note, my thanks to the communities in Philadelphia who
supported me throughout this process. Thank you to my Penn Quizzo team, for
making sure I was out of the house on Monday nights; to Penn Gamers, for transmuting
a shared love of board games into friendships; and to the Thursday night contra dance,
for being a broad community that embraced me and kept me moving.

I would not have made it to the finish line without the love and support of all
my friends. My wholehearted thanks to the group chat: Colin Killick, Molly Olguín,
Mattie Mitchell, Annie Moriondo, Jackie Pineda-Andrews, and Ian Pineda-Andrews
(or Agni, Casimir, Ilaina, Max, Screech, and all of Punchworld —Zoltán). Thank
you for being there literally 24/7. I appreciate their being a neverending fount of
camaraderie, serious ideas, silly jokes, and sincere emotional support. My thanks to
my Williams undergraduate thesis crew: Matt Hosek, Tori Borish, Katie Kumamoto,
and Dan Kohane. I’m glad to have had them along for this journey twice – and
we’re all finally allowed to sleep now! My thanks to Aaron Bauer, Jake Levinson,
and Nick Arnosti, who introduced me to board games. This would be enough of a
reason for thanks, but I also appreciate their lasting friendship and its propensity for
deep conversation (preferably over a board game or four). And my thanks to Sasha
Ehrhardt for being my friend since we were 5 years old, from tigers and gibbons to
computers and libraries with a whole lot more in between.

My thanks to Caron Bove for driving me between LACS and IHS back in high
school so that I could attend my math and science classes – I told you then that I’d
acknowledge you now, and I’m delighted to finally be able to do so.

I want to recognize my great-uncle Clifford Spector, whom I wish I’d met. It
amazes me that his work in computability theory nestled so closely next to my chosen
field without me realizing it, and I’m tickled that he ended up my academic great-
great-great-uncle, our familial and professional lineages off by only two generations.

And last, but never least, my neverending thanks and gratitude to my family. Your
love, support, and jokes (good and bad) mean more to me than I will ever be able to
say. My thanks to my mom and dad, Stacia Zabusky and Donald Spector, for not
merely believing in me, but for reifying that belief into actions that build me up. And
my thanks to my brother, Elias Spector-Zabusky, for understanding me more deeply
than anybody else in the world. I love you all.

iv

ABSTRACT

DON’T MIND THE FORMALIZATION GAP:
THE DESIGN AND USAGE OF HS-TO-COQ

Antal Spector-Zabusky
Stephanie Weirich

Using proof assistants to perform formal, mechanical software verification is a
powerful technique for producing correct software. However, the verification is time-
consuming and limited to software written in the language of the proof assistant. As
an approach to mitigating this tradeoff, this dissertation presents hs-to-coq, a tool
for translating programs written in the Haskell programming language into the Coq
proof assistant, along with its applications and a general methodology for using it to
verify programs. By introducing edit files containing programmatic descriptions of
code transformations, we provide the ability to flexibly adapt our verification goals to
exist anywhere on the spectrum between “increased confidence” and “full functional
correctness”.

v

Contents

Title i

Copyright ii

Acknowledgments iii

Abstract v

Contents vi

List of Figures viii

Chapter 1. Introduction 1
1.1. How to work with hs-to-coq 4
1.2. The edit language and the mechanized formalization gap 8
1.3. DeepSpec 9
1.4. Contributions 10
1.5. Outline 11

Chapter 2. An Introductory Example: Bags 12
2.1. Bags in GHC 12
2.2. Translating Bag and its operations 15
2.3. Edits for Bags 16
2.4. Specifying the behavior of Bags 18
2.5. From program to theorem 19

Chapter 3. hs-to-coq: Design and Usage 21
3.1. How we’ve used hs-to-coq 21
3.2. Desiderata 22
3.3. Test suite 25
3.4. Mechanized formalization gaps 26
3.5. Infix operators 26
3.6. Notation for literals 27
3.7. Transforming code automatically 29
3.8. Partiality 31
3.9. Recursion 33

Chapter 4. The Edit Language 39
4.1. The eight categories of edits 39
4.2. The history and design of the edit language 41
4.3. The general form of edits 43

vi

4.4. The semantics of edits 43
4.5. Using edits 44

Chapter 5. “Total Haskell is Reasonable Coq” 45
5.1. Type class laws 46
5.2. Hutton’s Razor 55
5.3. Bags 60

Chapter 6. “Ready, Set, Verify!” 71
6.1. Data structures 71
6.2. From a test suite to a proof suite 75

Chapter 7. “Embracing a Mechanized Formalization Gap” 86
7.1. The structure of GHC 87
7.2. What is Core? 87
7.3. Disentangling GHC 89
7.4. Edits for GHC 92
7.5. Removing coinduction from GHC 98
7.6. Axioms vs. rewrites 102
7.7. Justifying edits with proofs 104
7.8. Verifying properties of the compiler 125
7.9. Gradations of being live 129

Chapter 8. A Comprehensive Exposition of the Edit Language 131
8.1. The syntax of edits 131
8.2. Skipping Haskell code 133
8.3. Axiomatizing Haskell code 141
8.4. Adding Coq code 145
8.5. Changing the structure of the Haskell code 152
8.6. Rewriting expressions 161
8.7. Providing extra information 165
8.8. Proving termination 175
8.9. Meta-edits 181

Chapter 9. Related Work 183
9.1. Extraction 183
9.2. Translating Haskell to non-Coq languages 188
9.3. Translating functional languages into logical formulæ 198
9.4. LiquidHaskell: an alternative approach to verifying Haskell programs 199
9.5. A verified functional language: CakeML 211

Chapter 10. Conclusions and Future Work 215
10.1. Edits: a retrospective 215
10.2. Evaluating the edit language 217
10.3. Future work 220
10.4. hs-to-coq 223

Bibliography 224

vii

List of Figures

1.1 How hs-to-coq operates 3

2.1 The Bag data type in GHC 13
2.2 Five different Bag representations of *1, 2, 3+. 14
2.3 The Bag data type from GHC translated into Coq by hs-to-coq. 15

5.1 Evaluation of a stack-based program that adds 1 and 2. 56

6.1 The effect of an {-# UNPACK #-} annotation. 73

7.1 The internal compilation pipeline of GHC, with details for the front-end. 86
7.2 Haskell and Gallina versions of the Core AST. 88
7.3 The dependency graph of the modules that make up Core. 91
7.4 Mutual recursion in Haskell and Gallina. 95
7.5 The representation of variables in GHC, and its conversion into Coq. 126

9.1 Important parts of the grammar of Liquid Haskell refinements. 202
9.2 How to get to CakeML. 213

10.1 Are edits a deep language? 218

viii

CHAPTER 1

Introduction

Writing software is hard. Writing correct software is harder. The history of
computing is replete with dire failures and heroic efforts to prevent them. Whether
the problem is simple errors in neophytes’ first programs, everyday web browsers
crashing, or the tragedy of the Therac-25 radiation poisonings (Leveson and Turner,
1993), software bugs are inescapable.

It is a testament to the skill and care of programmers since Ada Lovelace that
software, by and large, works. Researchers and practitioners have, over the years,
developed a panoply of approaches that we can take to increase our confidence
that a program is correct; these approaches include pencil-and-paper reasoning,
code review (Baum, Leßmann, and Schneider, 2017), unit testing (Runeson, 2006),
property-based random testing (e.g., QuickCheck) (Claessen and Hughes, 2000), model
checking (Jhala and Majumdar, 2009), and proof-based formal verification (Barendregt
and Geuvers, 2001; Wiedijk, 2006). It is this last that we are concerned with here.

Formal verification, in general, means providing a mathematical proof that a piece
of software is correct. This can provide a unique level of certainty for the parts of the
program covered by the proofs; other techniques can never provide the irrefutability of
mathematical proof. At the same time, this means that verification comes with unique
challenges, since writing proofs is a particularly difficult task. The form of the proof
used in verification varies; it can range from providing a handwritten proof authored
by a human who has analyzed the source code, to the model checking approach where
the program’s behavior on specific families of inputs is exhaustively checked, to the
approach that we will discuss here: computer-aided theorem proving. This approach
uses a program, called a proof assistant, which can both express mathematical theorems
and proofs, and also check that a proof of a theorem is correct. The reason these
programs are called proof assistants is that they do not generate the proofs themselves;
instead, the user writes the proof in the language of the proof assistant, perhaps
assisted by automation capabilities that it makes available.

Computer science has come a long way, and we now know that verifying code is
possible. But what code can we verify? This is where research remains in flux. While
we can reliably verify code written in proof assistants themselves, this is limiting. In
this dissertation, I will present hs-to-coq, a tool for translating programs written in
the Haskell programming language into the Coq proof assistant so that they can be
verified. This translation technique supports verifying existing Haskell programs with
realistic levels of complexity, without ever needing to modify them.

Haskell is a purely functional, statically typed, general purpose programming
language. Its type system was originally based on Hindley-Milner type inference over
algebraic data types extended with type classes, a form of ad hoc polymorphism; it

1

now supports a far more complex universe of types, including generalized abstract data
types, higher-rank polymorphism, and kind polymorphism. Unusually, it is nonstrict:
terms may be evaluated only when needed, often implemented via lazy evaluation.
While not as popular as truly mainstream languages like Java or Python, Haskell
programs are written “in the wild”, and not simply for academic reasons; the Glasgow
Haskell Compiler (GHC) (Marlow and Peyton-Jones, 2012) is one such example, as
are the tiling window manager xmonad (Janssen, Stewart, Vogt, Yorgey, Wagner,
Roundy, Schoepe, Mertens, Pouillard, Cheplyaka, Branwen, Mai, Shepherdson, and
Mullins, 2021) and the document format conversion tool Pandoc (MacFarlane, 2021).

Coq can be viewed in two different ways. First, Coq is a proof assistant: a program
designed to allow a user to prove mathematical theorems. Coq can express both
theorem statements (written in a functional language called Gallina) and mathematical
proofs of those theorems (written either in Gallina or in Ltac, a “tactic language” for
generating proofs); it then checks that these proofs are correct. It is a proof assistant
because it does not generate proofs (or theorem statements) entirely automatically; it
enables the user to write these proofs (and theorem statements), provides abstraction
and automation facilities that the user can take advantage of, and ensures the user does
not make mistakes. It has been used for a variety of heavy-duty verification projects,
such as verifying the four-color theorem (Gonthier, 2008) and writing CompCert, a
verified C compiler (Leroy, 2009).

Simultaneously, Coq is a purely functional, statically typed, total programming
language with dependent types. Its type system is based on the Calculus of Inductive
Constructions, where the “inductive constructions” refer to generalized algebraic data
types, and has been extended with further features such as coinduction. Through
what is called the Curry–Howard correspondence, types can be viewed as theorem
statements and terms of those types can be viewed as proofs; the type system of Coq
is expressive enough to state meaningful theorems, and because the language is total
(that is, because it checks that all programs terminate), the proof system is consistent.
Because this proof system is also a programming language, it is particularly well-suited
to stating and proving theorems about programs written in Coq (more precisely, in
Gallina, but we elide the distinction going forward).

As we can see from these descriptions, at a high level of abstraction, Haskell and
Coq are very similar: both are purely functional and statically typed, and both are
built on top of generalizations of algebraic data types. But Haskell was designed as a
programming language, and Coq was designed as a proof assistant. Is there a way we
could get the best of both worlds? If we could link these languages, then we could
bring the benefits of formal verification with a proof assistant to Haskell code.

While thinking about how to bridge this gap, we came up with an idea: what if we
could take Haskell code and automatically convert it into Coq? This would allow us to
verify existing Haskell programs that had not been written with verification in mind,
and would allow us to carry out that verification with all the power of the existing
Coq tooling. To evaluate this approach, I wrote the first version of hs-to-coq, a tool
for doing just this: translating Haskell programs into Coq. The hope was that we
could then verify the translated Haskell program just as we could verify any other
Coq program. And once the translation tool was complete, this was borne out: we

2

Prog.hs

edits

hs-to-coq Prog.v

X

Figure 1.1. How hs-to-coq operates: Given a Haskell file (Prog.hs),
the user writes edit files (edits) which record the changes that will
be made to the generated output. Once they have both of these, the
user feeds them into hs-to-coq, examines the generated Coq output
(Prog.v), and proves it correct.

were able to state and prove theorems about simple Haskell programs just as we had
hoped!

The next question was how to scale this process up. Due to the intricacies of
the translation process, hs-to-coq was already nontrivial, and as we scaled it up
to support more complex Haskell programs, we discovered commensurately more
complexity and richness within the translation task, leading to a novel perspective
on verification. These more complex programs correspondingly had many more ways
we could verify them: different pieces to translate, different methods of translation,
and different theorems to prove. To support this variety of different approaches, and
to more broadly be able to render the Haskell code into a form that Coq could work
with, we gave hs-to-coq the ability to transform the Haskell program during the
translation process in a user-configurable way.

With this, we come to the full picture of how to use hs-to-coq, which is also
presented diagrammatically in Figure 1.1: after selecting the Haskell code they wish
to verify, the user also writes a new edit file containing a programmatic representation
of the systematic code transformations that they wish to apply to the output of the
translation. Once they have the Haskell code and the edits, they pass these both to
hs-to-coq, which produces the appropriately modified Coq file, on which verification
can then proceed. During development, attempting the verification process often
results in the user realizing that they need further edits, producing an edit–verification
feedback loop.

These edit files are a key contribution of hs-to-coq. They provide support for
hs-to-coq’s unique approach to verification, which has two major prongs:

3

(1) Enabling the user to never edit Haskell code, instead using edit files to make
necessary changes.

(2) Providing a mechanized formalization gap.
The first prong is hs-to-coq’s response to the phenomenon that, in practice, any

attempt to verify existing code will need to modify said code to make it suitable for
verification. These modifications can range from changing variable names to avoid a
reserved word in the verifier (trivial) to making sure that a function is amenable to
the termination checker (difficult). In practice, making these sorts of modifications to
some degree is always necessary. Edit files record these modifications in a declarative
format. This is essential because making these sorts of changes directly to the affected
source code isn’t practical. For one thing, it makes it very difficult to understand
what has changed from the original. Text-level diffs are helpful, but only tell us so
much; as a particularly striking example, changing the name of a variable can affect
large swaths of the program even though the change is conceptually simple. Moreover,
it also becomes impractical to pull in updates made to the original source code, so
the verification rapidly becomes targeted at a fork of the original project. Editing
the output of the translation is even worse; it has all these disadvantages, but also
prevents ever running the translation a second time, as that would require redoing all
the changes by hand.

By using edit files, we never need to edit Haskell code; any change we would make
is recorded as a single instruction in such a file. Verification remains targeted at the
exact code we started with. We also can understand the changes that are being made
more directly: each edit corresponds to a single semantic change. And we also ensure
that this is an accurate and complete list of all the changes being made, because we
never edit code in any other way.

The second prong is a different way of looking at these same edit files. When
we verify a model of any program – and our Coq translations are in a certain sense
a model of the original Haskell programs – there is always some formalization gap
between the theorem and the actual running code. In addition to trusting the pieces
of the system (our theorem prover, the hardware, etc.), we have to trust that our
model corresponds to the original program. Usually, this analogy is discussed in
prose, explaining why we believe the two are connected; if a mechanical translation
is used, then any changes that were made directly to the input to enable translation
are invisible. For hs-to-coq, however, the edit files serve as a record of exactly what
changes were made to the input: which functions were skipped, rewritten, and so on.
This record is also machine-readable, since hs-to-coq uses it as input to perform the
translations. Thus, the formalization gap between our Coq model and Haskell input
has now been mechanized; any changes are recorded in the edit file itself.

1.1. How to work with hs-to-coq

Now that we have outlined hs-to-coq’s approach to verifying code, we can
walk through the experience step by step. The workflow, which was summarized in
Figure 1.1, has four steps:

4

(1) Find (or write) some Haskell code.
(2) Write edit files describing the modifications being made to the generated

code.
(3) Run hs-to-coq to generate Coq output.
(4) Prove theorems about the resulting Coq library.

By walking through what each of these steps entails, we’ll gain a fuller perspective on
what using hs-to-coq is like and why we might choose to do so. As our guide, we’ll use
a the merge function from mergesort. This function merges two sorted lists into a single
sorted list; for example, we will have merge [1,3,5] [0,2,4] == [0,1,2,3,4,5]
and merge [0,4] [1,2,8] == [0,1,2,4,8].

Step 1: Find Haskell code. In order to verify a program, the first thing we
have to do is choose what we’re verifying. In most of our actual work, this has involved
choosing existing Haskell programs; to keep things manageable for this example, we’ll
write the merge function right now.

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys

We saw some examples of this function’s behavior above; recall that we’re only
interested in what happens if the input lists are sorted. We’ll assume that this
function lives in a module named Sort.

Step 2: Write edit files. Unfortunately, we can’t simply translate merge into
Coq automatically. If we try, we get the following Coq output:1

Definition merge {a} `{Ord a} : list a -> list a -> list a :=
fix merge (arg_0__ arg_1__ : list a) : list a :=

match arg_0__, arg_1__ with
| nil, ys => ys
| xs, nil => xs
| cons x xs, cons y ys =>

if x <= y : bool
then cons x (merge xs (cons y ys))
else cons y (merge (cons x xs) ys)

end.

We can see that this Coq function lines up directly with the Haskell function: the
name merge remains merge; the Haskell type [a] becomes the corresponding Coq type
list a; and the pattern matches on [] and x:xs or y:ys become a pattern matches
on nil and cons x xs or cons y ys, which is how Coq spells its list constructors. At

1Here and throughout this dissertation, we will often simplify the output by adjusting whitespace
and removing module prefixes.

5

the same time, hs-to-coq has had to make some accommodations for the difference
between Haskell and Coq: rather than sometimes using Definition and sometimes
using Fixpoint (Coq’s top-level keyword for defining recursive functions), hs-to-coq
always uses Definition and puts fix (Coq’s syntactic construct for recursive func-
tions) at the term level; hs-to-coq also has to synthesize the variable names arg_0__
and arg_1__ and then use a match expression, since Coq does not have Haskell’s
equational-style pattern matching.

Trying to compile this function, however, produces the following Coq error:
Error: Cannot guess decreasing argument of fix.

This means that Coq cannot tell that this function is guaranteed to terminate, and
we can see why by examining the recursive calls to merge. Coq requires that every
fixpoint be defined by recursion on a single argument; that is, every recursive call
must be to a subterm of that argument. However, merge alternates between recursing
on its first argument, in the call merge xs (cons y ys), and its second, in the call
merge (cons x xs) ys. This recursion pattern clearly terminates, since exactly one
list shrinks at each step, but Coq cannot see that this is so.

This is exactly the sort of situation that requires edit files. For real code, these edit
files can get profoundly complex. In this particular case, our edit file must instruct
hs-to-coq to make changes to the code so that Coq can tell it terminates. That looks
like the following:

termination Sort.merge {measure (length arg_0__ + length arg_1__)}
obligations Sort.merge Tactics.program_simpl; simpl; lia

Here, we see our first introduction to edits. Informally, these two edits, taken together,
say “you can prove that merge is terminating by showing that the sum of the lengths
of the inputs decreases on every recursive call, and here’s how.”

Edits begin with the name of the edit, which can be one or more words (e.g.,
termination, obligations), followed by some arguments appropriate for the edit in
question. Here, we need both the name of the definition to alter, and then either the
termination measure (for termination) or the proof script (for obligations). The
termination edit alters the translation to use Coq’s Program commands (Sozeau,
2006), which themselves can automatically elaborate a Coq term to provide a more
interesting termination argument. The measure keyword in the edit corresponds to
the same keyword in Coq, and specifies the value that will decrease on every recursive
call. Note that it is specified in terms of the translated positional argument names.

For obligations, after we specify the name of the function, we provide the Coq
tactics that will be used to prove any proof obligations that Program introduces for
us; the tactics used here will prove that the sum of the lengths of the input lists really
does decrease on every recursive step. The first two tactics perform two different kinds
of simplification; the lia tactic is a solver for linear integer arithmetic.

Step 3: Run hs-to-coq. Now that we have our edits, we can run hs-to-coq
on both our Haskell code and our edits together. This produces the following Coq
output, which compiles successfully:

6

Program Fixpoint merge
{a} `{Ord a} (arg_0__ arg_1__ : list a)
{measure (length arg_0__ + length arg_1__)} : list a :=

match arg_0__, arg_1__ with
| nil, ys => ys
| xs, nil => xs
| cons x xs, cons y ys =>

if Bool.Sumbool.sumbool_of_bool (x <= y)
then cons x (merge xs (cons y ys))
else cons y (merge (cons x xs) ys)

end.

Solve Obligations with (Tactics.program_simpl; simpl; lia).

If we compare this with our output in step 2, we’ll see that things are very similar; the
differences are that (1) we begin with Program; (2) a termination measure has been
inserted, which we saw in the termination edit; (3) we end with Solve Obligations,
using the tactics from the obligations edit; and (4) the if expression uses the
sumbool_of_bool function on the condition. Differences 1–3 are the ones we discussed
above, when talking about the edit file; the use of sumbool_of_bool also comes from
these edits, and is inserted whenever the output uses Program. It allows the proof
obligations in each branch to learn about which value the conditional took, which –
though not important here – is sometimes critical.

Step 4: Prove theorems. Finally, we can actually attempt to verify merge, in
the same way that we would verify any other Coq program. For real code, this step is
challenging, as verification always is. Here, then, we will present the statement of the
theorem that if the two input lists to merge were sorted, then the output list will also
be sorted:

Theorem merge_preserves_sorted `{OrdLaws a} (xs ys : list a) :
Sorted xs ->
Sorted ys ->
Sorted (merge xs ys).

Proof.
induction xs as [|x xs IHxs];
induction ys as [|y ys IHys].
...

Qed.

This theorem statement uses the type class OrdLaws, which we provide along with
hs-to-coq; if a type T has an instance of OrdLaws, this means that T has an instance
of the Haskell Ord class, and that this instance is actually a total order. For more
information, see Section 5.1.

7

1.2. The edit language and the mechanized formalization gap

We’ve now seen how to take hs-to-coq through its paces, from start to finish.
We’ve seen how hs-to-coq allows us to take existing (or bespoke) Haskell code,
customize the translation as necessary, and then verify it in Coq. One thing that
may have become apparent is that step 2, writing the edit files, is a deeply involved
process. Moreover, it’s a process of a different nature: while verifying Coq code, as
required in step 4, is difficult, those of us in this field are used to it. Writing edit files
is a challenge unique to hs-to-coq, but it is through edit files that we obtain the
full power of our mechanized formalization gap. The specific benefits of edit files are
manifold:

(1) We can verify existing Haskell code.
(2) We never need to edit Haskell code by hand.
(3) We get a mechanized formalization gap.
(4) We can attain confidence instead of perfection.
These last two items are the most important, and perhaps require more explana-

tion. The notion of a mechanized formalization gap, mentioned previously, is a key
contribution of hs-to-coq and its development model. Rather than constantly strive
to minimize the difference between the original Haskell input and the verified artifact,
we embrace the formalization gap between them, and we allow it to be widened or
shrunk as necessary. This makes the process of verification much smoother, as we can
control exactly how much detail we arrive at. But this is only sustainable because
our formalization gap is mechanized, because it is recorded entirely in the edit files.
These files are machine-readable (hence “mechanized”), and, in combination with
the transformation process of hs-to-coq itself, reflect the precise difference between
the original Haskell and the verified Coq. These files thus are, in a certain sense,
the formalization gap: they are a complete record of all the differences between the
original implementation and the verified code. And because we have this complete
record, we can more confidently allow users to make the variety of changes that they
do.

This dovetails nicely with the last benefit, that of aiming for confidence instead
of perfection. Because hs-to-coq decouples proof from translation, there is no
requirement to prove everything about a single piece of code. At the same time,
its flexible edits allow for very radical transformations of code, perhaps removing
obstacles entirely. This gives us a choice: by choosing our edits and our theorems
carefully, we could prove complete functional correctness of unmodified Haskell code;
alternatively, we could simply translate Haskell code as best we could, modify it with
edits, and prove no theorems but at least gain the confidence that our translated code
terminated. Anywhere on the spectrum from “full formal verification” to “using Coq
for greater confidence” can be valuable, and hs-to-coq does not commit us to a single
point.

For these reasons, edit files provide a unique perspective on verification, and one
which is not bound to hs-to-coq. In this dissertation, we explore how hs-to-coq
and its edit language enable verifying Haskell by using Coq; however, the broader per-
spective of incorporating a mechanized formalization gap into verification approaches

8

is not bound to the specifics of this tool, and it is my hope that the details of our
experience are generalizable to the broader domain of software verification.

1.3. DeepSpec
This work is part of the DeepSpec project (Appel, Beringer, Chlipala, Pierce, Shao,

Weirich, and Zdancewic, 2017), which is based on developing “the science of deep
specification”. This is a broad research effort focused on the question of how to write
correct software, and on an answer to that question that revolves around a notion
of a deep specification: a specification that is rich, two-sided, formal, and live. The
DeepSpec project defines these terms as follows:

• rich (describing complex component behaviors in detail),
• two-sided (connected to both implementations and clients),
• formal (written in a mathematical notation with clear semantics to
support tools such as type checkers, analysis and testing tools, automated
or machine-assisted provers, and advanced IDEs (integrated development
environments)) and
• live (connected via machine-checkable proofs to the implementation and
client code).

—Appel et al. (2017); bullets added
We want to ensure that the specifications we write for Haskell code are themselves

deep in this sense. Our work in particular tries to ensure that formal and live come
automatically:
Formal: This comes with our decision to work in Coq. As all of our specifications

and proofs are in Coq, they are formal by definition.
Live: Because hs-to-coq translates existing Haskell implementations to Coq, the

proofs we write about the Coq programs are mechanically connected to the
original code. Coq connects the proof to the Coq program, and hs-to-coq
and the edit files connect the Coq program to the Haskell original.

One difference in the notion of “live” that comes from hs-to-coq and the original
definition of “live” is that we don’t have machine-checkable proofs all the way from
the Haskell implementation to the Coq proofs. Because hs-to-coq is unverified, and
because edit files allow for significant reinterpretation of the Haskell code, we merely
have a “strong resemblance”. However, we argue that this is still a valuable form
of being live. While it would be wonderful to have a fully machine-checked proof
all the way through, other forms of guarantees still provide confidence. Because the
connection to the original Haskell is fully automatic, we can reapply our proofs to
newer versions of the Haskell code. This process won’t be free – we still have to
update our proofs when the code changes. But we never need to worry that our Coq
implementation and the Haskell implementation have drifted out of sync. If they are
out of sync, it is because our edits deliberately made them so.

Furthermore, if a user wants the extra assurance that they are only working
with mechanically verified code, there is always another option: using the Coq
implementation we produced. This Coq implementation can be used in multiple
different ways:

• it can be evaluated with Coq’s built-in evaluators;
9

• it can be extracted to OCaml, Haskell, or Scheme through Coq’s built-in
extraction mechanism; or
• it could be compiled with Certicoq (Anand, Appel, Morrisett, Paraskevopou-
lou, Pollack, Bélanger, Sozeau, and Weaver, 2017) once Certicoq is able to
handle all the features of Coq that appear in the output of hs-to-coq.

Each of these techniques removes the Haskell implementation from consideration and
removes hs-to-coq from the trusted computing base; instead, one of these other,
leaner tools can be trusted instead.

1.4. Contributions

Software verification is a vast and well-explored landscape. The particular contri-
butions of this thesis are as follows:

• I, along with my collaborators, built the hs-to-coq tool for translating
Haskell into semantically analogous Coq, allowing for Coq-based verification
of existing Haskell code that was not written to be verified.
• We introduced edit files, a textual language describing changes that hs-to-coq
will make to the generated code, and present a methodology that uses these
so that we never edit Haskell code.
• We embraced having a mechanized formalization gap, with this embrace
including both the “mechanized” and “formalization gap” parts. Both of
these pieces come from embracing edit files. The former comes about because
edit files allow the formalization gap between the Haskell input and verified
Coq output to be precisely specified in a machine-readable way. The latter
comes about because edit files allow for a fluidity and flexibility in choosing
exactly what the code that we target for verification will look like.
• We use the flexibility offered by edit files to embrace a verification ethos of
attaining confidence, not perfection. Every line of Coq we write removes
places for bugs to hide in the Haskell, even if we cannot guarantee complete
functional correctness.
• We applied the above methodology to verify significant portions of the base
and containers library, extending hs-to-coq along the way.
• We have begun verification of GHC itself, targeting its internal language Core
and some Core-to-Core transformations.

This work is not without its limitations. To begin with, Haskell is partial, and
Coq is not. We provide a variety of techniques to attempt to blur this distinction, but
ultimately must change the semantics of the input program to account for this. In a
similar vein, Haskell, being lazy, only defines coinductive types and uses corecursion;
unless instructed otherwise, hs-to-coq treats all types as inductive and all self-
reference as recursion. We believe that this more often captures programmer intent,
but it does not model Haskell precisely. We also lack a formal semantics of Haskell,
and thus cannot make our claim of semantic correspondence between the two precise;
even if we had these, such a claim would be a Herculean task and beyond the scope of
this work. Lastly, we use the flexibility offered by edit files to embrace a verification
ethos of attaining confidence, not perfection. This is repeated from above because it is

10

both a contribution and a limitation. Not striving for complete functional correctness
means that this strongest form of Coq verification is beyond us.

Finally, this work raises questions that need to be addressed. First, why should
a user trust hs-to-coq’s translation, if we cannot provide a proof of hs-to-coq’s
correctness? One of our answers to this is legibility: a focus on making sure that the
input Haskell and output Coq are visibly very similar. We discuss this further in
Section 3.2.1. Second, what does it mean to have a Coq proof of something? We know
exactly what formal Coq proposition the proof is of, but how does that correspond
to our intuitive goals? This is a perennial challenge of any formalization effort, and
hs-to-coq is no different. Our best approach is to leverage DeepSpec’s notions of
deep – rich, two-sided, formal, and live – specifications, as we saw in Section 1.3.

1.5. Outline

In this dissertation, I explore how I (and my collaborators) designed, built, and
applied hs-to-coq.

• In Chapter 2, I present an expanded example of using hs-to-coq.
• In Chapter 3, I present the broader design and usage of hs-to-coq, helping
explain both our goals for it and some of the technical details of how it
functions.
• In Chapter 4, I present the design of the edit language that makes up the
mechanized formalization gap.
• In Chapters 5–7, I discuss how we built up hs-to-coq and applied it in
practice. Through the lens of multiple case studies, I demonstrate the breadth
of applications of hs-to-coq, building up to our present focus on the power
of flexible mechanized formalization gaps. These chapters discuss results
from our three papers, “Total Haskell is reasonable Coq” (Spector-Zabusky,
Breitner, Rizkallah, and Weirich, 2018), “Ready, Set, verify! Applying
hs-to-coq to real-world Haskell code (experience report)” (Breitner, Spector-
Zabusky, Li, Rizkallah, Wiegley, and Weirich, 2018), and “Embracing a mech-
anized formalization gap: Pragmatic software system verification (extended
version)” (Spector-Zabusky, Breitner, Li, and Weirich, 2019, unpublished),
respectively.
• In Chapter 8, I discuss in detail each of the 34 distinct edits that hs-to-coq
supports.
• In Chapter 9, I discuss some of the other work in the field that connects to

hs-to-coq.
• And finally, in Chapter 10, I wrap up what we’ve seen, evaluate the edit
language, and look to potential avenues to extend and apply hs-to-coq in
the future.

11

CHAPTER 2

An Introductory Example: Bags

Using hs-to-coq involves working with a number of moving parts: Haskell code,
hs-to-coq edit files, generated Coq code, Coq specifications, Coq theorems, and
Coq proofs. We saw how these parts fit together in the introduction, but only in
the context of the single merge function. In order to understand hs-to-coq better,
we’ll now work through a more complete example: the verification of a simple data
structure. In this chapter, I will walk through the original Haskell code, how we
translate it, the resulting Coq, the theorems we state, and the proofs we write. Much
work in functional programming centers around data structures and their invariants,
so this work is a good example of the sorts of techniques that are necessary for more
complicated structures.

The particular data structure I will present here is nominally a bag, or unordered
multiset. The bags *1, 2, 2, 3, 3, 3+ and *3, 3, 3, 2, 2, 1+ are the same, but the bag *1, 2, 3+
is different. The particular implementation of bags in question is from GHC itself,
and was verified as part of our work on “Total Haskell is reasonable Coq” (Spector-
Zabusky et al., 2018); I present the results of this verification in more detail in
Section 5.3. However, this implementation of “bags” turns out to be overdetermined:
GHC exposes functions that provide an ordering on the bags, meaning that the data
structure implemented by its Bag type is really a sequence, like a list but with different
asymptotics.

Once we have worked through the definition of bags (sequences) in GHC (Sec-
tion 2.1), we will see how we need to go about translating it: what happens auto-
matically (Section 2.2), and what we need to customize with edits (Section 2.3). We
will then look at how to provide a specification for bags and the operations on them,
and look at some of the specifications for individual operations (Section 2.4). Finally,
having built up the whole process of using hs-to-coq in this chapter, we close by
reviewing that process so we can see it all in one places (Section 2.5).

This chapter uses the verification of Bags as an example to present the usage of
hs-to-coq; this is fitting, since it was one of our first verification projects. However,
there is more to say about this verification project and the results we learned from it;
for more details on this, see Section 5.3, where they are presented in context.

2.1. Bags in GHC

The data structure that GHC defines to implement a bag is a tree of elements and
lists, and is presented in Figure 2.1. The data type comes with two invariants, both
around emptiness: first, that no recursive occurrence of a Bag may be empty; and
second, that if we are embedding a list, we cannot embed the empty list. This means
that we know two things: first, the only empty Bag is EmptyBag; and second, nonempty

12

data Bag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
| ListBag [a] -- INVARIANT: the list is non-empty

deriving Typeable

Figure 2.1. The Bag data type in GHC, which implements either a
bag (an unordered multiset) or a sequence, depending on your perspec-
tive.

Bags are nonempty binary trees with elements (or nonempty lists of elements) at the
leaves.

This representation is simple; at the same time, verifying it requires solving three
different challenges that are very common in data structure verification:

(1) It has multiple internal structures that correspond to the same user-facing
value.

(2) It has internal invariants, as specified in the comments.
(3) It has a specification that must be defined both informally and formally.

This makes it particularly suitable as an introductory example to verifying code while
using hs-to-coq.

In particular, let us look at challenge (1), the multiple internal structures this
data type has. There are many different ways we could change the structure of a
Bag Int without affecting the collection of values it contains: we could change the
associativity of the tree, we could introduce or remove the ListBag constructor, or
we could combine the ListBag and TwoBags constructors. For example, five different
possible representations of the bag *1, 2, 3+ are shown in Figure 2.2.

One operation we left out, however, is changing the order of elements in the bag:
what about TwoBags (TwoBags (UnitBag 3) (UnitBag 2)) (UnitBag 1)? After
all, we discussed the mathematical definition of a bag above, and a comment at the
top of the module defines “Bag” similarly:

Bag: an unordered collection with duplicates
—GHC, the Bag module, line 6

Thus, it would seem like we could consider that value equivalent. However, as
mentioned above, a more careful look at the module reveals that this isn’t true. No
functions on Bags require an Ord constraint or anything similar, yet GHC exposes
several functions that depend on or reveal the order of elements in a Bag. In particular,
the bagToList function converts the internal tree representation into a list via a
left-to-right (in-order, depth-first) traversal. Lest we think that this is an accident or
otherwise not to be relied on, the Bag module provides separate consBag and snocBag
functions for, respectively, prepending and appending a single element to a bag; indeed,
when we examine the module closely, we see that this left-to-right order is preserved
by all the functions that operate on Bags. This means that, instead of thinking about
Bags as modeling mathematical bags, we will think of them as modeling lists; the

13

TwoBags (TwoBags (UnitBag 1) (UnitBag 2)) (UnitBag 3)

TwoBags

TwoBags

UnitBag 1 UnitBag 2

UnitBag 3

TwoBags (UnitBag 1) (TwoBags (UnitBag 2) (UnitBag 3))

TwoBags

UnitBag 1 TwoBags

UnitBag 1 UnitBag 2

ListBag [1,2,3]

ListBag [1,2,3]

TwoBags (UnitBag 1) (ListBag [2,3])

TwoBags

UnitBag 1 ListBag [2,3]

TwoBags (ListBag [1]) (TwoBags (UnitBag 2) (UnitBag 3))

TwoBags

ListBag [1] TwoBags

UnitBag 2 UnitBag 3

Figure 2.2. Five different Bag representations of *1, 2, 3+. Each box
contains one representation, with the Haskell term above and the tree
structure below.

14

Inductive Bag a : Type
:= EmptyBag : Bag a
| UnitBag : a -> Bag a
| TwoBags : (Bag a) -> (Bag a) -> Bag a
| ListBag : list a -> Bag a.

Arguments EmptyBag {_}.
Arguments UnitBag {_} _.
Arguments TwoBags {_} _ _.
Arguments ListBag {_} _.

Figure 2.3. The Bag data type from GHC translated into Coq by
hs-to-coq (with some minor reformatting).

above Bags are in fact representations of [1,2,3]. The difficulty of determining this
denotation is an instance of the general difficulties faced in solving challenge (3), the
design of specifications for a type.

2.2. Translating Bag and its operations

The Bag data type itself can be translated to Coq without any extra configuration,
and looks much the same; it is presented in Figure 2.3. The names and types of the
constructors are unchanged, and hs-to-coq automatically translates Haskell’s list
type [] to Coq’s default list type list.

The Haskell file, naturally, defines several operations on Bags: creating empty bags,
creating singleton bags, appending two bags, and so on and so forth. All of these
operations are so straightforward, and have such simple definitions, that we need to
make almost no changes to them; they will be translated successfully with the only
change being in the representation of numbers. For example, consider the unionBag
function, which takes the union of two Bags; recalling that Bags are really ordered, we
can instead say that this appends two bags.

unionBags :: Bag a -> Bag a -> Bag a
unionBags EmptyBag b = b
unionBags b EmptyBag = b
unionBags b1 b2 = TwoBags b1 b2

In order to preserve the invariant that the empty bag is never a subterm of another
bag, we must pattern-match on the arguments. This translates to Coq directly:

Definition unionBags {a} : Bag a -> Bag a -> Bag a :=
fun arg_0__ arg_1__ =>

match arg_0__, arg_1__ with
| EmptyBag, b => b
| b, EmptyBag => b
| b1, b2 => TwoBags b1 b2

15

end.

The difference between Haskell’s equational style of pattern-matching and Coq’s
pattern-matching match ... with ... expression aside, we can see that the three
pattern matches are reflected exactly in the definition of unionBags in Coq.

2.3. Edits for Bags

The definitions of the functions that operate on Bags are all so simple that, for
the most part, manual intervention via edit files is unnecessary. However, nothing is
quite that simple. The most important edits affecting the Bag module are those that
come from its surroundings. Bag is part of GHC, and GHC is much bigger than just
this one data structure. When working on GHC, we thus use two sources of edits:
global edits, which are used when translating every source file; and local or per-module
edits, which are used when translating specific modules. The global edits for GHC are
mostly about two things: skipping things we don’t want to translate; and renaming
values, either for simplicity or for name collisions.

For Bag, the relevant global edits are those that skip code. Principally, Bag imports
the module Outputable, which is responsible for pretty-printing. This is not code
that we ever plan to verify – we are not interested in the text of the error messages
that GHC produces. Consequently, in every module, we include the edit

skip module Outputable

This edit suppresses the import of the module, but references to it may remain: there
may be instances of the eponymous class Outputable that is defined therein. This
class is for types that can be pretty-printed; since we don’t care about output in
general, we don’t care about these instances in particular, and so we we suppress all
of them with the edit

skip class Outputable.Outputable

The skip class edit suppresses both the named type class and all instances of it, but
it does not suppress other references to it or its methods. While modules other than
Bag rely on further Outputable-suppressing edits to handle this, Bag only defines an
instance of Outputable for Bag, so these two edits are enough. (Bag also imports
other GHC-local modules, but they are translated separately and, much like base,
have their own edits – or not – as necessary.)

There are only two local edits required to translate the Bag module itself:2

rename type GHC.Num.Int = nat

in Bag.lengthBag ←↩
rewrite forall xs, ←↩

Data.Foldable.length xs = ←↩
BinInt.Z.to_nat (Data.Foldable.length xs)

2Edits are written on one line, but we often include line breaks due to page width constraints;
the “←↩” marker signifies where we have done so.

16

The first edit changes all reference to Haskell’s fixed-width signed Ints to Coq’s
unbounded nonnegative nats. This change is made in many places in the GHC code
base; when Ints correspond simply to counting, we do not concern ourselves with
overflow. This is a deliberate verification choice, and a portion of the formalization
gap that could be closed later with extra effort. We choose to let it stand, as the
question of overflow is of low importance in many cases; for instance, the only place
Int – now nat – is used in Bag is for the output of lengthBag :: Bag a -> Int.
We will never be storing a 264-element Bag in memory, so overflow will never be an
issue here.

However, the second edit is there to fix this choice of representation coming back
to bite us. Haskell programmers use Int for multiple different things: sometimes
as an efficient representation of integers, sometimes as a type of unique identifiers ,
sometimes to represent data type sizes (where they will only be nonnegative, hence our
choice of nat), and so on. In Coq, however, we are more likely to want different types
for these different purposes, and the user can use rename type to control the selection.
In Data.Foldable, we chose to represent Haskell Ints as Coq Zs. The type Z is Coq’s
default type for unbounded signed integers; we chose it because it seemed to be the
most useful general purpose default. This choice matters here because the definition
of lengthBag uses Data.Foldable.length :: Foldable t => t a -> Int. This
means that lengthBag, which is in Bag, returns a nat, but its implementation uses a
Z. Thus, this second edit, which rewrites the code in a limited scope:

• in Bag.lengthBag scopes the following edit to just apply within the definition
of Bag.lengthBag;
• rewrite is an edit that replaces one translated Coq expression with another
wherever the former appears;
• forall xs, says that xs is a metasyntactic variable for this rewrite; and
• Data.Foldable.length xs = ←↩

BinInt.Z.to_nat (Data.Foldable.length xs) is the rewriting equation,
which wraps calls to length with the conversion function from Z to nat.

As we see here, one downside of our flexibility in choosing representations is that
different pieces of the code base use different representations, and then have to
interoperate.

2.3.1. Termination. The lack of need for extensive edits makes Bag simple to
work with. At the same time, however, it is unrepresentative of our usual verification
experience. Many files we verify with hs-to-coq are not so cooperative, and require
some manual intervention before Coq will accept them, often (but not only!) due
to questions of termination – in our experience, although most functions are indeed
structurally recursive, every large project needs some termination edits. While Bag
is full of recursive functions, the natural way to write all of them was structurally
recursive, and so translation was unusually straightforward. This was my initial hope
when designing and developing hs-to-coq: that idiomatic Haskell code would often
look like idiomatic Coq code. And while the Haskell code out there in the wild has
needed us to extend hs-to-coq far beyond the need for strict structural recursion,

17

modules like Bag are a reminder that, in fact, there is plenty of Haskell code out there
that fits into Coq nicely and neatly.

2.4. Specifying the behavior of Bags

Now that we have Coq implementations of our various Bag operations, we must
prove that they are correct. But before we can prove that anything is correct, we need
to know what that means. For Bags, we elect to provide them with a specification in
terms of a denotational semantics. Recall from Section 2.1 that these bags effectively
model lists, because the functions that GHC provides can distinguish between Bags
whose elements occur in different orders. Conveniently for us, GHC provides the
function

bagToList :: Bag a -> [a]
bagToList b = foldrBag (:) [] b

which converts a Bag into a list via a left-to-right (in-order, depth-first) traversal; we
take this as our denotation function. (Note that the foldrBag function is one of the
aforementioned functions that exposes the order of elements in a Bag.)

Not all elements of the Bag type are well-formed, however; Section 2.1 documented
the invariants that Bags are required to maintain, which were specified in the comments
attached to the definition of the data structure. Specifically, the invariants limit the
appearance of emptiness: they require that TwoBag never contain an EmptyBag and
ListBag never contain []. This means that the only empty bag is EmptyBag, and
that EmptyBag never appears deeply within a Bag. We can encode this invariant as a
Coq predicate:

Fixpoint well_formed_bag {A} (b : Bag A) : bool :=
match b with
| Mk_EmptyBag => true
| Mk_UnitBag _ => true
| Mk_TwoBags Mk_EmptyBag _ => false
| Mk_TwoBags _ Mk_EmptyBag => false
| Mk_TwoBags l r => well_formed_bag l &&

well_formed_bag r
| Mk_ListBag [] => false
| Mk_ListBag (_ :: _) => true
end.

The invariant on bags is sufficiently simple that we can encode it as a function into
bool, but more complex invariants may require the use of (or just be more simply
stated in terms of) an inductive proposition.

Thus, verifying Bags requires verifying not just correctness, but also well-formedness.
Not only do we need to verify that each operation on Bags corresponds to the equivalent
operation on lists (correctness), but we also need to verify that each operation that
produces Bags produces well-formed Bags (well-formedness). In both cases, we may
require that any input Bags are well-formed, but this will not always be necessary.

18

As an example, recall the definition of unionBags presented in Section 2.2. The
first theorem we need to prove is that, given well-formed Bags as input, unionBags
produces a well-formed Bag. The Coq theorem is

Theorem unionBags_wf {A} (b1 b2 : Bag A) :
well_formed_bag b1 -> well_formed_bag b2 ->
well_formed_bag (unionBags b1 b2).

Proof. case: b1; case: b2 => * //=; intuition. Qed.

with the proof follows straightforwardly from case analysis.
The second theorem we prove is that the denotation of unionBags b1 b2 is the

same as the corresponding list operation. What is the list operation that corresponds to
union? Since Bag is actually the type of lists, this operation is simply list concatenation,
(++), and so the theorem in Coq is

Theorem unionBags_ok {A} (b1 b2 : Bag A) :
bagToList (unionBags b1 b2) = bagToList b1 ++ bagToList b2.

Proof.
by case: b1 => *; case: b2 => *; rewrite -bagToList_TwoBags.

Qed.

This can also be summarized as saying that bagToList is a homomorphism from bags
to lists, although this is an informal manner of speaking.3

2.5. From program to theorem

We have now seen in some detail the life cycle of a simple translation and verification
effort using hs-to-coq. We close out this example by summarizing what this process
looks like all in one place, so that we can get a good picture of the flow of using
hs-to-coq.

(1) First, we start with Haskell data structures and functions, such as
data Bag = ...

unionBag :: Bag a -> Bag a -> Bag a

(2) Next, we customize our translation with edits, such as
rename type GHC.Num.Int = nat

(3) Given those, we run hs-to-coq and get runnable Coq output, such as
Definition unionBags {a} : Bag a -> Bag a -> Bag a := ...

(4) We then need to figure out what a specification for the code looks like, which
may involve defining custom operations or predicates such as

Fixpoint well_formed_bag {A} (b : Bag A) : bool := ...

3To make it precise, we would have to specify the structure – a homomorphism with respect to
the semigroupoidal structure of concatenation, in this case, although we do not prove associativity.

19

(5) Once we have that model, we can finally sit down and prove desirable theorems
(possibly in terms of lemmas), just as in any other Coq development, such as

Theorem unionBags_wf {A} (b1 b2 : Bag A) :
well_formed_bag b1 -> well_formed_bag b2 ->
well_formed_bag (unionBags b1 b2).

Theorem unionBags_ok {A} (b1 b2 : Bag A) :
bagToList (unionBags b1 b2) = bagToList b1 ++ bagToList b2.

(6) Once all of these theorems are stated and proved, we have a complete verifi-
cation! At least, until our scope grows. . .

20

CHAPTER 3

hs-to-coq: Design and Usage

In this chapter, I discuss the design and usage of hs-to-coq. Over time, the design
goals of hs-to-coq have grown, and its aspirations have progressed from mimicking
the source code directly (Chapter 5), to attempting to change the source code in
order to preserve semantics (Chapter 6), to changing the semantics of the source in
order to produce a Coq model of the input (Chapter 7). Through all of this, the core
of hs-to-coq has remained the same: faithful translation of a subset of Haskell to
semantically equivalent Gallina, mediated by a collection of edits, textual instructions
on how hs-to-coq should vary the translation. These edits comprise a huge portion
of the effort in the hs-to-coq code base, and are what allow it to be used in these
three different ways (and more – see Section 6.2).

3.1. How we’ve used hs-to-coq

Over the lifetime of hs-to-coq, we have adjusted the methodology for using
it. At first, our expectation for using hs-to-coq was that “Total Haskell is reason-
able Coq” (Spector-Zabusky et al., 2018), as discussed in Chapter 5: if we applied
hs-to-coq to total Haskell code, we would get a Coq model that we could reason
about directly in the usual ways. This way of using hs-to-coq works surprisingly
well, and a surprising amount of Haskell fits into it.

Unsurprisingly, though, “a surprising amount” isn’t “everything we care about”.
Our next approach to working with hs-to-coq was to use it to produce a translation of
code with a total interface, even if the implementation used partial techniques (Breitner
et al., 2018). This also required working with alternative approaches to termination
proofs, as we wanted to handle code that terminated but was not structurally recursive.
As we discuss in Chapter 6, this technique enabled us to verify much larger codebases,
such as the containers library.

The current culmination of our approach, however, takes an even more aggressive
approach towards its Haskell input. This approach assumes that we want to verify
small portions of a much larger code base, even if those functions are partial, or
depend on functions we can’t or don’t want to verify, or anything else. We have given
hs-to-coq the ability to apply dramatic changes to its input, and used this to verify
a portion of GHC itself (Spector-Zabusky et al., 2019). This technique, discussed in
Chapter 7, takes a very different approach than we had originally envisioned, being
more comfortable with edits, with axioms, and with partiality. And yet it has perhaps
the most promise for working with the Haskell codebases that are used in practice.

21

In fact, our users4 are happy with this increased flexibility. Verification of the
entirety of large codebases is a daunting task, and trying to get an initial handle on
them is not easy – often one finds oneself pulling at something one thinks is a small
thread only to find that it goes all the way through the entire codebase. What edits
provide is the ability to trim that thread, or identify shorter ones, or even more radical
changes. Because they make it easier to begin verifying some portion of the eventual
target, edits make using hs-to-coq for verification much more accessible.

With their different advantages and disadvantages, none of these approaches
replaces the others – each one builds on the previous, and includes its techniques. Even
in GHC, there are plenty of functions that are handled without extra intervention,
under the “Total Haskell is reasonable Coq” approach. But as we have expanded
our remit to include more and larger codebases, we have learned that we need to
power up the abilities of hs-to-coq, and allow ourselves to make tradeoffs between
the soundness of the verification and the scope of the code we can consider.

3.2. Desiderata

When building hs-to-coq, there were a number of considerations that informed
its structure. These considerations derived from one overarching goal: to build a
trustworthy verification tool that could handle GHC optimization passes. Thinking
about trustworthiness, GHC, and the needs of verification, we were guided, informally,
by the following five principles:

• The output must be visibly similar to the input (legibility).
• The user must never need to edit Haskell code.
• The input and the output must have the same behavior, absent specific
requests otherwise.
• Use inductive reasoning, not coinductive (in other words, pretend Haskell is
strict.)
• Support real Haskell code – in particular, the sort of Haskell code that is
found in GHC.

These principles were not (for the most part) articulated explicitly; they are my own
reflections about the ways we were open to extending the design and the ways we
knew we didn’t want to extend the design.

3.2.1. Legibility. Sadly, it is infeasible to verify hs-to-coq itself, for a variety
of reasons:

• We lack a formal semantics of Haskell against which to validate the translation.
• We cannot use hs-to-coq to verify hs-to-coq, as hs-to-coq uses more
features than hs-to-coq supports.
• Put simply, hs-to-coq is just too large. If we want to translate as much of
Haskell as possible, the amount of work it would take to verify hs-to-coq
would be prohibitive. Moreover, hs-to-coq pulls in a lot of dependencies –
it uses Happy (Gill, Marlow, and other contributors, 2010) to generate code,
it uses the lens library (Kmett, 2018) extensively, and so on.

4Including us ourselves.

22

• The (notional) correctness theorem for hs-to-coq is (or would be) both
complicated and vague.
Complicated: Haskell is partial and lazy; Coq is total and focused on

inductive types. Haskell has coherent type classes and powerful type
inference; Coq has type classes without these guarantees and weaker
type inference. The desired correctness theorem is very subtle – it is not
simply “the original and translated terms compute to the same result”.

Vague: Without any edits, the Haskell and Gallina programs are expected
to be identical. As soon as edits appear, however, this identity is broken,
and the desired result is less obvious. How do we specify the correctness
of a term that has been the object of a rewrite edit?

Consequently, one important design goal of hs-to-coq is legibility: the Gallina
arising from translation must be visibly similar to the original Haskell. This is
important because it means that the user of hs-to-coq can, and often will, compare
the input and the output for at least moderate similarity. “Can” is clear, but why
“will”? “Will” because during the verification, a programmer will often – though
not always – look at both the Haskell and the Coq, and thereby compare the two
automatically. This is not as powerful as real verification, and we have a test suite
(see Section 3.3) as well, but it does help give credence to our translation and our
approach in general.

Additionally, during verification, the user will be staring intently at the translated
Coq code, catching obvious bugs in translation; if the user can then successfully verify
the desired theorem, this makes it more likely – although not guaranteed! – that the
translation was correct. As many correctness theorems depend on all the details of
the translated code, it will often be the case that bugs will disrupt the ability to prove
a theorem correct. This phenomenon is not unique to hs-to-coq, but it works to our
advantage here as it does elsewhere.

3.2.2. No manual editing. We want to ensure that hs-to-coq enables the user
to perform all their verification work without ever editing a Haskell file. This is a key
design consideration based mostly around one key observation: as soon as you edit
the input, you stop keeping track of updates to it. When you’ve made many manual
edits to a code base for the sole purpose of verification, incorporating changes that
other people have made for functionality becomes somewhere between difficult and
effectively impossible.

Another benefit is that edits are semantically meaningful. Suppose that you need
to make a change to a Haskell code base so that Coq can support it: for example,
renaming a punned constructor (as in newtype Identity = Identity a – the first
Identity is the type name, and the second is the constructor name) everywhere it
occurs. When looked at in a textual diff, it is impossible to see what change was
made, especially if multiple changes have been made at the same time. If, instead,
you read the edit rename value Con = Mk_Con, you know exactly what change was
made, and can understand it, revert it, bring it into a new code base, or whatever else
you need to do.

23

The culmination of all these benefits is that the design of hs-to-coq enables a
mechanized formalization gap, a machine- and human-readable record of the changes
between the artifact and the model. (For further discussion, see Section 3.4.)

Note that we do not get as a benefit that the user does not need to know Haskell.
Figuring out the edits to make still requires being able to read and understand the
Haskell code base. If the work is divided properly, there can be people working solely
on the proofs who know only Coq (as has sometimes been the case in our work), but
there needs to be some Haskell expertise on the team.

3.2.3. Same behavior. The only way for hs-to-coq to be useful is for the input
Haskell and the output Coq to have the “same” behavior. But “same” covers a fairly
broad spectrum of similarities. At their most basic, Haskell and Coq are both lambda
calculi with algebraic data types; this gives them a solid core of overlap in behaviors
to start with, and is the foundation on which hs-to-coq is based. Functions translate
to functions, data types translate to data types, and so β-reduction translates to
β-reduction. But despite this, there are some behaviors of Haskell that just don’t
translate to Coq, both small scale and large scale. At the small scale, we have features
such as pattern-matching with guards and fall-through; Haskell’s pattern language is
stronger than Coq’s, so it requires some desugaring. At the large scale, some features
of Haskell are simply incompatible with Coq, chief among them nontermination.

Both these sorts of features must be translated somehow in hs-to-coq, although
the story is different for the two of them. For small-scale features, we must decide on a
desugaring that preserves the semantics, while not totally transforming the code (see
Section 3.2.1). For pattern matching, this means translating guards into if statements,
and creating local functions containing a suffix of the branches to translate fall-through.
This preserves the semantics of pattern matching exactly.

For nontermination, we need to make harder choices: how can we write a program
in a terminating language that’s the “same” as one with nontermination? We must
make choices, and decide what level of “sameness” is acceptable. Edits allow us some
flexibility in this choice; for instance, we can rewrite nontermination away, or use
termination to demonstrate that something was actually terminating even though
Coq couldn’t see it. Our most powerful technique is the Default type class, which
provides inhabited types with opaque default values. (For more on this technique, see
Section 3.8.) This allows us to translate explicit calls to crashing functions to this
opaque value, a correspondence which in practice we have found to be close enough;
however, when making this translation, we sacrifice the ability to provide termination
guarantees for the original Haskell code.

One concession we make to the difference between Haskell and Coq is around
laziness: absent specific requests otherwise, we pretend that Haskell is strict. The
choice of what to do here was so important it formed an entire principle of our design,
which we discuss next.

3.2.4. Induction, not coinduction. In a seeming contradiction, another design
goal was to use only inductive reasoning, and ignore the fact that Haskell is lazy and
fundamentally coinductive. Nevertheless, this has worked well in practice; why? Our
initial rationale for this choice was twofold:

24

(1) Many Haskell programs are inductive, and in particular, compilers (such as
GHC) operate on finite syntax trees.

(2) Coinductive reasoning is much harder, especially out of the box.
And indeed, these two principles have remained true.

Another complication is that, even some Haskell data types that are used coinduc-
tively are often also used inductively. For example, consider lists: the standard library
provides both length, which assumes lists are inductive, and repeat, which assumes
lists are coinductive.5 (This goes back to the discussion in Section 2.3 – sometimes
programmers use one type, such as [] or Int, for multiple purposes, and we are
more likely to need to tease those apart in Coq.) So we cannot strictly assume that
types are coinductive instead. In practice, inductive reasoning seems to be the most
common, and so defaulting to that has served us well. But we did eventually provide
support for specifying that certain types or function ought to be treated coinductively
(Section 4.1.7).

3.2.5. Support real Haskell code. The motivation for building hs-to-coq
was originally tied up with the question of verifying parts of GHC. This meant that
designing hs-to-coq to work with a subset or a dialect of Haskell was always out of
the question: it had to support anything GHC could throw at it. This has had two
ramifications, pushing in opposite directions. First, it’s made hs-to-coq a general-
purpose tool: GHC is so big that it uses essentially every basic feature of Haskell (that
is, the features contained in Haskell 2010), and so hs-to-coq has to support all of
those. But second, GHC itself only uses certain extensions – for instance, it uses both
CPP and NamedFieldPuns, but does not use TypeApplications or ApplicativeDo
– and so we added support for features beyond Haskell 2010 lazily. Each time one
came up – in GHC or, later, elsewhere – we would extend hs-to-coq as necessary to
support it. But the base was always “all of Haskell 2010”, and this combined with our
principle of the user never needing to edit Haskell files (Section 3.2.2) meant that we
had to choice but to grow hs-to-coq to support more and more varieties of code.

3.3. Test suite

One way that we validate hs-to-coq’s behavior is with our test suite. We have
a collection of Haskell examples and edit files, along with a Makefile that can au-
tomatically translate the examples into Coq and typecheck those Coq files. These
files are known to be good; if they ever fail to translate and type check, we know
we have introduced a bug. These examples are all bite-sized (the largest is 45 non-
blank non-comment lines), and thus serve as a way to guard that individual edits or
other features of hs-to-coq are behaving correctly. In addition, we have a Travis CI
server (Travis CI, GmbH, 2020) set up for continuous integration testing; every push
to our repository triggers a build of hs-to-coq, including running tests, so that we
can ensure that they continue to pass.

5While length could be defined for infinite lists if it returned a conatural number, it returns an
Int.

25

3.4. Mechanized formalization gaps

Because hs-to-coq is not itself verified, it is the most obvious source of a for-
malization gap between the Haskell input and the Coq output. But one of the key
contributions of this work is that hs-to-coq enables a mechanized formalization gap
between the input and the output. The idea here is that hs-to-coq produces a
Coq model of the Haskell code, but with certain key differences. Traditionally, these
difference would be ad-hoc, produced by hand by editing the source or the model.
What hs-to-coq provides is a record of the changes – the edits, the preamble, and the
midamble – which can be mechanically interpreted along with the input to repeatably
produce the same model. This means that our formalization gap is itself an artifact
that can be read by humans or used and analyzed by machines.

3.5. Infix operators

In addition to philosophical considerations, we also need to look at the details
of how hs-to-coq translates code in order to be able to read the output. One such
detail that shows up in many code samples is how hs-to-coq represents Haskell
infix operators in Coq. While both Haskell and Coq support infix operators, they
handle them very differently. In Haskell, (+) is just as good a name as add; both
can be bound, exported, referenced as a qualified name, etc. The only difference is
that symbolic names (+) can be used infix without its parentheses, and ordinary
alphanumeric names like add can be used infix when surrounded by backticks. In Coq,
on the other hand, infix operators are solely surface-level syntax, defined through
Coq’s powerful Notation mechanism (or its abbreviated form Infix); an expression
like m + n can be defined to translate into add m n, and the two are then identical in
every way after parsing. However, + does not have any sort of independent existence,
and is only available if the notation has been brought into scope; there is no way to
reference notations with a module qualifier.

This distinction poses multiple challenges for hs-to-coq. The first and simplest is,
what automatic names do we give to operators? GHC has a scheme called z-encoding6

for representing operators in contexts (such as linkers) where only C-like names are
allowed: all symbols are replaced with a “z” or a “Z” followed by a mnemonic letter
or Unicode escape sequence. So, for example, && becomes zaza; the “a” stands for
ampersand. As an example of the Unicode translation scheme, ◦ (which we use to
translate the composition operator .) becomes z2218U, since that character is U+2218
ring operator; the encoded form is the hexadecimal representation of the Unicode
code point followed by a U. We use this encoding scheme to translate names; an infix
name gets translated to op_, followed by the z-encoding of the name, followed by __.
So continuing the first example, (&&) becomes op_zaza__.

Now, in order to reference the name, hs-to-coq provides Coq notation to avoid
this ugly form. When translating code, hs-to-coq defines both the infix operator
notation b1 && b2, as well as a “prefix” notation _&&_ that can be used anywhere a
variable can; this stands in for Haskell’s (&&) form, and is used in operator sections.
This is achieved with generated code like the following:

6https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names

26

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names

Notation "'_&&_'" := (op_zaza__).
Infix "&&" := (_&&_) (at level 99).

However, hs-to-coq refers to all names qualified by default, rather than trying
to manage imports itself. That would limit us to using the names of the form
Some.Mod.op_zaza__, which is unpleasant. Thus, whenever we generate notations for
a symbolic name, we also generate manually qualified forms of those notations:

Notation "'_Some.Mod.&&_'" := (op_zaza__).
Infix "Some.Mod.&&" := (_&&_) (at level 99).

The Some.Mod in these names isn’t functioning as a module name; it’s just part of the
syntax of these notations. But by using the module name as part of that syntax, we
ensure that this notation is globally unique, which means that we can import it and
bring it into scope whenever we want. Thus, the full translation is to wrap those last
two lines in a module called Notations, unlike the unqualified forms:

Notation "'_&&_'" := (op_zaza__).

Infix "&&" := (_&&_) (at level 99).

Module Notations.
Notation "'_Some.Mod.&&_'" := (op_zaza__).
Infix "Some.Mod.&&" := (_&&_) (at level 99).
End Notations.

Then, whenever hs-to-coq generates a Require Some.Mod., it will follow that up
with Import Some.Mod.Notations., allowing us to fake having qualified operators.

3.6. Notation for literals

Another place we introduce extra notation in our translation is when translating
literal numbers, strings, and characters. In Haskell, integer literals such as 42 are syn-
tactic sugar for fromInteger (42 :: Integer), with the latter 42 being a putative
non-overloaded integer. (Our translation doesn’t handle fractional literals, but Haskell
interprets them analogously.) Coq, on the other hand, handles integer literals rather
differently: it provides support for overloading them via its powerful notation system,
but only by writing a plugin in OCaml. Instead of needing to distribute an OCaml
plugin, we instead provide a lightweight notation for fromInteger in our handwritten
GHC.Num module:

Notation "'#' n" := (fromInteger n) (at level 1, format "'#' n").

This notation binds tightly and is formatted without a space, letting us write #42.
We still indirectly leverage Coq’s notation system here: since fromInteger takes
an Integer as input, its Coq translation takes a Z, and Coq will use that type
information to decide to interpret the integer literal as a Z no matter what the current
notation scope is. We make this notation available both from GHC.Num and from
GHC.Num.Notations, ensuring that # will always be available to translated programs
just like qualified infix operators.

27

We then set up hs-to-coq to introduce references to #; helpfully, the abstract
syntax tree that GHC provides represents Haskell’s overloaded numeric literals as
applications of GHC.Num.fromInteger to non-overloaded numeric literals. We were
thus able to add a special case in hs-to-coq’s pretty-printer to detect applications of
this form and output them using #. This way, in combination with our support for
infix operators, we can translate Haskell expressions such as 40 + 2 == 42 into Coq
expressions such as (#40 GHC.Num.+ #2) GHC.Base.== #42. The only catch is that,
while hs-to-coq will not print out # for general (non-literal) uses of fromInteger,
Coq’s notation system is not so forgiving; any ordinary use of fromInteger in a
Haskell program will, once translated with hs-to-coq, show up as # in a proof state
or if otherwise printed out by Coq, even though the hs-to-coq-generated file will use
the original function name.

The situation with string literals is similar, but less streamlined. We do not
support the OverloadedStrings language extension, which simplifies our job some-
what; Haskell string literals are thus simply syntactic sugar for lists of characters.
However, once again, without writing an OCaml plugin, we are limited to existing
interpretations of strings. The only default such interpretation is as a member of
the type Coq.Strings.String.string, which is is isomorphic (but not equal) to a
list of ASCII characters, each of which is represented by eight bools. We do not
worry about Unicode for now, but we still have to provide a conversion function
from Coq Strings to Coq lists; we call this function GHC.Base.hs_string__, and
define it in the midamble for GHC.Base. We similarly have to define a translation
from Coq Coq.Strings.Ascii.asciis to our translated Chars; we call this function
GHC.Char.hs_char__.7 We then provide a short prefix notation for each of these
functions, like # above: & for strings and &# for characters. This enables us to write
strings that look like &"hello, world" and characters that look like &#"*" (a single
character in double quotes being Coq’s syntax for ascii values).

This is not as streamlined as the situation for numeric literals, however, for
the following three reasons. First, hs-to-coq will introduce explicit references to
GHC.Base.hs_string__ and GHC.Char.hs_char__ rather than use the & and &#
notations. Second, if any string or character literal occurs in a translated module, the
user must manually Import the appropriate module in the preamble in order for Coq
to be able to parse it (for strings, the module Coq.Strings.String, or at least its
submodule StringSyntax; for characters, the module Coq.Strings.Ascii, or at least
its submodule AsciiSyntax). And third, the & and &# notations are not exported
in a Notations module, so you must Import GHC.Base and/or GHC.Char in order to
get access to the notations. (Just importing GHC.Base is sufficient for both, since it
reexports GHC.Char.)

The restrictions around the notation names are minor limitations of hs-to-coq.
The requirement to manually import the string and character syntax is harder to
eliminate, since string literals do not include references to the Coq.Strings.String
module that can be picked up by hs-to-coq’s dependency tracking (unlike the function
GHC.Num.fromInteger, which does implicitly). Regardless, since we do not prove

7We represent Haskell Chars as Ns, Coq’s type of binary natural numbers, meaning this function
is simply Coq.Strings.Ascii.N_of_ascii.

28

very much about strings, these are not terrible limitations, and could be lifted as part
of future work. Additionally, the same phenomenon that makes Coq print out # works
in our favor here: because Coq applies notations when printing terms, & and &# are
printed out by Coq once they are in scope. This means that when using Coq to print
definitions, or when examining a proof state, literal strings will generally appear in
the desirably concise manner we might hope for.

3.7. Transforming code automatically

Another detail we need to understand about hs-to-coq is how and when it trans-
forms the input Haskell code without edits. This does happen; although legibility is
an important desideratum, Coq is sufficiently dissimilar from Haskell that maintaining
it requires careful thought. For example, Haskell’s pattern-matching language is
syntactically rich, supporting a variety of features: equational definitions; nested
patterns; and both boolean and pattern guards with fallthrough semantics. Coq, on
the other hand, supports only match ... with ... and if ... then ... else ...
expressions, with the former supporting nested patterns. This means that we need to
rearrange the structure of complex Haskell patterns to be compatible with Coq, which
does require breaking legibility somewhat; this is unavoidable, since the fall-through
semantics of Haskell patterns are simply not available in Coq. We also ensure that
we detect when patterns can be translated more directly and do so, which is why the
examples we have seen so far have all looked similar when translated.

A more complex example of this is how hs-to-coq translates type classes. By
default, hs-to-coq’s translation of type classes is somewhat surprising. A simple type
class and instance such as

class C a where
m :: a
f :: a -> Bool

instance C () where
m = ()
f _ = True

is not simply converted to a standard Coq type class, but instead to the following
code where it has been encoded in a continuation-passing style (or CPSed):8

(* class C a where ... *)

Record C__Dict a := C__Dict_Build {
f__ : a -> bool ;
m__ : a }.

Definition C a :=

8We also see that the order of the methods changes; this is because hs-to-coq topologically
sorts definitions in dependency order, and is not guaranteed to preserve the order in the source file
when doing so.

29

forall r__, (C__Dict a -> r__) -> r__.
Existing Class C.

Definition f `{g__0__ : C a} : a -> bool :=
g__0__ _ (f__ a).

Definition m `{g__0__ : C a} : a :=
g__0__ _ (m__ a).

(* instance C Bool where ... *)

Local Definition C__unit_f : unit -> bool :=
fun arg_0__ => true.

Local Definition C__unit_m : unit :=
tt.

Program Instance C__unit : C unit :=
fun _ k__ => k__ {| f__ := C__unit_f ; m__ := C__unit_m |}.

Here, the generated Coq code defines the simple record encoding of the type class
as C__Dict, whose double-underscore name indicates that it is a generated name
from hs-to-coq; the fields of that dictionary look like the methods of C, but have
trailing double-underscore names. The type class C itself is a universally-quantified CPS
wrapper around C__Dict, and the methods m and f “unwrap” it by extracting the fields.
The instance is then put together not by defining a record of Local Definitions,
but by defining a function that passes such a record to a continuation.

Even after making all these changes, legibility still matters: as we see, the transfor-
mation is limited to the definition site where we put together the type class. Both the
method definitions and, more importantly, the call sites of the methods are unchanged.

We do not simply perform this complex translation for fun, of course – the
importance of this feature is that it allows Coq to automatically reduce expressions
containing a type class much more smoothly and uniformly, which noticeably eases
our proofs. However, it is also much more involved, which, in addition to being an
aesthetic nuisance (and occasionally requiring extra unfolding in proofs), actually gets
in the way of encoding more complex Haskell type classes that contain associated
types. We can avoid this last problem by shutting off this transformation with the
simple class edit (discussed in detail in Section 8.5.2), but the costs are still real.
The tradeoffs this transformation imposes, as we can see by looking at the output,
highlight two important things: some of the reasons we might need to produce a less
legibile transliteration, and some of the reasons why legibility is such an important
desideratum.

30

3.8. Partiality

Sometimes, unfortunately, Haskell code is partial. How does hs-to-coq handle
that? One intuitively-appealing approach would be to translate partial code into an
“error monad” of some sort. Let’s suppose that we have

Definition ERR (a : Type) : Type := string + a.

Then we would translate
head :: [a] -> a
head [] = error "Prelude.head: empty list"
head (x:_) = x

into
Definition head {a} : list a -> ERR a :=

fun arg_1__ =>
match arg_1__ with

| nil => inl "Prelude.head: empty list"
| cons x _ => inr x

end.

However, this would pose a great many difficulties. For one thing, because Haskell-
functions are curried, it becomes tricky to see where we insert the error monad.
Does

(++) :: [a] -> [a] -> [a]

become
Definition op_zpzp__ {a} : [a] -> ERR ([a] -> ERR [a]) := ...

or
Definition op_zpzp__ {a} : [a] -> [a] -> ERR [a] := ...

and how do we know which? The former is the only uniform option, but then
translating function calls becomes ugly: translating

head ((++) xs ys)

would have to become the Coq equivalent of
head =<< ((++) xs >>= ($ ys))

and the implementation of (++) would have to become similarly heinous.
One might hope to mitigate this issue by only annotating those functions that

require partiality, and keeping track of this inside hs-to-coq. Then head would still
have the type forall {a}, list a -> ERR a, but (++)/op_zpzp__ would retain
its original type of forall a, list a -> list a -> list a. Unfortunately, this
starts to struggle when presented with higher-order functions, such as

map :: (a -> b) -> [a] -> [b]

To be maximally general, its argument would still need to be translated as a potentially-
partial function, and thus its result would need to be partial:

31

map : forall {a} {b}, (a -> ERR b) -> [a] -> ERR [b]

This is true even though map is itself total! We could try to work around this by
duplicating the definition of map and defining both partial and total translations, but
this now poses the problem of duplicated code that is nearly identical.

A translation like the one outlined above is entirely reasonable in many contexts:
theoretical reductions, compilation procedures, and so on. Indeed, Abel, Benke, Bove,
Hughes, and Norell (2005) used such a technique, combined with abstracting over the
monad, in a translation from GHC’s internal language to an early version of the Agda
language (for a longer discussion, see Section 9.2.3.3). However, our use case requires
a programmer to work with the translated code, and to be able to integrate it with
existing Coq libraries. Program transformations like this make that incredibly difficult,
and increase the mental friction when comparing the source and target languages.
And this transformation is relatively simple: it can affect every arrow exactly once,
and the term-level change is simply to put the program into monadic form. The lesson
is once again, just as we saw in Section 3.7, that code transformations must be kept
to a minimum: they can happen, but they need to preserve as much of the code’s
structure as possible.

Instead, we focus on our desideratum of legibility (see Section 3.2 and Section 3.2.1).
We need to make sure that however we handle partiality, it produces readable code.
And the most readable code is code that is total, not partial. So what if we assume
all Haskell code is total? Our original design goal was to only work with total Haskell
code (Chapter 5), although this quickly became untenable; nevertheless, so much
Haskell code is total that this still works well much of the time.

Thus, hs-to-coq doesn’t handle partiality with any sort of clever encoding; it
simply plugs its ears and pretends it doesn’t exist. Some good fraction of the time,
this gets us far enough. And it can never go wrong – any code that’s actually partial,
such as head or loop = loop, will simply cause the compilation of the Coq code to
fail.

But sometimes we need to actually deal with partial code. Whether internal to
functions (as we will see in Chapter 6) or at the top level (as we will see in Chapter 7),
real Haskell code uses partiality, and we need to handle it.9

The approach hs-to-coq takes, which was developed by my collaborator Joachim
Breitner, is to use a type class called Default. Default is a type class for inhabited
types, and it contains a single method, default:

Class Default (a : Type) := {
default : a

}.

The important thing about this type class is that we can use it to define error and
undefined safely: if their return types are constrained by Default, then they can be
total. However, this could introduce bugs where we rely on the particular value of
Default. So when we define these terms, we make them opaque:

Definition error {a} `{Default a} : String -> a.

9None of this touches on recursion; for that, see Section 3.9.

32

Proof. exact (fun _ => default). Qed.

Definition undefined {a} `{Default a} : a.
Proof. exact default. Qed.

Because we use Qed, Coq cannot expand the definitions of error and undefined.
Thus, any proof that runs across them can never rely on their exact value, preventing
us from causing bugs due to overdefinition of partial functions. In fact, beyond
trivial proofs – such as eq_refl : undefined = undefined :> a – we cannot prove
anything about undefined, and so any nontrivial proof that invokes it accidentally
will get stuck.

However, this is still not the same as having a true bottom value (⊥), for two
reasons. First, Haskell functions must be continuous with respect to ⊥ (shenanigans
with IO notwithstanding), and in general it is possible to say what the result of a
function applied to ⊥ is (in a mathematical sense, not from within Haskell). In Coq,
we have no such continuity guarantees, and attempting to evaluate pattern-matches
on default gets stuck. Second, in Haskell, ⊥ is a unique value distinct from all other
values of a type. On the other hand, default behaves like an unknown value selected
from the total type. In Haskell, the type () has two values, () and ⊥; in Coq, unit
only has one value, and we can prove that default = tt.

3.9. Recursion

The previous section shows how hs-to-coq takes care of direct partiality, but
that’s not the only source of bottoms to worry about. Haskell also supports general
(co)recursion, and Coq decidedly does not. Sources of genuine unbounded recursion
(and dually, of unbounded nonproductive corecursion) are bugs – there is no merit
to trying to place these in a form Coq can handle. But Coq’s termination (and
guardedness) checkers are incredibly conservative, and rule out many terminating
Haskell functions (or guarded Haskell covalues). There are four cases to worry about:

(1) Structural recursion, which Coq accepts;
(2) Nonstructural but terminating recursion, which Coq needs help accepting;
(3) Guarded corecursion, which Coq could accept if it weren’t being misinterpreted

as recursion; and
(4) Nonguarded corecursion.

Since we have decided to focus hs-to-coq on recursion and not corecursion (Sec-
tion 3.2.4), we have correspondingly deemphasized Items 3 and 4. We provide
the termination corecursive edit, which marks values as corecursive, and the
coinductive edit, which marks types as coinductive (Section 4.1.7), but this is as
far as we go – we do not provide support for Item 4, going beyond the guardedness
checker, and in practice this has never been an issue. In future work, we could extend
our Coq tooling to support existing techniques for working with coinduction, such as
the Paco library (Hur, Neis, Dreyer, and Vafeiadis, 2013).

Item 1, structural recursion, occurs very frequently; our first paper, “Total Haskell
is reasonable Coq” (Spector-Zabusky et al., 2018), dealt almost exclusively with
such functions, and they occur even in codebases as large as GHC (Spector-Zabusky

33

et al., 2019). But it is not, of course, the be-all and end-all of recursion, and Haskell
programmers often write functions that depend on clever termination arguments.
There is, by and large, not anything to say about how structural recursion works.
Sometimes, however, it doesn’t pop out immediately; it can be necessary to rewrite
functions in small ways to get the structural recursion to be recognized; for example,
replacing functions that operate on lists with simpler functions and separate calls to
map. This is more common when working with mutual recursion (see Section 3.9.2),
however, since we can instead rely on hs-to-coq’s support for nonstructural recursion
when working with single recursive functions.

In “Ready, Set, verify! Applying hs-to-coq to real-world Haskell code (experience
report)” (Breitner et al., 2018), we divided the different kinds of terminating recursion
into the following categories:

(1) Structural recursion
(2) Almost-structural recursion
(3) Well-founded recursion
(4) Deferred recursion

We can also add a few more categories that we can handle:
(5) Structural mutual recursion
(6) Nearly-structural mutual recursion
(7) Corecursion

Each of these categories requires different techniques to convince hs-to-coq to accept
them; we leave off those categories that hs-to-coq cannot accept.

3.9.1. Structural recursion. The simplest case: do no work. Structural recur-
sion corresponds to the fix keyword in Coq, and arises in cases from toy examples all
the way to GHC. A function like map is a paradigmatic example:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

This is the definition of map that’s used in the GHC Prelude, and it translates to

Definition map {a b} : (a -> b) -> list a -> list b :=
fix map arg_1__ arg_2__ :=

match arg_1__, arg_2__ with
| _, nil => nil
| f, cons x xs => cons (f x) (map f xs)

end.

This implementation of map is structurally recursive and is accepted by Coq; the call
to map occurs on xs, which is a strict subterm of arg_2__.

3.9.2. Mutual recursion. Mutual recursion is nominally the same, but in prac-
tice presents its own issues. Coq’s idea of what counts as structural recursion is very
strict – more so than what Haskell programmers seem to think of – and nonstructural

34

recursion is not supported by Program Fixpoint. So when working natively with
Coq, we need to provide ways to work with its definition of structural mutual recursion.

For an example of how this works,10 consider the following pair of mutually recursive
Coq data types, which represent a Forest of nonempty Trees. Each Branch of a Tree
holds an extra boolean flag, which we can extract with isOK.

Inductive Forest a : Type
:= Empty : Forest a
| WithTree : Tree a -> Forest a -> Forest a

with Tree a : Type
:= Branch : bool -> a -> Forest a -> Tree a.

Arguments Empty {_}.
Arguments WithTree {_} _ _.
Arguments Branch {_} _ _ _.

Definition isOK {a} (t : Tree a) : bool :=
match t with
| Branch ok _ _ => ok
end.

Now, if we ignore this boolean flag, we can write a pair of mapping functions to
apply a function to every value in a Forest or a Tree, and this works fine:

Fixpoint mapForest_always
{a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a :=

match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree_always f t)

(mapForest_always f ts)
end

with mapTree_always
{a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=

match t with
| Branch ok x ts => Branch ok (f x) (mapForest_always f ts)
end.

However, suppose the boolean represents some validity check (in real code, this
sort of thing would be more complicated). So we check the boolean first, and only
actually recurse if necessary. This means we have three mutually recursive functions,
but one of them is just handing the work along. Unfortunately, this doesn’t work:

Fail Fixpoint mapForest_bad
{a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a :=

10I originally presented this example on Stack Overflow: “Can I do ‘complex’ mutual recursion
in Coq without let-binding?”, https://stackoverflow.com/q/52599324/237428.

35

https://stackoverflow.com/q/52599324/237428

match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree_bad f t)

(mapForest_bad f ts)
end

with mapTree_bad
{a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=

if isOK t
then mapOKTree_bad f t
else t

with mapOKTree_bad
{a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=

match t with
| Branch ok x ts => Branch ok (f x) (mapForest_bad f ts)
end.

The problem is that mapTree_bad calls into mapOKTree_bad on an argument that isn’t
actually smaller.

Except. . . all mapOKTree_bad is doing is an extra step after some preprocessing.
This will always terminate, but Coq can’t see that. To persuade the termination
checker, we can instead define mapOKTree_good, which is the same but is a local let-
binding; then, the termination checker will see through the let-binding and allow us
to define mapForest_good and mapTree_good. If we want to get mapOKTree_good, we
can just use a plain old definition after we’ve defined the mutually recursive functions,
which just has the same body as the let-binding:

Fixpoint mapForest_good
{a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a :=

match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree_good f t)

(mapForest_good f ts)
end

with mapTree_good
{a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=

let mapOKTree_good {a} (f : a -> a) (t : Tree a) : Tree a :=
match t with
| Branch ok x ts => Branch ok (f x) (mapForest_good f ts)
end in

if isOK t
then mapOKTree_good f t
else t.

Definition mapOKTree_good {a} (f : a -> a) (t : Tree a) : Tree a :=
36

match t with
| Branch ok x ts => Branch ok (f x) (mapForest_good f ts)
end.

Sadly, Coq can’t do this automatically, and it requires duplicating code. Happily,
since we’re writing a translator, we can handle it, and have the translator dupli-
cate code for us: the edit inline mutual func will cause func to be treated like
mapOKTree_good in the example above. Although the code is duplicated, the local
and global functions named func are judgementally equal, and so can be converted
between.

For example, we could produce the _good family of functions, dropping the suffix,
from the Haskell code

data Forest a = Empty
| WithTree (Tree a) (Forest a)

data Tree a = Branch Bool a (Forest a)

isOK :: Tree a -> Bool
isOK (Branch ok _ _) = ok

mapForest :: (a -> a) -> Forest a -> Forest a
mapForest _ Empty = Empty
mapForest f (WithTree t ts) = WithTree (mapTree f t)

(mapForest f ts)

mapTree :: (a -> a) -> Tree a -> Tree a
mapTree t | isOK t = mapOKTree f t

| otherwise = t

mapOKTree :: (a -> a) -> Tree a -> Tree a
mapOKTree (Branch ok x ts) = Branch ok (f x) (mapForest ts)

and the single edit
inline mutual mapOKTree

3.9.2.1. Nonstructural mutual recursion. Nonstructural mutual recursion is perhaps
a “white whale” for hs-to-coq. While we can handle structural mutual recursion
through Coq’s native support, and even use edits to hack mutually recursive functions
to fit Coq’s narrow definition of “structural”, true nonstructural mutual recursion
lies tantalizingly out of reach. Sadly, Program Fixpoint and Function simply don’t
support mutual recursion, so Coq’s built-in functionality isn’t up to the task. The
axioms that Program Fixpoint depends on, and the deferredFix axiom, are also
only given in a form that works with unary functions. It is not impossible to extend
these to an n-ary form, but it becomes complicated, and full support requires being to
generate the n-ary form systematically. We have been able to get almost far enough

37

with our edits to support structural mutual recursion, so this is where we have left it
for now.

Perhaps our best hope for nonstructural mutual recursion is the Equations
package (Sozeau and Mangin, 2019). This package provides support for a different,
more equational way of writing Coq definitions: a definition such as

Fixpoint map {a b} (f : a -> b) (xs : list a) : list b :=
match xs with
| [::] => [::]
| x :: xs' => f x :: map f xs'
end.

would become
Equations map {a b} (f : a -> b) (xs : list a) : list b :=
map _ [::] := [::] ;
map f (x :: xs) := f x :: map f xs.

This new syntax is not strictly cosmetic – it also automatically supports dependent
pattern-matching and nonstructural recursion, including mutual recursion. And it
looks more like Haskell, to boot!

Sadly, the prospect of retooling hs-to-coq to output Equations’s syntax is
nontrivial, and has never been a sufficiently high priority for us that we have been able
to devote the time to changing the internals of hs-to-coq to work with Equations.
But this remains a promising avenue for future work, that could at once give us more
Haskell-looking code and enable more features.

38

CHAPTER 4

The Edit Language

In this chapter, I discuss the design and structure of the edit language of hs-to-coq.
Edits are the key novel feature of hs-to-coq; they allow for our workflow centered
around never modifying code, and they form the mechanized formalization gap that
allows us to have a machine-readable record of how the verified artifact differs from
the original source. What makes these edits able to serve in these roles is their
breadth and their structure. If we are to avoid editing generated code, we must have a
comprehensive ability to make changes; if we are to have a higher-level understanding of
the formalization gap, we need edits to be semantic instead of textual. Understanding
the panoply of features supported by hs-to-coq’s edits is critical to understanding
why it is an effective tool.

This chapter presents an overview of and the motivation for the edit language; it
discusses both the design of the edit language (Sections 4.1 and 4.2) and how to read
edit files (Sections 4.3 and 4.4). For a detailed look at each of the 34 different edits
that hs-to-coq supports, see Chapter 8.

4.1. The eight categories of edits

For ease of understanding, we can separate the 34 edits supported by hs-to-coq
into eight broad categories:

• Skipping Haskell code (Section 4.1.1);
• Axiomatizing Haskell code (Section 4.1.2);
• Adding Coq code (Section 4.1.3);
• Changing the structure of the Haskell code (Section 4.1.4);
• Rewriting expressions (Section 4.1.5);
• Providing extra information (Section 4.1.6);
• Proving termination (Section 4.1.7); and
• Meta-edits (Section 4.1.8).

4.1.1. Skipping Haskell code. There’s too much Haskell code in the world to
verify all of it. But luckily, we’re not trying to. Not only are we picking the code
bases we want to verify, we’re not verifying all the code in them – we usually have a
very specific target. And during the verification process, we want to start small and
grow our scope. Thus, hs-to-coq has a number of edits to support skipping pieces
of Haskell, from parts of a definition to whole modules. These can be used to skip
definitions that we’ll verify later, to skip things like Show instances that are out of the
scope of verification, and so on.

39

4.1.2. Axiomatizing Haskell code. Skipping work does make a programmer’s
life easier, but sometimes it causes more problems in the long run. Sometimes, the
definitions you skip end up being used in parts of the code you care about. That may
be because you want to leave something as part of the trusted computing base; it
may be because you don’t really want to deal with a function named something like
unsafeInvertBitsAndRewrite; it may be because you’re in the middle of development
and would like to put off dealing with this definition for now. For whatever reason,
though, sometimes you just want to stub things out. This is why hs-to-coq provides
a number of edits that support replacing definitions – or even whole modules –
with axioms instead. These axioms have no computational content, but they allow
typechecking and compilation to continue by treating these definitions as black boxes.
Axioms can of course introduce unsoundness, even when stubbing out Haskell code
(for example, imagine axiomatize definition GHC.Err.undefined), so care must
be used; however, edits are already part of the trusted computing base in general, so
this does not make things any worse, except perhaps slightly in degree.

4.1.3. Adding Coq code. Sometimes, it becomes necessary to write even more
Coq code. We can do that with the preamble and midamble (see Section 4.2), but
sometimes we want to do something slightly smaller or more principled, or in a way
that integrates with the rest of the edits.

4.1.4. Changing the structure of the Haskell code. Sometimes, the struc-
ture of the Haskell code doesn’t play well with Coq. (In some cases, this is hs-to-coq’s
fault.) Usually, this means that it gets in the way of termination checking. These
edits allow us to simplify or adjust the structure of the Haskell code in straightforward
ways, so that Coq can work with the result.

4.1.5. Rewriting expressions. Sometimes we need to do finer surgical work.
Sometimes, a fragment of Haskell code just won’t work in Coq – it can’t get past
the termination checker, it relies on laziness, or it refers to functions that aren’t
translated or aren’t verified. Or sometimes, there’s just a name collision. The most
common example of this is a Haskell type and constructor with the same name,
which is an incredibly common pattern; as an archetypical example, consider the
definition newtype Identity a = Identity { runIdentity :: a } in the module
Data.Functor.Identity from the base library. For whatever reason you may need
it, hs-to-coq provides you with facilities to make these sub-definition edits to your
Haskell code.

4.1.6. Providing extra information. Sometimes, hs-to-coq gets things al-
most right, but not quite. If only it knew just a bit more – about type annotations,
about the correct ordering of definitions, That’s why hs-to-coq provides some
edits for teaching it more than it could figure out by itself, or changing its mind over
things it did figure out.

4.1.7. Proving termination. One of the biggest differences between Haskell and
Coq is, of course, Coq’s termination checker. While it’s surprising how much Haskell
code is structurally recursive, or can be made so with minor tweaks (Sections 4.1.4

40

and 4.1.5), that’s not all of it, so hs-to-coq naturally provides support for telling the
translation to use more powerful forms of termination-checking, or even – to leverage
the other huge difference – coinduction.

4.1.8. Meta-edits. A “meta-edit” is an edit that takes another edit as a param-
eter, allowing the user to control the behavior of any of the other 7 categories of
edits we saw above. The only meta-edit in hs-to-coq at the moment is in, which
constrains the scope of any other edit to apply only within the definition of a specific
term. This is particularly useful with “big hammer” edits such as those that rewrite
terms, which can be written much more clearly if their domain is smaller (so that they
don’t accidentally apply to unintended parts of the code).

4.2. The history and design of the edit language

We arrived at our selection of 34 edits organically. From very early on, hs-to-coq
had support for some form of edits. Initially, this was limited to renamings, which
simply specified types or values that ought to be renamed: type HsType = coq_type
or value hsValue = coq_value. However, the need for other edits quickly became
apparent, with the early version of the edit language containing only two edits, both of
which have since been deprecated and are now unused: type synonym, which specifies
the result kind of a type synonym (Section 8.4.5); and data type arguments, which
allows the user to customize the parameters and indices of a data type definition
(Section 8.7.7). You may notice this omits renamings; at the time, renamings were a
separate category of input, and were stored in a separate file.

Obviously, things have changed.
From the start, edits were intended to ease the process of verification. With the

initial target of hs-to-coq being GHC, we needed the ability to restrict the scope
of the verification. As we extended the target of our verification – adding examples,
pivoting to the base library, moving on to containers, and turning back to GHC –
we regularly found that we needed more and more powerful edits. Our edit language –
and hs-to-coq itself – coevolved with our verification projects, growing more powerful
each time we encountered stumbling blocks. During the course of this evolution, we
often took advantage of the breadth of our collaboration: I would work on improving
hs-to-coq and the edit language as my collaborators pushed them to new heights.

Eventually, we reached a point where new edits became “optional”; for instance,
consider the set type edit. This edit allows the user to change the type of a translated
definition, but nothing else about it. For a period, we wanted this edit but did not have
it; however, we could work around this lack with redefine, meaning that set type
became lower priority. This indicates two things: first, that at some point the edit
language became “sufficiently expressive” to talk about almost everything we wanted
to do; and second, that “sufficiently expressive” wasn’t the only target we had in
mind.

Eventually, what seemed to drive a need for new edits was when we found our-
selves wanting to make a systematic change to the code base. By adding edits

41

such as redefine and rewrite, we could make one-off code changes where nec-
essary, so we no longer needed to update hs-to-coq every time our users (our-
selves) needed to make a new code change. But repetition is the bane of the pro-
grammer in general, and more so when considering our desire for a mechanized
formalization gap. The benefit of a mechanized formalization gap is that it al-
lows for examination of the edit files to understand what is happening; writing
in Mod.value1 rewrite Lib.hsName = coq_name for a dozen different Mod.values
is much less clear than writing rename value Lib.hsName = coq_name once, and
has a greater danger of missing a case. It also provides greater confidence, and greater
resilience to code changes: redefine replaces an entire definition, and thus would not
pick up optimizations that might need to be verified, whereas set type would leave
those changes alone.

It is also important to remember that edits are not the only code transformations
that hs-to-coq applies. Some transformations are carried out automatically: Require-
ing modules; placing type-level definitions before value-level definitions; reordering
definitions in dependency order; renaming reserved words to add an underscore;
implementing pattern matching with guards and fallthrough in terms of local functions;
transforming type classes into a CPSed representation so that they compute; and
other such universally-present details. We also provide two more channels for input:
preambles and midambles. These are Coq files, conventionally called preamble.v
and midamble.v, whose contents are pasted into the generated code. The difference
between the two is that the preamble comes before all the translated code but after
module imports, and the midamble comes in between the translated types and the
translated values. These are like the add type and add edits, but they are not parsed
and do not participate in dependency calculation. We often subsume these features
under the umbrella of the edit language when discussing hs-to-coq, but they are
meaningfully distinct.

In the end, our edit language – and these other features, but the edit language in
particular – is powerful and useful. It can capture most of the code changes we want
to make in practice, enabling us to verify code we would otherwise have no hope of
getting started with. But the edit language is clearly evolved, and future work might
benefit from a rethinking of the design from scratch. There are distinctions that we
draw informally which could be reflected in the language; for example, we informally
distinguish between edits that affect only the implementation and edits that affect the
interface. The former, such as rename applied to a local variable, do not need to be
seen by other modules; the latter, such as rename applied to an exported variable, do.
That these are mixed together is unfortunate. We might want to think about making
the design of the edits more orthogonal; for example, our redefine edit is the same
as skip plus add or add type. We could instead think about structuring the edits in
a systematic way, so that finding the edits necessary to address a problem was less of
an ad hoc process. In general, the edit language that we have could serve as the core
of a future cleaner redesign thereof.

42

4.3. The general form of edits

To read edit files, as for any programming language, we need to understand their
syntax. An edit file consists of a sequence of individual edits, one per line. For
example, sampling from the global edits we apply everywhere (which are found in the
file examples/base-src/edits in the hs-to-coq repository):

skip module GHC.Magic

skip class Foreign.Storable.Storable

rename type GHC.Tuple.() = unit
rename value GHC.Tuple.() = tt

These four edits cause hs-to-coq to (1) refrain from translating the module
GHC.Magic, which contains only low-level functions; (2) omit the definition of the
Storable type class, which is used for marshalling values to and from raw bits, along
with all of its instances; (3) replace the Haskell () type with the Coq unit type; and
(4) replace the Haskell () constructor with the Coq tt constructor.

As a rule, edits are exactly one line long, ending at the newline. In this dissertation,
I am constrained by the page width, so I sometimes add line breaks to edits; I denote
these with ←↩ (as briefly mentioned in Section 2.3). The exception to this one-edit-
one-line rule is that certain edits involve writing Coq code directly in an edit file;
these Coq definitions are allowed to span more than one line.

4.4. The semantics of edits

Because each edit makes its own distinct changes, understanding the semantics
of edits depends largely on understanding the individual edits in question, which we
discuss later in this chapter. Nevertheless, some general principles hold true. Each
edit is a systematic operation on a codebase; it may have a global or a local effect,
but what it does is consistent. With only two exceptions, each edit operates on
the translated code; this matters, for example, when referring to argument names
(arg_0__, etc., before pattern matching) or operators (we must refer to op_zpzp__
instead of ++). Additionally, names must always be fully qualified in order to match;
skip op_zpzp__ will not do anything, but skip GHC.List.op_zpzp__ will omit the
(++) operator. At least, it will if this edit is included while translating GHC.List:
the final piece of the semantics of edits is that they apply only if included during
translation. While hs-to-coq retains some information in .h2ci files so that it can
be used by later modules, the exact edits applied are not saved. This is deliberate:
certain edits might only apply in the body of the module, such as using rename to
configure the meaning of Integer locally, while others might be broadly applicable.
Thus, we require the user to differentiate these and include broadly-applicable edits in
later modules as appropriate. We have found this local edit/global edit distinction
to be valuable, and it would be good to make it more semantically relevant within
hs-to-coq in future work.

43

4.5. Using edits

The edit language of hs-to-coq is rich, and presenting its power and flexibility
is one of the chief goals of this thesis. We saw in Section 1.1 and Chapter 2 how to
use edits to customize verification in simple examples; in the next three chapters, we
will see how hs-to-coq and its edit language grew over time to be able to apply to
complex real-world code. At the same time, these three chapters will be an evaluation
of the edit language. The goal of the edit language is to enable the translation (and
then verification) of realistic Haskell programs; the best way to see how well we met
this goal is to see hs-to-coq and its edit language in action. And the reason that
hs-to-coq does meet this goal is the other piece highlighted in these chapters: the edit
language is not arbitrary, but has co-evolved with the problems we were attempting
to solve. This co-evolution ensured that the edit language was useful every step of
the way; in order to see if we have avoided over-fitting the edit language to specific
problems, we also look back at each step to see what we needed to add to reach our
new goals.

Once we have seen all these ways we successfully used the edit language, I will
present an explanation of the behavior of each of the 34 different edits in Chapter 8;
for each edit, the explanation includes the syntax of the edit, an explanation of what
it does, and concrete examples of how it behaves when applied to specific pieces of
code.

44

CHAPTER 5

“Total Haskell is Reasonable Coq”

In these next three chapters, we explore the ways hs-to-coq has evolved over time.
This evolution involved a change in both our methodology and our targets – in both
how we used hs-to-coq and what we used it on. In each of these chapters, we will
focus on a different period in hs-to-coq’s development. First, in this chapter, we focus
on pure, total code, as seen through the base library and several smaller examples. In
Chapter 6, hs-to-coq graduates to working on the containers library, and, forced
to contend with realistic code, considers the question of total interfaces implemented
through impure code. Finally, in Chapter 7, hs-to-coq development attains its
modern form: enthusiastic use of edits and a willingness to address fundamentally
partial code.

This trajectory through history also functions as a trajectory from simple to
complex. The further we move from pure and total code, the more demands we place
on hs-to-coq, and the more features we use; indeed, we added these features to
support these applications. As we go through these chapters, we will see how to apply
the hs-to-coq and its edit language to progressively more complex pieces of software,
demonstrating more and more of what it’s capable of.

Thus, we now focus on where we began our work with hs-to-coq: focusing on its
application to pure, total code. In “Total Haskell is reasonable Coq” (Spector-Zabusky
et al., 2018), we presented hs-to-coq publicly for the first time, and we used it to
verify three simple examples. We also explored the design and implementation of
hs-to-coq, as I have done in Chapter 3, and discuss the translation of the base
library.

Our initial plan had been to focus on pure and total code because this is what could
be expressed natively in Coq. We felt, from personal experience, that a lot of Haskell
code was structurally recursive if it was recursive at all, giving us confidence that
this would be useful in practice. Since all Haskell code is pure (modulo functions like
unsafeCoerce), we knew this would not be an obstacle to translation; good Haskell
code minimizes the use of IO, so we felt there would also be a lot of code that was
pure in the no-use-of-IO sense as well.

In the end, our results were mixed: yes, a lot of code is structurally recursive
and pure. But in practice, changing Haskell into Coq in an unmodified or minimally-
modified way simply doesn’t go far enough. What we saw when working on “Total
Haskell is reasonable Coq” (Spector-Zabusky et al., 2018) was that this vision was
fundamentally incomplete – it was not that it didn’t work for some code, but that so
much code that we wanted to be able to translate and reason about was broader than
that. And as we continued to work on hs-to-coq (Chapters 6 and 7), we branched
out into such code.

45

But to begin with, we started small, by presenting three examples:
• Reasoning about type class laws, by specifying various type classes and proving
the Functor, Applicative, and Monad laws for a simple type (Section 5.1).
• Verifying Hutton’s razor, a simple interpreter and compiler (Section 5.2).
• Verifying GHC’s implementation of bags, also known as multisets (Section 5.3).
(We also saw this example back in Chapter 2, where it served as an introduction
to the experience of using hs-to-coq; in this chapter, we use that as a
jumping-off point and go into more detail.)

5.1. Type class laws

One of the first places a Haskell programmer might come across the notion of
proving a theorem about a computer program is around type classes. In particular,
the type classes Functor, Applicative, and Monad play a central role in Haskell
programming. These type classes come from category theory, and they feature
generally-useful methods. For example, the Functor type class is (The Core Libraries
Committee, 2018, the Prelude module; reformatted)

class Functor f where
fmap :: (a -> b) -> f a -> f b

-- | Replace all locations in the input with the same value.
-- The default definition is @'fmap' . 'const'@, but this may be
-- overridden with a more efficient version.
(<$) :: a -> f b -> f a
(<$) = fmap . const

This type class comes with three different laws:
(1) For all types a, we have fmap (id @a) ≡ id. (The @a denotes type applica-

tion.)
(2) For all functions f :: a -> b and g :: b -> c, we have fmap (g . f) ≡

fmap g . fmap f.
(3) For all types a and b, we have (<$) ≡ fmap . const @a @b; that is, any

specialized implementation of (<$) must be equivalent to the default one.
The first two laws, in particular, are part of the definition of a functor in category
theory (specifically, an endofunctor on Hask, the idealized category of Haskell types
and functions).

When a user first encounters Functor, they may think that any implementation of
fmap that type checks is “good enough”, but the documentation (The Core Libraries
Committee, 2018, the Prelude module) quickly clarifies that we need to satisfy the
first two laws above. This means that a correct instance of Functor requires more
than just a function definition: it requires a proof.

Well, hs-to-coq is in the business of enabling you to provide just that, so it’s no
surprise that one of our initial applications was on verifying the type class laws for
instances thereof. We defined law-carrying subclasses of ten different Haskell type
classes, which we divide into four categories:

46

Structural: Eq and Ord;
Higher-order structural: Eq1 and Ord1;
Algebraic: Semigroup and Monoid; and
Category-theoretic: Functor, Applicative, and Monad.
We also include two special-purpose law-like type classes:

• We include a version of the laws for Eq that relates them to Coq equality; and
• We include a type class for type constructors that are both Foldable and

Functors, relating the two.

5.1.1. Lawful type class examples. The definitions of the law-carrying type
classes for Eq and Functor are as follows (up to reformatting):

Class EqLaws (t : Type) `{Eq_ t} :=
{ Eq_refl : reflexive _==_;

Eq_sym : symmetric _==_;
Eq_trans : transitive _==_;
Eq_inv : forall x y : t, x == y = ~~ (x /= y)

}.

Class FunctorLaws (t : Type -> Type) `{Functor t} :=
{

functor_identity : forall a (x: t a), fmap id x = x;
functor_composition :

forall a b c (f : a -> b) (g : b -> c) (x : t a),
fmap g (fmap f x) = fmap (g ◦ f) x

}.

The first thing to notice is that we have separated these law-bearing type classes from
the operation-bearing Haskell ones. Why? For hs-to-coq, this is an easy choice: we
want to leave the translated code alone, which means not injecting proofs into every
instance of Eq we find. But in general, this is a standard API design approach in
dependently typed languages, corresponding to the distinction between extrinsic and
intrinsic verification; it is easier to be able to define a value and then carry out the
proofs separately.

We focus on the EqLaws class first. Note that we rename the Haskell Eq type
class to Eq_ in Coq, because Eq is a constructor of the comparison data type.11 We
thus see that this type class is a subclass of Eq_, and it requires that (a) (==) is an
equivalence relation (we use the notation _==_ instead of (==) in Coq), and (b) (==)
and (/=) are opposites (the ~~ operator is SSReflect’s notation for boolean negation).
The functions reflexive, symmetric, and transitive come from SSReflect, and
encode the expected properties for computable relations, i.e., for functions of type
A -> A -> bool for some A.

11This is a data type we actually use; it corresponds to Haskell’s Ordering type, except its three
constructors are Lt, Eq, and Gt instead of LT, EQ, and GT.

47

The FunctorLaws class was written in a different style, but also clearly directly
encodes the two laws for fmap we expressed above; it omits the law for <$, presumably
because we haven’t needed it yet in any of our developments. We choose to use
Leibniz (propositional) equality, rather than Haskell’s boolean-valued (==) or any
sort of setoid representation, because it is the simplest option, incurring no type class
constraints and creating no extra parameters; so far, it has sufficed for our purposes.

5.1.2. Design considerations for law-bearing type classes. The rest of the
law-bearing type classes look much the same, but there were some design considerations.
First, consider the SemigroupLaws type class. Note that we renamed the binary
operator for Semigroup from (<>), which is propositional inequality in Coq, to
(<<>>).

Class SemigroupLaws (t : Type) `{ Semigroup t } `{ EqLaws t } :=
{ semigroup_assoc : forall (x y z : t),

((x <<>> (y <<>> z)) == ((x <<>> y) <<>> z)) = true;
}.

As we can see, this type class requires EqLaws, so that the associativity law can
be expressed up to Haskell-internal equality. This is generally considered to be the
semantics of Semigroup when available, but such an instance isn’t always available:
Semigroup isn’t a subclass of Eq, and there can be and are instances of Semigroup
that both don’t and can’t have an Eq instance. Indeed, the following two instances
are both widely used:

• newtype Endo a = Endo { appEndo :: a -> a }, the type of endomor-
phisms on the type a (i.e., functions from the type a to itself), and the
corresponding instance Semigroup (Endo a), where the binary operation
is function composition.
• instance Ord a => Semigroup (Set a), for the Set data type from the

containers library (see Chapter 6), where the binary operation is set union.
The first Semigroup instance cannot be proven to be lawful with respect to Eq, as
in the definition of SemigroupLaws, because functions do not have an Eq instance as
they lack decidable equality. Conversely, the second instance cannot be proven to be
lawful with respect to propositional equality, as Sets are explicitly an abstract data
type with observably equal values that have different structures.

For our purposes, we wanted to prove that Set, IntSet, and Map were all lawful
instances of Semigroup (although there were complications (Breitner et al., 2018)), so
we went with the version you see, which respects Eq; however, this was not the only
possible design choice.

Now, consider MonadLaws, recalling that Monad is a subclass of Applicative, and
so transitively of Functor.

Class MonadLaws (t : Type -> Type)
`{!Functor t, !Applicative t, !Monad t,

!FunctorLaws t, !ApplicativeLaws t} :=
{ monad_left_id :

forall A B (a :A) (k : A -> t B),
48

(return_ a >>= k) = (k a);
monad_right_id :

forall A (m : t A),
(m >>= return_) = m;

monad_composition :
forall A B C (m : t A) (k : A -> t B) (h : B -> t C),

(m >>= (fun x => k x >>= h)) = ((m >>= k) >>= h);
monad_applicative_pure :

forall A (x:A),
pure x = return_ x;

monad_applicative_ap :
forall A B (f : t (A -> B)) (x: t A),

(f <*> x) = ap f x
}.

The first thing we see is that we require that any instance of MonadLaws also be
an instance of FunctorLaws and ApplicativeLaws. This is unsurprising: a lawful
monad is a lawful applicative which is a lawful functor, and so we can always provide
these instances. This is not the only possible design constraint – we could decouple
FunctorLaws, ApplicativeLaws, and MonadLaws from each other. However, this
would likely be a bad idea! As the Haskell world learned over many years, when
type classes that are guaranteed to be related are instead defined to be disjoint,
the result is inevitably headaches and code duplication. This is why the Functor-
Applicative-Monad proposal was enacted in 2014, making Functor and Applicative
superclasses of Monad: unifying this type class hierarchy became necessary to avoid
these problems (HaskellWiki contributors, 2015). We do not need to recapitulate our
own language’s design mistakes.

One other part of the superclass constraints that stands out are the !s; these shut
down extra type class inference, thereby preventing the diamond problem. Specifically,
note that Applicative t requires an implicit Functor t member, as do Monad t,
FunctorLaws t, and ApplicativeLaws t. By default, these would each be general-
ized as implicit parameters; using the ! suppresses that, and so the given instance is
used.

Now, we can look at the laws. The first three laws presented are indeed the monad
laws for unit/return_ (renamed because return is a keyword in Coq) and bind/(>>=),
but there are two more laws: monad_applicative_pure and monad_applicative_ap,
which link Monad to its superclass. This is required (and in the documentation) to en-
sure that we can translate between using the methods of Monad and Applicative freely.
(We can also translate to and from using the methods of Functor, as ApplicativeLaws
contains similar methods.)

Note also that these laws are phrased in terms of propositional equality. This
is the opposite design choice from that we made for SemigroupLaws, even though
the same concerns apply. We make this choice because so many monad instances
contain functions; we would be unable to work even with common monads like Reader
and State if we used == for equality testing. However, because we want to equate

49

functions, we in practice require functional extensionality in our development. This
corresponds to how Haskell programmers think about functions, so it is not a terrible
requirement, but it is something worth highlighting.

Finally, there are two type classes whose absence is notable: Alternative and
MonadPlus. These type classes would seem to be natural fits for the same paradigm
we have just seen. However, Alternative provides four methods, not just two (The
Core Libraries Committee, 2018, the Control.Applicative module):

class Applicative f => Alternative f where
-- | The identity of '<|>'
empty :: f a
-- | An associative binary operation
(<|>) :: f a -> f a -> f a

-- | One or more.
some :: f a -> f [a]
some v = some_v

where
many_v = some_v <|> pure []
some_v = liftA2 (:) v many_v

-- | Zero or more.
many :: f a -> f [a]
many v = many_v

where
many_v = some_v <|> pure []
some_v = liftA2 (:) v many_v

The first two methods, empty and (<|>), are the methods we think of when we think
of Alternative. However, the last two, some and many, are mutually coinductive and
produce infinite lists. This is something hs-to-coq cannot handle, so we decided to
skip Alternative entirely. Another option would be to skip just the methods some
and many, and skip all functions that use them. Skipping Alternative as we did
means we also skipped MonadPlus, as the latter is a subclass of the former.

5.1.3. Unusual law-bearing type classes. Lastly, we consider the two law-
bearing type classes that fall outside the Laws scheme. First is the type class that
relates Haskell’s decidable (boolean-valued) equality, (==), to Coq’s propositional
Leibniz equality (=), which is named EqExact:

Class EqExact (t : Type) `{EqLaws t} :=
{ Eq_eq : forall x y : t, reflect (x = y) (x == y) }.

Again, this type class was written using SSReflect. The reflect type takes as
arguments a Proposition and a boolean, and says that the proposition holds if and
only if the boolean is true. If we have an instance of this type class, we can switch

50

freely between “true” equality and Haskell equality; this makes life much easier, but
of course is not always available.

Finally, we look at FoldableFunctor, the type class that relates Foldable and
Functor. The Foldable type class represents type constructors that can be “folded
together”; this can be given solely through providing an implementation of foldr or
foldMap for the type (although there are many other methods that can be defined for
efficiency’s sake). The more familiar foldr has the type

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

whereas foldMap has the type
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

Both express that values of type t a contain a number of as that can be combined,
sequentially, into a single one.

(In)famously, Foldable doesn’t come with any laws of its own, but the docu-
mentation requires that if a type constructor is an instance of both Foldable and
Functor,12 then “it should satisfy foldMap f = fold . fmap f” (The Core Libraries
Committee, 2018, the Foldable module), where the method

fold :: (Foldable t, Monoid m) => t m -> m

folds a data structure that already contains values from a monoid. We express this in
the FoldableFunctor type class:

Class FoldableFunctor {t} `{Foldable t} `{Functor t} := {
foldfmap : forall a b (f : a -> b)`{Monoid b},

foldMap f = fold ◦ fmap f;
}.

5.1.4. Successors. In “Total Haskell is reasonable Coq” (Spector-Zabusky et al.,
2018), we focused on presenting the Functor, Applicative, and Monad laws for
one simple type in particular: the Succs type, from the successors library on
Hackage (Breitner, 2017). The verification of this type was done by my coauthor,
Joachim Breitner, who also authored the library.

The Succs type represents the “successors” of an element with re-
spect to a nondeterministic relation (Breitner, 2017, line 27 in module
Control.Applicative.Successors):

data Succs a = Succs a [a] deriving (Show, Eq)

The library pulls out these two components with the accessors getCurrent and
getSuccs, so we call the a field of the constructor the “current” element, and the
elements of the list the “successors”.

As an example, suppose we relate all letters from 'A' to 'Z', in both upper and
lower case, with the next letter of either case. Then we would have

12Why isn’t Foldable a subclass of Functor? Because some types are instances of the former but
not the latter. Again, consider Set from containers. We can consume its values without incurring
an Ord constraint, so we can provide a Foldable instance. However, fmap would need to produce a
new Set b for any b, which is impossible as we don’t have an Ord instance available.

51

succeed :: Char -> Succs Char
succeed c

| 'a' <= c && c < 'z' || 'A' <= c && c < 'Z'
= Succs c [toUpper $ succ c, toLower $ succ c]

| otherwise
= Succs c []

so that succeed 'a' == Succs 'a' "Bb", succeed 'B' == Succs 'B' "Cc", and
so on, culminating in succeed 'Z' == Succs 'Z' "".

The definition of Functor for Succs is trivial, but what does the Applicative
instance do? Remembering that the idea behind Succs is to model one step in a
relation, Succs f fs <*> Succs x xs should be “at” f x, but then either x should
be passed to the fs or f should be applied to xs. This way, only one step is taken.
Put another way, we should have:

Succs f [f'1, f'2, ..., f'M] <*> Succs x [x'1, x'2, ..., x'N]
= Succs (f x) [f'1 x, f'2 x, ..., f'M x

, f x'1, f x'2, ..., f x'N]

This is implemented by the instance (Breitner, 2017, lines 32–34 in the module
Control.Applicative.Successors; reformatted)

instance Applicative Succs where
pure x = Succs x []
Succs f fs <*> Succs x xs =

Succs (f x) (map ($x) fs ++ map f xs)

(The definition of pure simply corresponds to an element with no successors.)
This is perhaps more clearly phrased in terms of liftA2 (,) (which is also

an alternative presentation of Applicative). The above definitions mean that the
expression liftA2 (,) (Succs x xs) (Succs y ys) will produce a value whose
current location is (x,y) and whose children are pairs where exactly one side has
taken one step:

liftA2 (,) (Succs x [x'1, x'2, ..., x'M])
(Succs y [y'1, y'2, ..., y'N])

= Succs (x,y) [(x'1, y), (x'2, y), ..., (x'M, y)
, (x, y'1), (x, y'2), ..., (x, y'N)]

The monad instance is slightly more obtuse, but intuition can come more easily
from join than bind. If we have a Succs containing more Succses, then we have the
information about those values two steps away from the starting value. This means
that when we join, we want to take the successors of the current element and the
current elements on the successor, but no more – the successors of the successors are
two steps ahead, not one! In other words, we want:

join (Succs (Succs x [x'1, x'2, ..., x'M])
[Succs y1 _, Succs y2 _, ..., Succs yN _])

= Succs x [y1, y2, ..., yN, x'1, x'2, ... x'M]
52

Note that we don’t even have to name the successors of the successors.
In terms of (>>=), instead suppose we have Succs x xs >>= f. Then the current

element becomes the current element of f x, and the one-step successors are both (a)
the current elements of applying f to xs, the successors of x, and (b) the successors of
f x. In instance form, this is:

instance Monad Succs where
Succs x xs >>= f = Succs y (map (getCurrent . f) xs ++ ys)

where Succs y ys = f x

Again, we never use the successors of f applied to the successors, because we want to
only advance one step.

The fact that this type with these behaviors forms a lawful Applicative and
Monad instance is, perhaps, not immediately obvious. Breitner (2017) provided 74
(nonblank) lines of equational reasoning proofs in a comment at the bottom of the
Control.Applicative.Successors module, so we can be confident, but we would of
course like to promote this specification from a moribund comment to living Coq.

And so we (including Breitner) did, with hs-to-coq. We translated the module
Control.Applicative.Successors into Coq, and provided instances of FunctorLaws,
ApplicativeLaws, and MonadLaws for Succs. The translation of this module is almost
short enough to be presentable, at 130 lines (including blanks and comments) using a
modern hs-to-coq.13 At the time, we did not need very many edits; now, we only
need two:

rename value Control.Applicative.Successors.Succs = ←↩
Control.Applicative.Successors.succs

order Control.Applicative.Successors.Functor__Succs ←↩
Control.Applicative.Successors.Applicative__Succs_liftA2 ←↩
Control.Applicative.Successors.Applicative__Succs ←↩
Control.Applicative.Successors.Monad__Succs_return_

The first takes care of the type–constructor pun so common in Haskell code; the latter
provides an order between some of the different method definitions and type class
instances, as syntactic dependency analysis doesn’t work for those implicitly-passed
arguments. The type itself translates almost exactly as a Coq programmer would
write it (though some would leave out the vertical bar):

Inductive Succs a : Type := | succs : a -> list a -> Succs a.

The type class instances suffer from our verbose, continuation-style encoding of
type classes (Section 3.7), but they too are straightforward. For example, consider
Applicative:

Local Definition Applicative__Succs_op_zlztzg__
: forall {a} {b}, Succs (a -> b) -> Succs a -> Succs b :=

fun {a} {b} =>
fun arg_0__ arg_1__ =>

13A reasonable threshold might be two pages of code, which is 84 lines.

53

match arg_0__, arg_1__ with
| succs f fs, succs x xs =>

succs (f x)
(Coq.Init.Datatypes.app

(GHC.Base.map (fun arg_2__ => arg_2__ x) fs)
(GHC.Base.map f xs))

end.

Local Definition Applicative__Succs_liftA2
: forall {a} {b} {c},

(a -> b -> c) -> Succs a -> Succs b -> Succs c :=
fun {a} {b} {c} =>

fun f x => Applicative__Succs_op_zlztzg__ (GHC.Base.fmap f x).

Local Definition Applicative__Succs_op_ztzg__
: forall {a} {b}, Succs a -> Succs b -> Succs b :=

fun {a} {b} =>
fun a1 a2 => Applicative__Succs_op_zlztzg__

(GHC.Base.id GHC.Base.<$ a1) a2.

Local Definition Applicative__Succs_pure
: forall {a}, a -> Succs a :=

fun {a} => fun x => succs x nil.

Program Instance Applicative__Succs : GHC.Base.Applicative Succs :=
fun _ k__ =>

k__ {| GHC.Base.liftA2__ :=
fun {a} {b} {c} => Applicative__Succs_liftA2 ;

GHC.Base.op_zlztzg____ :=
fun {a} {b} => Applicative__Succs_op_zlztzg__ ;

GHC.Base.op_ztzg____ :=
fun {a} {b} => Applicative__Succs_op_ztzg__ ;

GHC.Base.pure__ :=
fun {a} => Applicative__Succs_pure |}.

The odd op_ names are the translations of the infix operators, as was explained in
Section 3.5; the name op_zlztzg__ corresponds to (<*>), and the name op_ztzg__
corresponds to (*>) (analogous to (>>) and possessed of a default definition). Also
note that the Applicative class contains, in addition to pure and (<*>), both the
aforementioned (*>) and also liftA2. Again, both of these have been provided with
their default definitions.

The Coq proofs – that is, the instances of the law-bearing type classes – were fairly
straightforward, consisting largely of repeated rewriting. Indeed, this was exactly the

54

point: we were able to, without very much effort, take a real – if simple – Haskell
library, examine the proofs that the author had written into its comments, and proceed
with mechanical verification. Exactly as we had hoped to use hs-to-coq!

5.2. Hutton’s Razor

“Hutton’s Razor”, from Programming in Haskell (Hutton, 2016, ch. 16, pp. 241–
246), is a simple language equipped with both an interpreter and a compiler. The
entire original example is only a handful of lines long; I present it in its entirety, and
then explain it.

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

type Stack = [Int]

type Code = [Op]

data Op = PUSH Int | ADD
deriving Show

exec :: Code -> Stack -> Stack
exec [] s = s
exec (PUSH n : c) s = exec c (n : s)
exec (ADD : c) (m : n : s) = exec c (n+m : s)

comp :: Expr -> Code
comp (Val n) = [PUSH n]
comp (Add x y) = (comp x ++ comp y) ++ [ADD]

The language itself is given by the type Expr, and consists of integer literals (Val)
and addition expressions (Add). We work only with the abstract syntax tree, and not
with any sort of source code representation, but we can imagine an AST such as

Add (Add (Val 1) (Val 2)) (Add (Val 3) (Val 4))

as equivalent to the expression (1+2)+(3+4). The interpreter for this language is
given by the eval function, and it simply evaluates all the additions in the tree. For
the preceding example, this works out to 10, since 1+2 is 3, 3+4 is 7, and 3+7 is 10.

The next portion of Hutton’s razor is a simple stack-based language, used as a
compilation target for Expr. The execution model for this language is that we have a
program, which is a list of stack operations, and a stack of values. Each instruction is
executed in turn, and it may modify the top of the stack; when there are no more
instructions, the resulting stack is the result of the program.

55

PUSH 1 PUSH 2 ADD PUSH 2 ADD

1

ADD

1

2

3

Figure 5.1. Evaluation of a stack-based program that adds 1 and 2.
Each state is presented in a rounded rectangle, and is a combination of
a program and a stack. The program is presented horizontally at the
top of the state, with the operations to be evaluated from left to right.
The stack is presented vertically at the bottom of the state, growing
upwards. The evaluation of the program proceeds from left to right.

Since a program in this language is a list of stack operations, Hutton needs a type
for these operations, which he calls Op; the type synonym Code, which is a list of Ops,
represents a stack-machine program. The stack is represented as a list of integers; for
clarity, it is referred to with the type synonym Stack.

The two stack operations are PUSH :: Int -> Op, which takes an integer argument
and pushes it onto the stack, and ADD, which pops the top two items from the
stack and pushes their sum. These meanings are implemented by the function
exec :: Code -> Stack -> Stack, which takes a program and an initial stack and
returns the final stack once every operation in the program has been executed.

Let’s consider an example. To represent 1+2, we say [PUSH 1, PUSH 2, ADD]; this
is 1 2 + in reverse Polish notation. Evaluating this program is shown in Figure 5.1. At
first, the stack will be []; after evaluating PUSH 1 it will be [1]; and after evaluating
PUSH 2, it will be [2,1], with the head of the list being the top of the stack. Finally,
ADD will pop 2 and 1, sum them to get 3, and push that result, leaving the stack as
[3]. Now, recall our example from above: (1+2)+(3+4). The Code program that
corresponds to this expression would be

[PUSH 1, PUSH 2, ADD, PUSH 3, PUSH 4, ADD, ADD]

The first three operations place 3 on the stack; the next three operations place 7
on the stack without touching the 3; and the last operation adds the 3 and the 7,
replacing them with 10.

Finally, the last function that Hutton presents is comp :: Expr -> Code, which
compiles the expression-based language to the stack-based language. Consider our
example Expr term from above, which represents (1+2)+(3+4):

Add (Add (Val 1) (Val 2)) (Add (Val 3) (Val 4))

The left subtree compiles to [PUSH 1, PUSH 2, ADD], the right subtree compiles to
[PUSH 3, PUSH 4, ADD], and so the whole thing compiles to

[PUSH 1, PUSH 2, ADD, PUSH 3, PUSH 4, ADD, ADD]

And this is exactly the Code program we came up with earlier.
56

5.2.1. Compiler correctness. The goal of Hutton’s razor is to prove that comp
is “correct”; here, that means that eval and exec have the same result. We have to
specify exactly what that means, since exec returns a stack of values instead of a
single value, and so we say that it should return a singleton stack; exec also requires
an initial stack, which we leave empty.

Theorem (Hutton’s Razor compiler correctness). For all Expr programs e, the
result of exec (comp e) [] is equal to [eval e].

The proof of this theorem follows from a straightforward inductive argument,
although it requires strengthening the statement of the theorem to interact with the
stack: the result of the compiled program should place the result on top of the stack,
and not modify what was already there.

Theorem (Hutton’s Razor inductive hypothesis). For all Expr programs e and
Stacks s, the result of exec (comp e) s is equal to eval e : s.

Proof. This proof proceeds by induction on e. We consider the two possible
constructors of e: it is either of the form Val n, for some Int value n, or it is of the
form Add x y, for some Expr programs x and y.

In the first case, Val n evaluates to n, and compiles to [PUSH n]. Executing
PUSH n with the stack s results in n : s, pushing n on top of the stack, which is what
we wanted.

In the second case, Add x y compiles to the concatenation of
(1) The compilation of x,
(2) The compilation of y, and
(3) [ADD].

It is clear that exec (p1 ++ p2) s is the same as exec p2 (exec p1 s) – first
evaluate all of p1, which results in a new stack, and then evaluate all of p2. Inductively,
this means that the results of compiling x and y must place the result of eval x
and eval y, respectively, on the stack: exec (comp x ++ comp y) s must be equal
to eval y : eval x : s. Then executing ADD on the resulting stack sums these,
producing (eval x + eval y) : s. Since eval (Add x y) will also produce the
sum eval x + eval y, this is correct. �

This nice, inductive argument should be right at home in Coq, although we would
need to prove our statement about the interaction of expr and (++) more explicitly.
However, this was not true when we were first verifying this code, because of an
important detail I glossed over above: exec is a partial function.

5.2.2. Partiality vs. totality. The definition of exec only has three cases: one
for an empty program, one for PUSH, and one for ADD. However, the ADD case is the
problem: it assumes there are two elements on top of the stack for it to pop! This means
that evaluating the program [ADD] on the empty stack will crash: exec [ADD] []
crashes with the error “Non-exhaustive patterns in function exec”. (A fact of which
Hutton is aware.) This doesn’t harm the correctness theorem because exec is total on
the restricted domain of “outputs of the compiler”. Nevertheless, this means that the

57

straightforward translation of Hutton’s Razor into Coq will fail, because Coq cannot
handle non-exhaustive pattern matching. What, then, can we do?

Our options now to handle partiality are much more developed, and the translation
would in fact succeed both soundly and automatically thanks to the Default technology
we introduced in our work on containers (Chapter 6). Even so, there would still be
difficulties, as we will see below.

Regardless, back then, we could not handle this function so directly, and so the
question of how to handle and think about this partial version of Hutton’s razor
became one of the first real conflicts within the hs-to-coq team: how should we
handle partiality?

By default, at the time, hs-to-coq handled partiality in something of a brute-force
manner, which we no longer use: when it detected a partial pattern match, it would
insert

Axiom patternFailure : forall {a}, a.

at the top of the file, and then fill in the missing pattern match with patternFailure.
This means that the translation of exec was, at the time14

Definition exec : Code -> Stack -> Stack :=
fix exec arg_4__ arg_5__

:= match arg_4__ , arg_5__ with
| nil , s =>

s
| cons (Mk_PUSH n) c , s =>

exec c (cons n s)
| cons Mk_ADD c , cons m (cons n s) =>

exec c (cons (GHC.Num.op_zp__ n m) s)
| _ , _ =>

patternFailure
end.

(A few other differences can be seen, relative to the current version of hs-to-coq: we
were also prefixing every constructor with Mk_ to avoid name collisions, something we
later stopped doing; we translated infix operators to their desugared prefix name, not
to an infix notation; and our numbering for fresh variables was global, rather than
function-local, leading to arg_4__ instead of arg_0__.)

Now, this axiom is obviously unsound in the most dramatic way possible. The
idea, however, is that because patternFailure is used only within the module, and
is only generated by hs-to-coq, that we know it is being used “responsibly” – that
while it might introduce unsoundness (imagine using this translation for head), it
is “good enough”. And importantly, “good enough” is good enough because, at the
time, this was supposed to be a temporary state: hs-to-coq was only responsible

14Commit 9c25c13db631a26d3e078fe11a413c8217a2e538; a line break was added after each
match pattern to fit on the page.

58

for translating total code, and sources of partiality like that were bugs.15 The point
of patternFailure was to enable easier development, and so (the thinking went)
the unsoundness was not a problem. Once we were done with a project, the final
output would not have patternFailure, and so would not be unsound; this was only
a pragmatic technique to aid in the process of verification.

And this was all true to some extent: it was possible to prove the Coq theorem
Theorem comp_correct: forall e,

exec (comp e) [] = [eval e].

with the partial, patternFailure-laden version of exec. This proves some sort of
point, but it’s not clear what: Does the fact that a proof can go through without
relying on patternFailure mean that patternFailure is harmless, which makes
it a good idea for helping the user during development? Or does that mean that
patternFailure is insidious, which makes it a bad idea because it becomes easy to
leave unsoundness lurking in what should be a completed development?

Furthermore, the ability to complete the proof was very sensitive to the exact
details of which proof we used. The proof by induction presented above does not in fact
succeed – it gets stuck, because Coq doesn’t know what exec p2 patternFailure
evaluates to when looking at the interaction of exec and ++. Instead, the proof we
used is based on the lemma

Lemma comp_correct_helper: forall e s d,
exec (comp e ++ d) s = exec d (eval e :: s).

Instead of declaring this version, with patternFailure, the “blessed version”, we
instead decided to look at the situation as though we were fixing a bug and updated
exec to be a total function, using Maybe:

exec :: Code -> Stack -> Maybe Stack
exec [] s = Just s
exec (PUSH n : c) s = exec c (n : s)
exec (ADD : c) (m : n : s) = exec c (n+m : s)
exec (ADD : c) _ = Nothing

The only changes are the use of Just in the exec [] s case, and the addition of a
final case that returns Nothing. With this, all our functions are total, and the proofs
are essentially unchanged: instead of showing that we avoid a crash, we show that we
avoid Nothing. However, we do need to change the theorem statements:

Lemma (Hutton’s Razor inductive hypothesis, total version). For all Expr pro-
grams e and Stacks s, the result of exec (comp e) s is equal to Just (eval e : s).

Theorem (Hutton’s Razor compiler correctness, total version). For all Expr
programs e, the result of exec (comp e) [] is equal to Just [eval e].

The distributivity lemma for exec and (++) must also be modified: we say that
exec (p1 ++ p2) s is the same as exec p2 =<< exec p1 s. This captures exactly

15As mentioned, there was already disagreement amongst the team about how to treat partiality
at this time, but we were still mostly working with this model for the moment.

59

the place where Coq failed with patternFailure: unlike with an axiom, we know
explicitly that exec p2 =<< Nothing is Nothing.

Even using a modern hs-to-coq, however, we would still run into issues. We would,
as mentioned above, automatically get a sound translation of exec; however, we would
still have the issue that we would be unable to prove the lemma comp_correct_helper
which says that exec (p1 ++ p2) s = exec p2 (exec p1 s). Although the mod-
ern definition of patternFailure has type forall {a} `{Default a}, a, Coq still
cannot tell what the value of exec p2 patternFailure is. This highlights the dif-
ference between using the Default type class and having a true bottom value (⊥)
such as that returned by error, as we saw at the end of Section 3.8: here we see the
distinction between ⊥ being a distinct inhabitant of every type and default being an
unknown but existing inhabitant of Default types with respect to evaluation. While
Haskell functions must be continuous with respect to ⊥, and the result of evaluating
them at ⊥ (which is either a value or ⊥) is part of their definition, this is not the case
with default; instead, evaluation that depends on the value of default gets stuck,
as Coq cannot proceed unless it knows how default was constructed.

Hutton’s Razor, with its partial exec function, is written in an older Haskell style.
This use of partial functions with demarcated domains of totality was a common way
to write Haskell (along with, for example, eliding most or all type signatures), but is
not seen as much anymore. While partial functions still exist, of course, it seems to
me that most Haskell programmers would write the Maybe-fied version of exec if they
were writing a simple example these days. Totality has become considered a greater
virtue in the modern Haskell community.

5.3. Bags

Even at this early date, we took our first forays into verifying parts of GHC; in
particular, we verified GHC’s implementation of bags, or unordered multisets, which
are actually sequences. We saw the bulk of this translation in Chapter 2, where we
presented the type, the edits, the translation, and the general verification scheme.
Taking this as a base, expand on the results of this process: what we found and what
we verified.

5.3.1. A refresher on Bags. To reorient ourselves, let us first recall the definition
of the Bag type, which we first saw in Figure 2.1:

data Bag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
| ListBag [a] -- INVARIANT: the list is non-empty

deriving Typeable

Although it claims to be a bag, GHC provides functions (such as bagToList, consBag,
and snocBag) that rely on the elements being in a particular order; thus, this type is
really an implementation of a sequence.

60

Translating Bag to GHC was locally a straightforward affair, only requiring two
edits about the representation of numeric types. The most challenging part of the
translation was cleanly slicing the Bag module out of GHC. While we had to make
use of much more powerful versions of this later, when working on verifying actual
compiler properties (Chapter 7), this was our first foray into that sort of excision.
Thankfully, since the it didn’t depend on much else in GHC, slicing Bag out of GHC
was still fairly straightforward.

Since Bag is an abstract data type, it is unsurprising that it comes with invariants,
which we see in the comment above; the invariants combine to tell us that EmptyBag
is the only empty bag, and nothing empty can appear deeply within the type. We
translated this invariant to Coq as a fixpoint:

Fixpoint well_formed_bag {A} (b : Bag A) : bool :=
match b with
| Mk_EmptyBag => true
| Mk_UnitBag _ => true
| Mk_TwoBags Mk_EmptyBag _ => false
| Mk_TwoBags _ Mk_EmptyBag => false
| Mk_TwoBags l r => well_formed_bag l &&

well_formed_bag r
| Mk_ListBag [] => false
| Mk_ListBag (_ :: _) => true
end.

Once we did this, we then proceeded to verification, which involved proving both
the well-formedness and correctness of the various operations in the module. For
example, the module contains a function

unionBags :: Bag a -> Bag a -> Bag a

that computes the union of two bags; since bags are sequences, this is the same as
appending them. This function’s well-formedness theorem is

Theorem unionBags_wf {A} (b1 b2 : Bag A) :
well_formed_bag b1 -> well_formed_bag b2 ->
well_formed_bag (unionBags b1 b2).

Proof. case: b1; case: b2 => * //=; intuition. Qed.

and its correctness theorem is

Theorem unionBags_ok {A} (b1 b2 : Bag A) :
bagToList (unionBags b1 b2) = bagToList b1 ++ bagToList b2.

Proof.
by case: b1 => *; case: b2 => *; rewrite -bagToList_TwoBags.

Qed.

They demonstrate that unionBags preserves well-formedness and corresponds to list
append.

61

So far, this is what we saw in Chapter 2. Now that we have refreshed our memories,
we can move forward: what did we learn?

5.3.2. A documentation bug. While all the definitions in the Bag module were
correct, we found a very minor discrepancy in the documentation. This discrepancy
had no practical effect, but was present for over 24 years (Partain, 1996). The issue
lay with the foldBag function:

foldBag
:: (r -> r -> r) -- Replace TwoBags with this; should be

-- associative
-> (a -> r) -- Replace UnitBag with this
-> r -- Replace EmptyBag with this
-> Bag a
-> r

This function is designed to reduce a Bag to a single value. The first three parameters
can be thought of as how to handle each non-ListBag constructor, as specified in
the comments. As the lack of ListBag indicates, however, these are also a standard
set of ways to collapse a collection of elements: in foldBag t u e, the function t
associatively combines any two elements, the function u maps from the input type
to the combinable type, and the value e handles the empty-bag case. For example,
foldBag (+) length 0 will compute the sum of the lengths of the members of a
Bag [a], simply returning 0 if the bag is empty.

The documentation for this function presents a “[s]tandard definition” of foldBag,
which is commented out, and then says in a comment before the actual definition that
it is a “more tail-recursive definition, exploiting associativity of ‘t’ ”. However, the
two definitions aren’t quite the same, even when t is associative. The commented-out
definition directly operates on the four constructors in catamorphic style:

foldBag t u e EmptyBag = e
foldBag t u e (UnitBag x) = u x
foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t`

(foldBag t u e b2)
foldBag t u e (ListBag xs) = foldr (t.u) e xs

Thanks to the invariants, this means it will only need to refer to e in the case of
an empty Bag or when there are embedded ListBag constructors, and will never
recursively stumble upon e otherwise.

The second definition, however – the one that is actually used – does leverage e
within the bag structure:

foldBag _ _ e EmptyBag = e
foldBag t u e (UnitBag x) = u x `t` e
foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
foldBag t u e (ListBag xs) = foldr (t.u) e xs

62

The EmptyBag and ListBag cases are the same between the two definitions, so there’s
no problem there. But the other two cases differ, and impose extra requirements on
t and e. The TwoBags case folds the elements of the left and right bags together
in the same order, but with different groupings; it is this case that requires t to be
associative. So far, this matches the documentation. However, the UnitBag case
has yet another difference: it uses t to combine u x with e, rather than leaving u x
unmodified. This is necessary, since the value of e changes during the recursion; that’s
exactly how the new definition can be more tail-recursive. However, it imposes the
extra requirement that e be a right identity for t: for all x, t x e = x.

As long as the argument is well-formed, this is the only extra requirement on the
arguments to foldBag, since e could otherwise only be introduced by EmptyBag or a
ListBag []. However, if the input bag can be ill-formed, then EmptyBag can show
up on the left of a recursive call in the “standard definition”, introducing an e as the
first argument to t. In this case, e needs to be an ordinary two-sided identity for
t. Thus, we have a choice in stating the requirements on the arguments for the two
definitions to be equal: we can require that the two implementations of foldBag are
equal when. . .

(1) t is associative with right-identity e and they are applied to a well-formed
Bag; or foldBag is a well-formed Bag; or

(2) t is associative with (two-sided) identity e.
In this case, since Bags are an abstract type, the former definition is probably the one
that is actually “intended” in some sense; even so, we could imagine the latter easing
the proof burden in the middle of a complex theorem.

Now, this minor discrepancy is never tickled by GHC: foldBag is only ever called
twice, and both these times – as is likely to be the case most of the time – e is the
identity for t. But the discrepancy with respect to the documentation is nevertheless
misleading, and was present for over 21 years. While not quite the triumphant bug-
finding we might have hoped for, this does demonstrate that, if we look carefully for
specifications, we sometimes find that the specifications the developers believe hold of
their code aren’t quite the ones that actually do.

5.3.3. Verified Bag operations. As we described in Section 2.4, each operation
on Bags can be verified in up to two ways: for well-formedness and for correctness.
Since some functions don’t return Bags (e.g., lengthBag), we can’t verify that these
preserve well-formedness, but every function we could verify has a specification. At
the same time, we could imagine a function which was correct but didn’t produce a
well-formed bag; for instance, consider the function

evilUnion :: Bag a -> Bag a -> Bag a
evilUnion b1 b2 = TwoBags EmptyBag (TwoBags b1 b2)

This function produces an ill-formed result, since it contains an internal EmptyBag.
However, once translated to Coq, we could easily prove

Theorem evilUnion_ok {A} (b1 b2 : Bag A) :
bagToList (evilUnion b1 b2) = bagToList b1 ++ bagToList b2.

63

This is because bagToList is defined for all elements of the Bag type, not just well-
formed ones. Thus, we need to consider the two different kinds of theorems separately.
In Section 5.3.1, we repeated the examples of unionBag_wf and unionBag_ok, which
instantiate this paradigm.

Recall that we defined well_formed_bag as a fixpoint that produces a bool. Focus-
ing on computational functions such as this, instead of noncomputational Properties,
means that we get automatic simplification of well-formedness preconditions, and
can sometimes discharge them fully automatically, all for free. This is a hallmark of
SSReflect style, as well, so it is more compatible with the other pieces of the proof
script, which were written in the same style.

As Bag is a simple data structure, none of the proofs are terribly complicated; they
were each at most 8 lines long. We verified nineteen operations on bags;16 I present
here a list of all the bag operations that we verified along with their specifications,
both in English and in Coq. Each operation is marked with “wf” if it was verified for
well-formedness, and “ok” if it was verified for correctness.
emptyBag (wf, ok): The polymorphic empty bag. This is defined to be equal to

the EmptyBag constructor, so our correctness theorems are phrased in those
terms:

Theorem emptyBag_wf {A} : well_formed_bag (@Mk_EmptyBag A).
Theorem emptyBag_ok {A} : bagToList (@Mk_EmptyBag A) = [].

unitBag (wf, ok): Create a singleton bag.
Theorem unitBag_wf {A} (x : A) :

well_formed_bag (unitBag x).
Theorem unitBag_ok {A} (x : A) :

bagToList (unitBag x) = [x].

lengthBag (ok): Compute the number of elements of a bag.
Theorem lengthBag_ok {A} (b : Bag A) :

lengthBag b = Zlength (bagToList b).

elemBag (ok): Test if a value occurs in the bag at least once, using the Eq_ instance
for that type. We also provide a stronger theorem, elemBag_eq_ok, which
applies when the elements of the bag satisfy the EqExact type class; this type
class says that the Haskell (==) method corresponds to true Coq equality.
This theorem says that elemBag corresponds to the In predicate for lists.

Theorem elemBag_ok
{A} `{GHC.Base.Eq_ A} (x : A) (b : Bag A) :

elemBag x b = any (GHC.Base.op_zeze__ x) (bagToList b).
Corollary elemBag_eq_ok

{A} `{EqExact A} (x : A) (b : Bag A) :
elemBag x b <-> In x (bagToList b).

16Not including all_bag, for reasons we discuss later.

64

unionManyBags (wf, ok): Given a list of bags, takes the union (or concatenation,
since Bags are ordered) of all of them.

Theorem unionManyBags_wf {A} (bs : list (Bag A)) :
all well_formed_bag bs ->
well_formed_bag (unionManyBags bs).

Theorem unionManyBags_ok {A} (bs : list (Bag A)) :
bagToList (unionManyBags bs) = concat (map bagToList bs).

unionBags (wf, ok): Take the union of two bags (which is their concatenation, since
Bags are ordered).

Theorem unionBags_wf {A} (b1 b2 : Bag A) :
well_formed_bag b1 -> well_formed_bag b2 ->
well_formed_bag (unionBags b1 b2).

Theorem unionBags_ok {A} (b1 b2 : Bag A) :
bagToList (unionBags b1 b2) = bagToList b1 ++ bagToList b2.

consBag (wf, ok): Prepend an element to a bag. That both this and snocBag are
provided is one of the reasons that we know that Bags are ordered.

Theorem consBag_wf {A} (x : A) (b : Bag A) :
well_formed_bag b ->
well_formed_bag (consBag x b).

Theorem consBag_ok {A} (x : A) (b : Bag A) :
bagToList (consBag x b) = x :: bagToList b.

snocBag (wf, ok): Append an element to a bag. That both this and consBag are
provided is one of the reasons that we know that Bags are ordered.

Theorem snocBag_wf {A} (b : Bag A) (x : A) :
well_formed_bag b ->
well_formed_bag (snocBag b x).

Theorem snocBag_ok {A} (b : Bag A) (x : A) :
bagToList (snocBag b x) = bagToList b ++ [x].

isEmptyBag (ok): Test if a bag has no elements.
Theorem isEmptyBag_ok {A} (b : Bag A) :

well_formed_bag b ->
isEmptyBag b = null (bagToList b).

filterBag (wf, ok): Compute the subbag containing all elements satisfying a given
predicate.

Theorem filterBag_wf {A} (p : A -> bool) (b : Bag A) :
well_formed_bag (filterBag p b).

Theorem filterBag_ok {A} (p : A -> bool) (b : Bag A) :
bagToList (filterBag p b) = filter p (bagToList b).

65

all_bag (ok): Test that every element of the bag satisfies this predicate. We wrote
this function by hand and tested it in our original work, which used GHC 8.0.2;
however, an allBag function was added in GHC 8.2, and I noted at the time
that this should be replaced with it once we updated to 8.2. Now that we
have, we could update our proofs.

Theorem all_bag_ok {A} (p : A -> bool) (b : Bag A) :
all_bag p b = all p (bagToList b).

anyBag (ok): Test if any element of the bag satisfies the given predicate.

Theorem anyBag_ok {A} (p : A -> bool) (b : Bag A) :
anyBag p b = any p (bagToList b).

concatBag (wf, ok): Given a bag of bags, compute their union (or concatenation,
since Bags are ordered). Similar to unionManyBags.

Theorem concatBag_wf {A} (bb : Bag (Bag A)) :
all_bag well_formed_bag bb ->
well_formed_bag (concatBag bb).

Theorem concatBag_ok {A} (bb : Bag (Bag A)) :
bagToList (concatBag bb) =
concat (map bagToList (bagToList bb)).

catBagMaybes (wf, ok): Given a bag of Maybe (in Haskell) or option (in Coq) values,
drop all the Nothings/Nones and unwrap the Justs/Somes.

Theorem catBagMaybes_wf {A} (b : Bag (option A)) :
well_formed_bag (catBagMaybes b).

Theorem catBagMaybes_ok {A} (b : Bag (option A)) :
bagToList (catBagMaybes b) =
flat_map

(fun o => match o with Some x => [x] | None => [] end)
(bagToList b).

partitionBag (wf, ok): The expression partitionBag p b is the same as the pair
(filterBag p b, filterBag (not . p) b) of the positive and negative
filters. This function splits the bag b into two disjoint subsets, the former in
which all elements satisfy the predicate p and the latter in which none do.

Theorem partitionBag_wf {A} (p : A -> bool) (b : Bag A) :
let: (bt, bf) := partitionBag p b
in well_formed_bag bt && well_formed_bag bf.

Theorem partitionBag_ok {A} (p : A -> bool) (b : Bag A) :
let: (bt, bf) := partitionBag p b
in (bagToList bt, bagToList bf) =

partition p (bagToList b).

66

foldBag (ok): Reduce a bag to a single element via an associative binary operation.
This function was also the target of verification with respect to the “standard
implementation” that we saw in Section 5.3.2.

Theorem foldBag_ok
{A R}
(f : R -> R -> R) (u : A -> R) (z : R) (b : Bag A) :

associative f ->
foldBag f u z b = fold_right f z (map u (bagToList b)).

foldrBag (wf, ok): Reduce a bag to a single element, just like foldr (Haskell)/
fold_right (Coq) for lists. We also proved two well-formedness properties
for foldrBag which said that if (1) we are folding into a Bag B for some B,
(2) the reducing function preserves well-formedness of Bags, and (3) the base
value is a well-formed Bag, then the result is a well-formed Bag. These lemmas
were not strictly necessary, as these properties follow from the correctness of
foldrBag (and this is why we did not prove them for foldBag or foldlBag);
however, since foldrBag was used to implement other functions on Bags, they
were useful to have. For the same reason, we proved similar well-formedness
theorems for the foldr function on lists.

Lemma foldrBag_wf
{A B}
(p : A -> bool) (f : A -> Bag B -> Bag B) (z : Bag B) :

(forall x b,
p x -> well_formed_bag b -> well_formed_bag (f x b)) ->

well_formed_bag z ->
forall b : Bag A,

all_bag p b -> well_formed_bag (foldrBag f z b).
Lemma foldrBag_wf'

{A B} (f : A -> Bag B -> Bag B) (z : Bag B) :
(forall x b,

well_formed_bag b -> well_formed_bag (f x b)) ->
well_formed_bag z ->
forall b : Bag A, well_formed_bag (foldrBag f z b).

Theorem foldrBag_ok
{A R} (f : A -> R -> R) (z : R) (b : Bag A) :

foldrBag f z b = fold_right f z (bagToList b).

foldlBag (ok): Reduce a bag to a single element, just like foldl (Haskell)/fold_left
(Coq) for lists.

Theorem foldlBag_ok
{A R} (f : R -> A -> R) (z : R) (b : Bag A) :

foldlBag f z b = fold_left f (bagToList b) z.

mapBag (wf, ok): Apply a function to every element of a Bag.
67

Theorem mapBag_wf {A B} (f : A -> B) (b : Bag A) :
well_formed_bag b ->
well_formed_bag (mapBag f b).

Theorem mapBag_ok {A B} (f : A -> B) (b : Bag A) :
bagToList (mapBag f b) = map f (bagToList b).

listToBag (wf, ok): Convert a list into an equivalent Bag. This function simply
wraps the list in the ListBag constructor if the list is nonempty.

Theorem listToBag_wf {A} (l : list A) :
well_formed_bag (listToBag l).

Theorem bagToList_listToBag {A} (l : list A) :
bagToList (listToBag l) = l.

5.3.4. Unverified Bag operations. This list covers all the well-formedness (_wf)
and correctness (_ok) theorems that I proved. Some functions, such as foldBag,
consume Bags but do not produce them, and so did not have well-formedness theorems;
even so, every function in that list which could have had a well-formedness theorem
proved about it did. However, as is often the case, there are some functions provided
in the Bag module that remained outside the scope of this verification. Some of these
functions are type class methods; for instance, as discussed in Section 2.3, we skip the
instance of the Outputable type class for Bag since we do not verify pretty-printing.
We also elided the translation of the Data class, which is used for generic programming,
as we do by default.

Some other functions we did not verify are the 10 monadic operations on bags:
filterBagM, anyBagM, foldrBagM, foldlBagM, mapBagM, mapBagM_, flatMapBagM,
flatMapPairM, mapAndUnzipBagM, and mapAccumBagLM. As is the custom in Haskell
libraries, these functions are mostly monadic variants on the matching M-less functions
we saw in the previous section; for instance, mapBagM_ is like mapBagM but doesn’t
return the result, and mapAndUnzipBagM maps a monadic function returning pairs
over a bag and splits the result into a pair of bags instead of a bag of pairs.

Nothing fundamental prevents us from verifying these monadic functions; indeed,
we can translate and run them without a problem. However, verification of monadic
functions is generally eased by providing a library of theorems and notational support,
and building this up is a time-consuming undertaking (and even getting the full suite
of notation we wanted would have been challenging in the Coq version we were using
at the time). Because no other code depended on these monadic Bag functions, there
were, in our estimation, other, more pressing ways to advance the usage of hs-to-coq
than building such a library. Thus, we decided that verifying monadic functions will
remain out of scope for hs-to-coq until such time as better support arrives or we
write it ourselves.

Finally, there are three functions on Bags that we did not verify because they
referred to code that we did not translate.
isSingletonBag: This function tests if a Bag contains exactly one element.

68

partitionBagWith: This function splits a Bag in two pieces, like partition; instead
of a predicate, however, it uses a function p :: a -> Either b c, and
produces one bag with all the Left results and one with all the Rights.

mapAccumBagL: This function corresponds to the function mapAccumL for lists. It has
the type signature

mapAccumBagL :: (acc -> x -> (acc, y))
-> acc
-> Bag x
-> (acc, Bag y)

One way to understand it is as mapM (or traverse) for the state monad using
acc as the type of the state. It applies the first parameter to each element of
the bag, which determines the structure of the output Bag y; additionally,
for the first element, the initial acc value is passed, and for every successive
element, the acc value generated by the previous one is passed.

5.3.4.1. New Bag operations. There are also three Bag operations that were added
in GHC 8.2, which we have not verified yet.
allBag: As discussed above, this function checks that every value in the Bag satisfies

the given predicate.
concatMapBag: A combination of mapBag and concatBags; applies a function that

returns a Bag to every element of a Bag, and concatenates the results.
mapMaybeBag: A combination of mapBag and catBagMaybes; applies a function that

returns a Maybe b to every element of a Bag, and produces a Bag consisting
of the contents of all the Just results.

5.3.5. What did we learn? Verifying the Bag module was an excellent early
project to help us understand how to use and further develop hs-to-coq; we can see
that here, as this is the same reason it functioned well as an introductory example in
Chapter 2. In particular, in addition to learning about the correctness of this specific
Haskell code, we learned some more general things.

First, working with the Bag module was an early foray into verifying abstract data
types; we did much more work on this with containers, which we are about to see
in the next chapter (Chapter 6). However, some themes carry through; for example,
we implemented our specifications of correctness by providing a semantics for the Bag
type, associating it with a type that was easier to work with.

We also saw the challenges of specification design: we had to differentiate between
well-formedness and correctness, we had to trust certain comments (the invariants)
but found that others were wrong (the claim that Bags were unordered, or the specifics
of when the two implementation of foldBag were the same). This is of course a
perennial challenge for all verification; the challenges have a slightly different nature
when verifying existing code, but this is still not unique to hs-to-coq.

Lastly, this work was the first time we verified a piece of GHC, and the first time
we had to slice a portion of GHC out of the rest so that we could work on it. Because
our eventual goal was to verify the more compiler-specific aspects of GHC, this was
valuable practice for the work we did on that later, which we will see two chapters

69

from now (Chapter 7). Because the Bag module was largely self-contained, this was
an easier project, but it helped situate us in that environment when we started on
that much more complex task.

70

CHAPTER 6

“Ready, Set, Verify!”

In “Ready, Set, verify! Applying hs-to-coq to real-world Haskell code (experience
report)” (Breitner et al., 2018), we verified the containers library, and in particular
sets and maps. We extended hs-to-coq’s reach to large libraries, and relaxed our
adherence to only interacting with total code. While we did not verify “truly” partial
functions, we extended hs-to-coq to work with “internal partiality” in the implemen-
tation of what the API consumer sees as total functions. We also had to seek out
specifications from wide-ranging sources to ensure that when we verified containers,
the result was meaningful. As part of this effort, I used hs-to-coq in a particularly
novel way: to translate a QuickCheck test suite into a Coq “proof suite”, allowing us
to formally verify the QuickCheck properties in Coq (Section 6.2). Happily, we found
no bugs in containers, attesting to the correctness of well-maintained Haskell code.

6.1. Data structures

We verified four data structures from the containers library:
(1) Set, for unordered finite sets of Orderable elements;
(2) Map, for unordered finite key-value maps with Orderable keys;
(3) IntSet, for unordered finite sets of Ints; and
(4) IntMap, for unordered finite key-value maps with Int keys.

We did not verify Graph (finite graphs), Tree (rose trees), or Seq (finite sequences).
The Set and Map types are both based on weight-balanced binary search trees;

the IntSet and IntMap types are both based on big-endian Patricia trees (Morrison,
1968; Okasaki and Gill, 1998). Consequently, the details of verifying Sets and Maps
are very similar, as are the details of verifying IntSets and IntMaps; symmetrically,
since they represent the same data structure, the specifications for Set and IntSet
are more similar, as are the specifications for Map and IntMap.

In the initial paper (Breitner et al., 2018), we focused on just Set and IntSet;
however, we have since extended our verification efforts to cover all four data structures
to varying degrees. My focuses on this project were (1) developing and extending
hs-to-coq to support our increasing verification-related needs; and (2) developing
the QuickCheck “proof suite” technology.

6.1.1. Weight-balanced binary trees. The definition of Set is as a binary tree
with empty tips whose nodes contain both a value and the size of the tree rooted
there:17

17Extra dashes were removed from the horizontal rules.

71

{---
Sets are size balanced trees

---}
-- | A set of values @a@.

-- See Note: Order of constructors
data Set a = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)

| Tip

type Size = Int

A well-formed Set is a binary search tree, so the membership function need only
recurse at most once:

member :: Ord a => a -> Set a -> Bool
member = go

where
go !_ Tip = False
go x (Bin _ y l r) = case compare x y of

LT -> go x l
GT -> go x r
EQ -> True

Looking at the definition of Set, we see an {-# UNPACK #-} annotation – the
{-# ... #-} comment form is interpreted as a pragma by the compiler – as well as
multiple !s. The {-# UNPACK #-} annotation is about the internal representation
of the Bin constructor: it directs the compiler to take the Size value and store it
directly in the constructor, removing one layer of indirection. To understand the effect
of the UNPACK pragma, see Figure 6.1. It ends up saving one word of memory for the
constructor header, plus it removes one indirection every time the size is accessed. For
small values like machine words which can be stored in registers, this is a powerful
optimization. The ! annotations are strictness annotations; when a constructor is
evaluated, so are all of its strict fields.

Since hs-to-coq does not handle laziness, and does not support infinite (core-
cursive) data structures without an explicit request via an edit, we can ignore the
strictness annotations; since {-# UNPACK #-} is explicitly a semantics-preserving
optimization that cannot be represented in Coq, we can ignore it.

This sort of tree representation is only efficient to work with if it stays balanced.
The containers library uses a size-balanced representation:

sl + sr ≤ 1 ∨ (sl ≤ 3sr ∧ sr ≤ 3sl),
where sl and sr are the sizes of the left and right subtrees, respectively, of a Bin node.
This ensures that the two subtrees have sizes that stay relatively close, which provides
the requisite efficiency guarantees.

As alluded to before, the definition of Map will look familiar, now that we’ve seen
Set:

72

Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)

Bin 1# • • •

Tip

"unpacked"

Bin' !Size !a !(Set a) !(Set a)

Bin' • • • •

Tip'

"packed"

I# 1#

Figure 6.1. The effect of an {-# UNPACK #-} annotation. The first
tree represents the singleton set containing the string "unpacked"; the
second tree represents the singleton set containing the string "packed"
if we did not have the annotation. Each rectangle is one word of memory.
The • symbol denotes a pointer to another value. A hash-suffixed number
represents a machine word; Haskell Ints are stored as a constructor (I#)
wrapping a single machine word. Clouds represent heap values that we
do not inspect further. Each constructor (here represented by its name)
is stored as a unique one-word tag.

data Map k a = Bin {-# UNPACK #-} !Size !k a !(Map k a) !(Map k a)
| Tip

It is identical to the definition of Set k, except for the extra lazy a field. This affects
the specifications, but means that we were able to focus on just Set, instead of
conceptualizing Set and Map separately.

6.1.2. Big-endian Patricia trees. The definition of IntSet is rather more
involved than that of Set. Though also made mostly of Bins and Tips, plus an extra
Nil constructor for the empty set, the structure of the two is rather different, with
many more invariants.
-- | A set of integers.

-- See Note: Order of constructors
data IntSet = Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask

73

!IntSet !IntSet
-- Invariant: Nil is never found as a child of Bin.
-- Invariant: The Mask is a power of 2. It is the largest bit
-- position at which two elements of the set differ.
-- Invariant: Prefix is the common high-order bits that all
-- elements share to the left of the Mask bit.
-- Invariant: In Bin prefix mask left right, left consists of the
-- elements that don't have the mask bit set; right is
-- all the elements that do.

| Tip {-# UNPACK #-} !Prefix {-# UNPACK #-} !BitMap
-- Invariant: The Prefix is zero for the last 5 (on 32 bit arches)
-- or 6 bits (on 64 bit arches). The values of the set
-- represented by a tip are the prefix plus the indices
-- of the set bits in the bit map.

| Nil

-- A number stored in a set is stored as
-- * Prefix (all but last 5-6 bits) and
-- * BitMap (last 5-6 bits stored as a bitmask)
-- Last 5-6 bits are called a Suffix.

type Prefix = Int
type Mask = Int
type BitMap = Word
type Key = Int

Testing for membership in an IntSet is thus defined in terms of bit manipulation
rather than the ordering used in Set; this can both pick whether to go down the left
or right branch, as well as return False early. Each Tip also stores multiple values,
rather than none at all.

-- | /O(min(n,W))/. Is the value a member of the set?

-- See Note: Local 'go' functions and capturing.
member :: Key -> IntSet -> Bool
member !x = go

where
go (Bin p m l r)

| nomatch x p m = False
| zero x m = go l
| otherwise = go r

go (Tip y bm) = prefixOf x == y && bitmapOf x .&. bm /= 0
go Nil = False

74

Once again, the definition of IntMap will be familiar:
data IntMap a = Bin {-# UNPACK #-} !Prefix

{-# UNPACK #-} !Mask
!(IntMap a)
!(IntMap a)

-- Fields:
-- prefix: The most significant bits shared by all keys in this
-- Bin.
-- mask: The switching bit to determine if a key should follow
-- the left or right subtree of a 'Bin'.
-- Invariant: Nil is never found as a child of Bin.
-- Invariant: The Mask is a power of 2. It is the largest bit
-- position at which two keys of the map differ.
-- Invariant: Prefix is the common high-order bits that all
-- elements share to the left of the Mask bit.
-- Invariant: In Bin prefix mask left right, left consists of the
-- elements that don't have the mask bit set; right is
-- all the elements that do.

| Tip {-# UNPACK #-} !Key a
| Nil

Down to the comments , this is nearly identical to IntSet (except that Bin has its
fields broken up onto multiple lines), although, because the Tip has to map an integer
Key (a type synonym for Int) to a value, it does not have the same multi-element
packing optimization that IntSet does. Nevertheless, the two types have almost
identical structure, with IntMap being simpler, and so we could again focus on just
IntSet.

6.2. From a test suite to a proof suite

In our ravenous search for specifications of containers, one source we found useful
was its test suite of QuickCheck (Claessen and Hughes, 2000) properties.

6.2.1. What is QuickCheck? QuickCheck is a Haskell library, originally devel-
oped by Claessen and Hughes (2000), for property-based random testing. To use it,
the user defines three different kinds of things:

(1) Generators, which generate random values of a specific type;
(2) Shrinkers, which take values of a specific type and make them “simpler”; and
(3) Properties, which are predicates that are expected to hold for all of their

inputs.
The type class Arbitrary encapsulates the first two, although it is possible to define
generators and shrinkers separately as well.

A QuickCheck property is, typically, a function from some collection of inputs to
a Bool, that the programmer believes holds on all of their inputs. Supposing that all
the input types are instances of Arbitrary – that is, they have associated generators

75

and shrinkers – then the truth of this property can be tested by randomly generating
many different inputs and testing that the function always returns True. If it ever
returns False, then a counterexample was found, and the property is false; each input
is repeatedly shrunk, using the associated shrinker, and retested in order to find and
present a relatively small counterexample.

QuickCheck offers more power than this: the most general type of something
testable is Property, which captures both generation and returning a boolean. For
example, there’s a function forAll which takes a generator and returns a Property,
so you can work with specific generators.

6.2.2. How we use QuickCheck. The existence of QuickCheck test suites is
incredibly helpful for us, as it is another source of specifications: the library authors
believe that each of the properties in the test suite must be true. This gives us a
collection of propositions we’d like to transfer to Coq. But, crucially, instead of being
in plain text, or thought up anew by us, they are already in Haskell. And we have a
tool for converting Haskell code into Coq!

We could try just running hs-to-coq on these propositions to get Coq functions
to Bool. But this would fail when dealing with randomness, and with QuickCheck’s
richer Property type. Instead, we take advantage of hs-to-coq’s configurability
through edits, and change our usual tune: we intentionally try to make the Coq
output different than the input. In particular, we translate QuickCheck’s Property
to Coq’s Prop, and translate all the associated combinators required to ensure that
these functions become proof-amenable properties. As such, we’ve gone from a “test
suite” to a “proof suite” – or just a “theorem suite” before we’ve completed the proofs.

6.2.3. Our translation of QuickCheck. To translate QuickCheck, we use four
different components:

(1) Hand-written replacement Coq modules for the necessary portions of the
Haskell Test.QuickCheck.* modules.

(2) Compiler flags for GHC to enable testing mode.
(3) A preamble to use definitions that link to our hand-written replacement

modules.
(4) Edits to control the linkage and skip properties and modules we don’t want.

The latter three must be redone for every test suite we wish to translate, but the first
could in principle be reused (although we have not done so yet).

Item (2) is uninteresting – it merely requires passing the -DTESTING flag to GHC,
and is only necessary because of the way the containers library was defined. This
exposes various definitions (for testing purposes) that would otherwise be hidden.
Items (1), (3), and (4) are more interesting.

6.2.3.1. Hand-written QuickCheck replacements. QuickCheck defines a top-level
function

quickCheck :: Testable prop => prop -> IO ()

This function (or its more-configurable variants) takes any “testable property” and
queries it by generating a lot of random inputs. We don’t need to use this function – in
fact, we can’t, as we don’t translate IO, Coq doesn’t support randomness natively, and

76

we don’t provide a Coq PRNG. Instead, we want to make sure that every Testable
property can be converted to a Coq Prop. We can then attempt to prove that any
Testable property holds.

The Testable type class is defined as
class Testable prop where

property :: prop -> Property
propertyForAllShrinkShow ::

Gen a -> (a -> [a]) -> (a -> [String]) -> (a -> prop) ->
Property

with the latter function being optional and inessential. This means that the core of
being testable is being able to be converted into a Property. The Property type is
abstract, which is perfect for our purposes: we simply want to replace it with Coq’s
Prop. Thus, our Coq definition is instead

Class Testable (a : Type) := { toProp : a -> Prop }.

That way, just as we would run quickCheck prop_isOK in a test suite, we can prove
the theorem toProp prop_isOK in the corresponding proof suite.

The Testable class has several instances, but some of the most important are:
• Testable Property, which is just the identity.
• Testable Bool, where True is a true property/a successful test and False
is a falsifiable property/a failed test.
• Testable (), which is an always-true property/an always-successful test.
• (Arbitrary a, Show a, Testable prop) => Testable (a -> prop),
which lets us test functions by generating random inputs and looking at the
result. Applied recursively, this lets us test functions of arbitrary arity.

The function instance is the most interesting, because it controls how quantification
works. A function f :: a -> prop effectively says that ∀(x :: a), f x. It works by
requiring that a be an instance of Arbitrary, which is the type class that permits
random generation of values.18 For our purposes, it might seem that we could get away
without this type class – forall (x : a), toProp (f x) is guaranteed to itself be
a Prop without constraints on a. But that turns out not to be quite what we want.

The definition of the Arbitrary type class is:
class Arbitrary a where

arbitrary :: Gen a
shrink :: a -> [a]

The type constructor Gen is a monad supporting (sized) random generation, so
arbitrary generates a random value of type a. The shrink function is used to
generate simpler counterexamples, and so is not relevant for our purposes (where we
write proofs and don’t need counterexample generation).

The important thing about arbitrary, however, is that there is no requirement
that it be able to generate all inhabitants of a. While for many types it does, sometimes
it may be constrained. For example, the QuickCheck library contains many newtypes,

18It also requires Show, which is just for printing the output and so not relevant to our purposes.

77

such as newtype Positive = Positive { getPositive :: a }, whose Arbitrary
instances are specifically intended to be constrained. Or, a type – such as, say, IntSet
– may only want to generate well-formed values.

In any event, we want to allow Arbitrary to continue to manage these sorts of
constraints. In fact, anywhere we could generate a random value, that’s not what we
want to do – we will instead want to validate that any arbitrary input value could
have been generated by that generator. We thus redefine the Gen type to be

Record Gen a := MkGen { unGen : a -> Prop }.
Arguments MkGen {_} _.
Arguments unGen {_} _ _.

For example, take the generator choose :: Random a => (a, a) -> Gen a, which
generates a random value in the given range (inclusive). Our handwritten Coq
definition of choose is instead

Definition choose {a} `{GHC.Base.Ord a} (range : a * a) : Gen a :=
MkGen (fun x => (fst range GHC.Base.<= x) &&

(x GHC.Base.<= snd range)).

This means that we can then simply leave Arbitrary mostly alone:
Class Arbitrary (a : Type) := { arbitrary : Gen a }.

Nevertheless, thanks to our redefinition of Gen, its behavior has completely changed.
And we can use this changed behavior to give the Testable instance for functions:

Definition forAll {a prop} `{Testable prop}
(g : Gen a) (p : a -> prop) : Prop :=

forall (x : a), unGen g x -> toProp (p x).
Arguments forAll {_ _ _} / _ _.

Instance Testable_fn
{a prop} `{Arbitrary a} `{Testable prop} : Testable (a -> prop) :=
{ toProp := forAll arbitrary }.

QuickCheck also features various combinators for operating on Testable properties,
such as the conjunction-of-properties operator (.&&.), which has the type

(Testable prop1, Testable prop2) => prop1 -> prop2 -> Property

and requires both its arguments to hold. We can define these combinators simply
as their Coq analogues in Prop: Haskell (.&&.) becomes Coq /\, Haskell (.||.)
becomes Coq \/, and so on.

We did not define many instances of Arbitrary, just those that were needed to
put the proof suite for IntSet together. The instances we provided were for bool,
Int (which is Z in our Coq translation), Word (which is N), list, and IntSet. The
first three instances are all essentially the same:

Instance Arbitrary_bool : Arbitrary bool :=
{ arbitrary := MkGen xpredT }.

78

(The predicate xpredT is from SSReflect, and is the always-true predicate).
The other two instances are somewhat more interesting. Lists need to propagate

the Arbitrary instance for their contents:

Instance Arbitrary_list {a} `{Arbitrary a} : Arbitrary (list a) :=
{ arbitrary := MkGen (Coq.Lists.List.Forall (unGen arbitrary)) }.

And IntSets need to be well-formed:

Instance Arbitrary_IntSet
: Test.QuickCheck.Property.Arbitrary Data.IntSet.Internal.IntSet
:=

{ arbitrary := Test.QuickCheck.Property.MkGen IntSetProofs.WF }.

6.2.3.2. A custom preamble. Our custom preamble is simple: a few module Require
statements, one notational definition, the aforementioned Arbitrary IntSet instance,
and

Coercion is_true : bool >-> Sortclass.

as can be found in SSReflect.
One of the imported modules is IntSetProofs, solely because we need to be able

to refer to WF in the Arbitrary IntSet instance. Interestingly, this posed a problem:
the required dependency graph was very different from usual. Dependency-wise,
all the other files in containers are translated “first”, then we write specifications
that depend on those definitions, and then we write proofs that depend on those
specifications. Put another way, the generated Coq is upstream from the hand-written
Coq. But here, we were translating the specification, and so needed to put the
translated Coq downstream from the hand-written code! Thankfully, since hs-to-coq
doesn’t check the Coq for correctness, this posed no problems during the translation,
but it did require reworking how compilation worked for the Coq code.

6.2.3.3. Edits for working with QuickCheck. Unusually for working with hs-to-coq,
most of the work lay in hand-written modules (Section 6.2.3.1), and not in the edits.
Most of the edits were simple:

• redefine number types to be N, and switch up operations on them, as per
usual;
• skip modules we weren’t using, including QuickCheck modules that we were
replacing;
• set the name of the module to something other than Main;
• skip the Arbitrary class, since its instances would be all wrong and need to
be hand-written;
• skip the main action that runs the tests;
• skip the unit tests; and
• skip the properties that we didn’t want to prove.

For the most part, the properties we skipped were those that tested functions we
didn’t have, although one involved a local fixpoint we did not want to handle.

79

6.2.4. Our translated proof suite. Once we have this translation, we take
each property we wish to work with and prove it as a theorem. The properties all
have names like prop_Member, prop_InsertDelete, prop_UnionComm, and so on (as
is generally the custom when working with QuickCheck), so for each of these we prove
the corresponding theorem: Theorem thm_Member : toProp prop_Member, etc. For
example,

prop_UnionComm :: IntSet -> IntSet -> Bool
prop_UnionComm t1 t2

= (union t1 t2 == union t2 t1)

from containers becomes (reformatted and with module names elided)
Definition prop_UnionComm : IntSet -> IntSet -> bool :=

fun t1 t2 => (union t1 t2 == union t2 t1).

When we wish to prove it, we prove the theorem
Theorem thm_UnionComm : toProp prop_UnionComm.

which is equivalent to
Theorem thm_UnionComm :

forall s1 : IntSet, WF s1 -> forall s2 : IntSet, WF s2 ->
prop_UnionComm s1 s2.

(as can be seen, up to α-equivalence, by applying the simpl tactic).
The proofs themselves leverage the other results that were proved about IntSet,

which made them simpler to reason about, although there is nothing intrinsically
necessary about this – it is simply that we started with the other proofs, and came to
the QuickCheck properties second. One could use this same technique first, and then
figure out what general theories (such as Sem) were necessary for these proofs. Indeed,
unsurprisingly, I had to prove additional lemmas about the behavior of IntSets to
complete all the proofs, and in particular to work with SSReflect.

Verified properties. All in all, we proved 34 QuickCheck properties correct.
thm_Valid: Asserts that all arbitrary IntSets are also valid. The valid function

is a predicate, defined only for testing purposes, that captures the invariants
that should hold of a tree. We already know that validity implies WF; our
translation of this property restates that, so its proof is not complicated given
that result.

thm_EmptyValid: Asserts that the empty IntSet is valid.
thm_SingletonValid: Asserts that singleton x is always valid.
thm_InsertIntoEmptyValid: Asserts that insert x empty is always valid.
thm_Single: Asserts that insert x empty is the same as singleton.
thm_Member: Asserts that fromList preserves membership, turning elem on lists into

member on IntSets.
thm_NotMember: Asserts that fromList preserves nonmembership, turning notElem

on lists into notMember on IntSets.
thm_InsertDelete: Asserts that delete k . insert k is the identity, as long as k

was not already present. Also asserts that the result is valid.
80

thm_MemberFromList: Similar to thm_Member and thm_NotMember, asserts that if a
list is turned into an IntSet, then all its elements are members of the result,
and nonelements are not (here, the nonelements are the negations of a list of
positive numbers).

thm_UnionInsert: Asserts that unioning a set with singleton x is the same as
simply using insert x, and that the result is valid.

thm_UnionAssoc: Asserts that union is associative.
thm_UnionComm: Asserts that union is commutative.
thm_Diff: Asserts that the difference of two IntSets made with fromList is, when

converted back to a list, the same as taking their list-difference, up to order
and repetition; also asserts that the result is valid.

thm_Int: As thm_Diff, but with respect to intersection.
thm_disjoint: Asserts that two IntSets being disjoint is equivalent to their

intersection being empty (i.e., being null).
thm_List: Asserts that converting from and back to a list is the same as sorting that

list and dropping repetitions (i.e., that toAscList . fromList is the same
as sort . nub).

thm_DescList: As thm_List, but uses toDescList and reverses the sorted list.
thm_AscDescList: Asserts that toAscList is just reverse . toDescList for any

IntSets constructed with fromList.
thm_Prefix: An invariant that holds on the guts of an IntSet: that the prefix bits

are correct for all the members of an IntSet, and so recursively on its tree
structure.

thm_LeftRight: An invariant that holds on the guts of an IntSet: that the bitmask
is correctly unset for all the elements of the left-hand side of the IntSet’s
tree structure, and is correctly set for the right-hand ones.

thm_isProperSubsetOf2: Asserts that A (A ∪ B ⇐⇒ A 6= A ∪ B, in terms of
isProperSubsetOf and union.

thm_isSubsetOf2: Asserts that A ⊆ A ∪B, in terms of isSubsetOf and union.
thm_size: Asserts that the size on an IntSet is the same as both (a) the result of

using foldl' to compute the size directly, and (b) the result of taking the
list length of toList.

thm_ord: Asserts that the ordering on IntSets is the same as the ordering on their
toLists.

thm_foldR: Asserts that foldr can be used to reconstruct a list; specifically, asserts
that foldr (:) [] is the same as toList.

thm_foldR': As thm_foldR, but about foldr'.
thm_foldL: Asserts that foldl can be used to reconstruct a list, but backwards;

specifically, that foldl (flip (:)) [] is the same as reversing toList.
thm_foldL': As thm_foldL, but about foldl'.
thm_map: Asserts that map id is id.
thm_split: Asserts that split is correct. The result of split i s is supposed to be

a pair of sets, the first containing all the elements of s less than i and the
second containing all the elements of s greater than i (with i itself gone).
This theorem proves that, and also that the resulting sets are valid.

81

thm_splitMember: As thm_split, but about splitMember; the difference is that in
addition to two sets, splitMember also returns a boolean saying whether or
not i had originally been a member of s.

thm_splitRoot: Asserts that splitRoot, a function exposed solely for testing and de-
bugging purposes, is correct. The only guarantees made (and thus proved) for
splitRoot : IntSet -> IntSet are that the resulting sets are in ascending
order and that their union is the original IntSet.

thm_partition: Asserts that partition odd correctly returns two valid IntSets
that union to the original input, the first containing only odd Ints and the
second containing only even Ints.

thm_filter: Asserts that filter odd and filter even return valid results that
are equal to the results of partition odd.

Missing properties. There were also 15 properties I did not turn into theorems. I
skipped 12 of these, and translated but did not prove 3 of them.

The twelve properties I skipped were:

prop_LookupLT: This property, which tests lookupLT, was implemented in terms of
the local function test_LookupSomething, which was implemented in terms
of the partial functions last and head. We did not translate these partial
functions.

prop_LookupGT: As prop_LookupLT, but tests lookupGT.
prop_LookupLE: As prop_LookupLT, but tests lookupLE.
prop_LookupGE: As prop_LookupLT, but tests lookupGE.
prop_Ordered: This property tests the behavior of fromAscList against fromList;

the two are supposed to be the same, except that the former only works
if the list is in monotonically increasing order. We could not translate
fromAscList, as it was defined in terms of nonstructural mutual recursion
(in fromDistinctAscList, which is the same but assumes unique elements),
so we could not translate this property.

prop_fromList: This property tests that fromList produces the same (valid) re-
sult as fromAscList, fromDistinctAscList, and foldr insert empty; just
as with prop_Ordered, this means it refers to two functions we could not
translate.

prop_findMax: This property tests the partial findMax function which, being partial
– it returns the largest element of the set, and crashes if the set is empty – we
could not translate.

prop_findMin: As prop_findMax, but about findMin.
prop_readShow: This property tests that read . show is id; we do not translate the

Read and Show type classes.
prop_maxView: This property tests the maxView function, which is analogous to

uncons, returning Just the maximal element and the rest of the set, or
returning Nothing if the set was empty. We could not translate this be-
cause maxView is defined in terms of a local partial function, or because
prop_maxView is defined in terms of the partial list maximum function.

prop_minView: As prop_maxView, but about minView (and minimum).
82

prop_bitcount: We did not translate this function, which tests an operation that
counts the bits set in a Word, because it was defined in terms of a local,
nonstructural fixpoint.

The three properties I translated but did not prove were:
prop_MaskPow2: This property is actually false as a theorem. It tests that the bit-

masks in a well-formed IntSet are all powers of two, but it does so by checking
that they come from a set of all powers of two from 20 through 263. Since our
translation of IntSet is in terms of unbounded natural numbers, this fails for
sets containing larger values; in particular, fromList [:: 2^64-1; 2^64]%N
is a concrete counterexample. I was able to prove this property up until I
needed to prove membership in that set.

While validating this counterexample, I discovered a bug in our imple-
mentation of base, having to do with some instances of the Enum type class.
The Haskell list [a..b] is the same as enumFromTo a b, and is a list from
a through b, inclusive; for example, [2..4] == [2,3,4]. This is a method
from the Enum type class, and so is available for a variety of types. Our Coq
implementation of enumFromTo for N, however, is implemented in terms of seq,
which has different behavior: seq a b is a length-b sequence starting at a, so
enumFromTo 2%N 4%N = [:: 2;3;4;5]! We also implemented the instance
for nat incorrectly, although that did not manifest here; that instance simply
left off the last value, so that enumFromTo 2%nat 4%nat == [:: 2;3]. How-
ever, the instance for N was used to create the set of powers of two mentioned
above, and so meant that the set of powers of two only included the ones up
through 262, and did not include 263.

prop_isProperSubsetOf: This property tests that Data.IntSet.isProperSubsetOf
is correct by comparing it to Data.Set.isProperSubsetOf. We did not prove
any theorems about Data.Set.isProperSubsetOf, so we did not try to prove
that this property was a theorem.

prop_isSubsetOf: As prop_isProperSubsetOf, but uses Data.IntSet.isSubsetOf
and Data.Set.isSubsetOf.

6.2.5. What did we learn? Translating the QuickCheck properties was a novel
use of hs-to-coq; to date, translating QuickCheck properties is the only time we have
used hs-to-coq to change the meaning of the translated code. One lesson that we
took home from this experience is that hs-to-coq is well suited for that; the immense
configurability of edits made this process smooth sailing. However, it did not integrate
into our workflow; we assumed that all translated code was one entity that could be
compiled, and then that our proofs were a another library that could be compiled
against it. By using the Haskell test suite as a live source of specifications, we blurred
this distinction. Already, we mixed translated and hand-written modules for libraries
themselves; with this, we needed to mix translated and hand-written specification
modules.

The only reason hs-to-coq could be useful for generating specifications, though,
is that the Haskell test suite was strong enough to cover a lot of IntSet’s behavior. It
is a testament to both the power of testing – and in particular, though not exclusively,

83

property-based random testing – that we found no bugs in any part of containers
that we verified. We were not surprised by this – test suites are known to be strong
enough to provide reliable guarantees, since people have been using containers
for years without problems. In fact, the containers test suite is strong enough
that the only serious bug found in the library’s changelog deals with a function
(Data.IntMap.restrictKeys) whose tests accidentally weren’t run with the rest of
the test suite! (Smalley, 2017) Yet this translation was still valuable. Why?

Recall that, as part of the DeepSpec project, we want to produce specifications
that are rich, two-sided, formal, and live. As always, formal and live are automatic
in our setting, since we are only considering Coq proofs about artifacts generated
by hs-to-coq. But rich and two-sided are not automatic. A carefully-designed test
suite, like the one for containers, should be both rich and two-sided: it should test
detailed behaviors (rich) that guarantee users will not experience bugs (two-sided).
By using a battle-hardened test suite as a source for specifications, we guarantee that
our specification includes properties are known to be useful by the implementers –
and, since the library is popular, users – of the library. Moreover, our specification
becomes live in an even more interesting way: not only is it connected directly to
the implementation, this portion of it comes directly and automatically from the
implementation.

In addition to being two-sided itself, the “proof suite” helps validate our other
specifications. Because we wrote the proofs of the QuickCheck properties in terms of
our other theorems about IntSet, we help ensure that the custom specification we
built is two-sided: it both relates to the implementation and is also strong enough to
verify these known-useful, believed-to-be-true properties.

Finally, the proof suite also helps us validate the correctness of hs-to-coq. Since
we have not verified hs-to-coq (nor will we), we are always looking for further ways
we can gain confidence in its correctness. Here, we used it to successfully prove that a
number of passing tests were in fact theorems. While that does not guarantee that
hs-to-coq is correct, it it certainly true that many bugs it could have would prevent
us from carrying out these proofs.

We are certainly not the first to connect property-based random testing to
proofs (Bulwahn, 2012; Lampropoulos and Pierce, 2018). Our particular approach
connects to the paper that introduced random testing (Claessen and Hughes, 2000),
where Claessen and Hughes say that they “have designed a simple domain-specific
language of testable specifications which the tester uses to define expected properties
of the functions under test.” We are simply taking these testable specifications and
making them verifiable. Other approaches to integrating random testing with proofs
include QuickChick (Lampropoulos and Pierce, 2018), which provides an integrated
property-based random testing environment in Coq, and Isabelle’s approach of using
property-based random testing (and some other techniques) on all theorems to make
the programmer’s life easier (Bulwahn, 2012; Blanchette and Nipkow, 2010). However,
these techniques apply QuickCheck in the other direction: they take properties that the
person writing the specifications already wrote, and help ensure that those properties
are true or provide counterexamples if they are not; they go from properties to testing
in advance of proofs. Our technique takes believed-true properties that have already

84

been tested, and converts them to provable form; it goes from tested properties to
provable properties, again in advance of proof.

We agree with Claessen and Hughes when they say that they “are convinced that
one of the major advantages of using QuickCheck is that it encourages us to formulate
formal specifications”. Though Claessen and Hughes (2000) appreciated this because it
“improv[ed] [their] understanding of [their] programs”, we find that another advantage
is that it eases formal specification by taking care of some of the work in advance.

85

CHAPTER 7

“Embracing a Mechanized Formalization Gap”

My most recent work on hs-to-coq has focused on GHC itself (specifically,
GHC 8.4.3). Verifying GHC was our initial goal at the outset of this project, and
hs-to-coq has now advanced to the point where we can do so in ways far more
interesting than merely looking at a simple data structure (Chapter 2). We are now
able to begin the work of verifying the pieces of GHC that are identifiably pieces of a
compiler. The particular challenges of verifying any portion of GHC lie in its nature as
an application: GHC makes heavy use of partial functions, recursive modules, mutable
state, unboxed types, and all sorts of other Haskell features that Coq – and hs-to-coq
– don’t support.

To make this codebase amenable to being translated by hs-to-coq, I had to
extend hs-to-coq to support more edits, many of these with the intent of altering
the functionality of the code. Previously, we have seen how hs-to-coq works when
our primary goal is to exactly preserve the semantics of the translated code. Here, we
have widened our net, embracing more significant alterations of meaning: ignoring
partiality, changing data types, slicing out targeted portions of code, and more. These
improvements to the edit language are my chief contributions that I present in this
chapter, along with an evaluation of their fitness for service by seeing how they were
used to verify parts of GHC. Sections 7.5–7.7 discuss three such applications in this
project. In order to further contextualize these changes to the edit language, I also
discuss the compiler operations of GHC that we translated and verified as part of this
project. These efforts were directly supported by my changes to hs-to-coq, and serve
both as an end in their own right as well as a means of validating the newly-added
edits.

Source
code AST Renamed

AST

Type-
checked

AST
Core Assembly

Parsing Renaming
Type-
checking Desugaring Rest of pipeline

Core-to-Core
optimizations

Figure 7.1. The internal compilation pipeline of GHC, with details
for the front-end.

86

7.1. The structure of GHC

GHC, like your typical modern compiler, compiles Haskell source code (also referred
to as “source Haskell”) into assembly/machine code by way of multiple intermediate
languages. In particular, in GHC, the bulk of the optimizations are applied to the
intermediate language named Core. The full path of intermediate languages is, very
roughly (Marlow and Peyton-Jones, 2012):

(1) Haskell, the input language.
(2) Core, a simpler functional language where optimization happens.
(3) STG, a language for the “Spineless Tagless G-Machine” (Peyton Jones, 1992)

which is the bridge between the functional and imperative worlds.
(4) Cmm (C-minus-minus), a simple low-level imperative language.
(5) Native code: either architecture-specific, LLVM, or plain C.

In addition to translating between the different languages, GHC also transforms its
internal representation of programs within these different layers; for example, type
checking is a transformation that turns a Haskell AST into a different Haskell AST. A
diagram of the front-end of the compiler (i.e., the first two languages, where everything
is still functional) is presented in Figure 7.1.

Each of these steps has nontrivial correctness constraints, so we needed to focus
our attention. We decided to focus on Core; specifically, we focused on optimizations.
We wanted to focus on Core for the same reasons the GHC developers want to use
it: Core is simple and it is purely functional. Haskell is purely functional, but very
complex – its myriad syntactic cases mean that the data types corresponding to its
AST alone have dozens of constructors, and there is no explicit formal semantics of
Haskell. Languages such as STG and Cmm, while they may be simple, are not purely
functional, so they require different forms of reasoning. Core, then, is just right.

7.2. What is Core?

The Core language is essentially a concrete implementation of System FC, a typed
lambda calculus with higher-kinded polymorphism (the System F, or specifically
System Fω, part), algebraic data types, and coercions (the C part). Coercions are the
feature of System FC that most differentiate it from other lambda calculi, yet we do
not need them at all for our work. That said, it still behooves us to introduce them
here.

While most of the terms of System FC are standard, it adds a cast term: eB γ
casts the expression e by the coercion γ. These coercions are witnesses of equality
between two types; if a coercion γ is a witness that the types σ and τ are equivalent,
we write this as γ : σ ∼ τ . The typing rule for casts says that if an expression e has
type σ, and a coercion γ proves that σ is equal to τ , then eB γ has type τ :

Γ ` e : σ Γ ` γ : σ ∼ τ

Γ ` eB σ : τ
87

data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

deriving Data

data Bind b
= NonRec b (Expr b)
| Rec [(b, (Expr b))]

deriving Data

type Arg b = Expr b
type Alt b = (AltCon, [b], Expr b)

type Id = Var
type CoreBndr = Var
type CoreExpr = Expr CoreBndr
type CoreBind = Bind CoreBndr
type CoreProgram = [CoreBind]

Inductive Expr b : Type
:= | Mk_Var : Id -> Expr b

| Lit : Literal -> Expr b
| App : (Expr b) -> (Expr b) -> Expr b
| Lam : b -> (Expr b) -> Expr b
| Let : (Bind b) -> (Expr b) -> Expr b
| Case : (Expr b) -> b -> Type_

-> list ((fun b_ =>
(AltCon * list b_ * Expr b_)) b)

-> Expr b
| Cast : (Expr b) -> Coercion -> Expr b
| Mk_Type : Type_ -> Expr b
| Mk_Coercion : Coercion -> Expr b

with Bind b : Type
:= | NonRec : b -> (Expr b) -> Bind b

| Rec : list (b * (Expr b)) -> Bind b.

Definition Arg := Expr.
Definition Alt := fun b_ =>

(AltCon * list b_ * Expr b_).
Definition Id := Var.
Definition CoreBndr := Var.
Definition CoreExpr := (Expr CoreBndr).
Definition CoreBind := (Bind CoreBndr).
Definition CoreProgram := (list CoreBind).

Figure 7.2. Haskell (left) and Gallina (right) versions of the Core AST.

This rule is slightly more complex in GHC,19 but the details do not concern us – we
are only concerned with the structure of Core programs.

The last question about coercions is, how do they impact running System FC or
Core programs? The answer is simple: they do not! The point of coercions is to be
zero-cost – in a precise way, the runtime behavior of a System FC program is the same
if we erase all the coercions (Sulzmann, Chakravarty, Peyton Jones, and Donnelly,
2007), and this is what GHC does when it compiles Core.

As it is the internal language of a compiler, Core (as opposed to System FC) is
defined by the Haskell data types that make it up, which we present on the left-hand
side of Figure 7.2. The type Expr b is the type of Core terms, and is parameterized
by the type b of variable bindings. For our purposes, this type will usually be Var
(also called Id). The constructors of this type are:

(1) Var, App, Lam: These three constructors are the basic pieces of any lambda
calculus. Lambdas (Lam) are defined using an explicitly named representation,
which the GHC developers found to be faster despite being more compli-
cated (Peyton Jones and Marlow, 2002). This features heavily in our proofs.
Note that the App constructor uses the Arg type synonym for Expr; this is

19And even, to a lesser extent, in System FC – the typical presentation uses separate ` judgements
for typing terms and coercions.

88

because there are invariants on the data structure, and not every constructor
of Expr is legal in argument position.

(2) Case: This constructor is for pattern-matching, the basic primitive for alge-
braic data types.20 The Case operation is a variable-binding operation: its
first two arguments are the expression to match on (forcing evaluation), and
a name to bind the result to. The type the match is being performed on
is also recorded, followed by a list of branches of the match (triples of the
constructor, the bound variables, and the right-hand side).

(3) Lit: This constructor is for literals – numeric literals such as 42, string literals
such as "Hello, world!", and so on.

(4) Let: This constructor is a let-expression for binding local variables. The Bind
type records what variables are bound: either a single variable (NonRec) or a
recursive group (Rec).

(5) Cast: This constructor is the aforementioned cast operator which applies
coercions.

(6) Type and Coercion: These constructors are for representing types and coer-
cions, respectively, in the expression language.

(7) Tick: This constructor wraps an expression in profiling information, and does
not correspond to anything in System FC.

This data type is translated into Coq by hs-to-coq, giving the code on the right-
hand side of Figure 7.2. Here, we see that the translation is relatively straightforward;
the most notable differences are:

(1) We have simply deleted the Tick constructor, as we never deal with profiling
information.

(2) We have prepended Mk_ to the Var, Type, and Coercion constructors, since
each of these constructors has the same name as a type and Coq only has
one namespace.

(3) We have expanded the Alt type synonym in the type of the Case constructor,
since Coq does not allow mutual induction-recursion.

Once we have done this translation, we now have a Coq version of Core. This
enables us to proceed with the other significant translation goal of this project:
translating the functions from GHC that operate on Core in order to verify them. It
is for this that the bulk of our translation edits will be used.

7.3. Disentangling GHC

One broad structural change that we need to apply to GHC in order to perform
our verification is to break apart mutual recursion, both in types and, astonishingly,
in modules. Even though Core is a relatively simple language, the practical realities
of a compiler require a staggering array of supporting types: not simply expressions
like Expr, and not simply the types and coercions that we do not translate, but also a
panoply of forms of metadata, used during program analysis and optimization. These
types and their supporting functions are spread across multiple files, but this is a
more complex situation than simply having scattered code. These types that define

20Unless you prefer to work with eliminator functions, but GHC does not.

89

Core are all mutually recursive, producing a thorny mutually recursive type with far
more than the two cases of Expr and Bind. And because the mutually recursive types
are spread across multiple files, this gives GHC the dubious distinction of being one
of the only Haskell programs that uses mutually recursive modules.

The mutual recursion makes the translation of Core difficult not just in size, but
also in style. We want to eliminate as much of the mutual recursion as possible in
order to ease our proof burden, and we must eliminate all uses of mutually recursive
modules because Coq does not support them. Our solution to the problem of mutually
recursive modules is the most straightforward one: we simply combine them all into
a single Coq module, which we call Core. We do this by using the rename module
edit (Section 8.6.3), which, when told to give multiple Haskell modules the same Coq
name, simply merges them and produces one module as output. This technically
accomplishes the goal, but the resulting module is enormous, and the types that make
up Core are still incredibly mutually recursive. Our solution to that problem involves
applying edits to the code in order to simplify things as much as we can.

In general, our foremost goal with the edits is to transform the types to cut out as
much of their mutual recursion as possible. This pays dividends twice over: firstly,
we get a smaller and simpler type and less code in general. As seen in Figure 7.2,
in fact, the eventual mutually-recursive cluster contains only two types, Expr and
Bind. Secondly, by breaking the mutual recursion between the different types, we can
break the mutual recursion between the different modules as well: once the types are
separated, some of the modules no longer need to be part of the mutually-recursive
cycle. This both gives our translated code a more similar structure to the original
Haskell code and, again, cuts down on the size of the Core module. Once we have
done this as much as we can, we also perform further simplification until the situation
is manageable, yet retains the essential complexity of the functionality we verify. The
result of all this simplification is given in Figure 7.3; we now explain the details.

Our first simplification step is to figure out what code we can omit, with skip and
similar edits (Section 4.1.1). There are large portions of the modules defining Core
that we don’t care about. As discussed above, we don’t need the definitions of types
and coercions. We also maintain an invariant that our data structures should contain
no metadata, as we aren’t attempting to verify the parts of any optimizations that
interact with the metadata; we are only interested in the expression structure of Core.
Lastly, there’s a great deal of code, such as pretty-printing, which simply isn’t a target
of verification. For as much of this as possible, we simply skip it entirely. Skipping
is powerful for both cutting the mutual recursion (such as via skip constructor,
Section 8.2.2) and for simply reducing the amount of code; for instance, eliminating
metadata helps with the former, and skipping pretty-printing helps with the later.

Sometimes, skipping is too broad of a brush, but we still don’t care about the
details. In this case, we use axiomatization edits (Section 4.1.2) to simplify the content
of the types and values, while still leaving them in place. Again, this helps both with
splitting out types – axioms neither can nor need to be in a mutually-recursive cycle
with anything else – and simplifying the code we are dealing with. We axiomatize
whole modules that can become independent of the mutually-recursive cycle using

90

Figure 7.3. The dependency graph of the modules that make up Core.
Each polygonal node is a Haskell module, and each arrow is a module
import. Solid lines are normal imports; dashed lines are mutually-
recursive imports (called “source” imports). The shapes and colors of
the nodes differentiate the final status of the corresponding module
after translation: green circles become part of the translated Coq Core
module, with darker circles being translated and lighter ones being
axiomatized; pink squares become standalone Coq modules that are not
part of Core, again with darker squares being translated and lighter
squares being axiomatized; and white lozenges are skipped and do not
appear in our Coq translation. (This figure is due to my collaborator
and advisor Stephanie Weirich.)

axiomatize module (Section 8.3.1), and axiomatize whole modules that go into Core
using axiomatize original module name (Section 8.3.2).

Once we have made these changes, we have accomplished much of the simplification
of Core that we wanted, but not all of it. Many more specific edits go into the
translation: some in the broader goal of simplification; some in the further service
of breaking apart the mutual recursion; and some in the goal of making a workable
translation. For example: To further simplify things, we remove the code that computes
sets of free type variables, since we don’t have types in our translation; we discuss
how we do this and the tradeoffs of the approach in Section 7.6. To further help break
the mutual recursion, we redefine some types to contain less information; we discuss
these simplifications further in Section 7.5. And to produce a workable translation,
we have to be very deliberate in how and why we break apart the mutual recursion,

91

since the unmodified type is not accepted by Coq; we discuss why it isn’t and how we
fix this in Section 7.5 as well.

7.4. Edits for GHC

As the previous section indicates, the sheer scale of translating GHC, even after
restricting ourselves to a fragment thereof, is such that it required adding new func-
tionality to hs-to-coq; in particular, it required adding a bevy of new edits. The
improvements we made to hs-to-coq were inspired both by the unique features of
the GHC code base, as well as by our evolving approach to translation. The latter is
the more important motivation: as opposed to the work we saw in previous chapters,
we are now more willing to modify the semantics, as well as the structure, of the
translated code.

In this section, we describe the new features of hs-to-coq in more detail. However,
to provide context, we first summarize the existing capabilities of hs-to-coq edits
that we have seen thus far and their typical use in translation.

Building on the existing capabilities of hs-to-coq edits. Prior work on translating
the containers library demonstrated the capabilities of hs-to-coq for medium-scale
programming (Breitner et al., 2018). At this scale, it was already necessary for users
of the tool to define a number of edits in service of mechanical verification. These
edits included:

• Removing Haskell features that make no sense in a shallow embedding,
including reallyUnsafePtrEquality# and seq, using rewrite edits.
• Skipping parts of the code that are irrelevant for verification or are difficult
to translate (such as code related to serialization and deserialization), using
skip edits.
• Modifying the representation of integers to avoid reasoning about overflow,
using rename type edits.
• Substituting operations that are difficult to reason about (e.g., bit twiddling
functions) with simpler definitions, using redefine edits.
• Managing recursive functions that are not structurally recursive by either
providing hints for the termination proof along with the definition or by
deferring those proofs altogether, using termination edits.

The translation of GHC also requires all of these previously-extant edit forms.
However, we found that this functionality was not enough. Therefore, we have added
the following new edit forms to hs-to-coq. Later in this chapter, we describe in more
detail how we make use of these features when simplifying the Core expression data
type and its operations.

Constructor skipping. The Core AST, though simpler than source Haskell, carries
around a great deal of information that is not germane to our verification goals.
Some of this information is in the form of metadata; some of it is in the form of
type and coercion variables that we do not analyze. Regardless, since our model of
GHC does not concern itself with these properties, we would like to avoid dealing
with these concerns. However, the problematic cases are often subcases of other data
types – for example, the Expr data type for Core contains a case Tick strictly for

92

profiling information, as we see in Figure 7.2. Thus, we added support for a new
skip constructor edit that eliminates an entire case from data types. For example,
the edit skip constructor Core.Tick removes the Tick constructor from Expr and
then propagates this information to delete any equation of a function definition or
arm of a case statement that matches, directly or indirectly, against this constructor.
More dramatically, we use this edit to modify the representation of variables.

In this way, the development of the embedding gives us assurance that our code of
interest is independent of particular features of GHC, without doing any proofs. In
particular, if the targeted code needed to use the skipped constructor in a fundamental
way (e.g., if it were used to construct a value in some operation that could itself be
skipped), then the output of hs-to-coq would not be accepted by Coq. We can only
skip constructors that we can isolate.

We do need to be careful, however – heavy use of skip constructor can lead to
wildcard cases that no longer match anything, as all the would-be “extra” constructors
have been skipped. Because Coq does not permit redundant pattern matches, we also
add an edit to manually delete such cases. The edit skip equation f pat1 pat2 ...
removes the equation matching pat1 pat2 ... from the definition of the function f.

Axiomatization. The ability to axiomatize definitions and modules was added to
hs-to-coq directly for this project. There are many definitions in GHC that we don’t
want to translate for one reason or another. However, sometimes this code is used
within the other functions that we want to verify, but not on a code path that is
exercised by our proof (for example, in a metadata update). We thus provide an
axiomatize definition edit, which replaces any value in Haskell with a Coq Axiom
at the same type. In contrast to a redefine edit, axiomatization is more limited –
we make fewer assumptions about the behavior of the edited operation. This edit was
extremely valuable during the translation of GHC, as it also allowed for incremental
verification.

We offer multiple ways to interact with axiomatization. For example, while
we are focused on Core, its dependencies transitively reach into huge portions of
GHC, and we don’t want to deal with all of them. While we can skip some mod-
ules (via skip module), this isn’t always viable. For example, the FastStringEnv
module declares a type for maps keyed by GHC’s FastString type. These are
used, for example, when manipulating metadata for data type constructors, but
this is not an operation we need to concern ourselves with to verify properties of
variables. We can thus axiomatize module FastStringEnv, which leaves the type
definitions intact and automatically axiomatizes every definition in the module as per
axiomatize definition.

We also want to make use of axioms to replace type definitions. As type definitions
do not have kind annotations, we cannot automatically generate axioms; we instead
use the redefine or rename edits to replace one definition with another. For example,
the edit redefine Axiom DynFlags.DynFlags : Type replaces the DynFlags type,
a record of configuration options, with an opaque axiom.

While being able to axiomatize Haskell definitions is important, it does have
the potential to introduce inconsistency – if we axiomatized the Haskell definition
undefined :: a, we would be able to prove any theorem we wanted. As a result we

93

need to examine the functions we axiomatize; however, in GHC, most functions are
not fully polymorphic and return inhabited types. In particular, this meant that all of
the functions we needed to axiomatize returned inhabited types.

The use of axiomatization was specifically important when extracting a slice of
GHC. However, even though we automatically axiomatize many definitions in our
development, we almost never manually add axioms about their properties. This is
because we chiefly use this feature for what is effectively “dead code”: code that is
alive and used in GHC, but that is used in portions of the translation (for instance,
error message generation) that we didn’t prove anything about.

Mutually recursive modules. As we discussed in Section 7.3, GHC, nearly uniquely
among Haskell programs, makes significant use of recursive modules; most of the
modules that define Core are part of a single mutually-recursive cycle. This is not
a feature supported by Coq, so as part of the translation, we had to introduce edits
that combine multiple source modules (both translated and axiomatized) into a single
target. We use this facility to create the module Core, which contains the definition
of the abstract syntax of the Core intermediate language.

Mutual recursion edits. The Core AST that we saw in Figure 7.2 is defined via
the mutually inductive types Expr and Bind. Typically, operations that work with
either of these data structures are perforce mutually recursive. For example, consider
the exprSize operation, shown in the left hand side of Figure 7.4; it is mutually
recursive with the analogous function bindSize. These functions compute the size of
an expression and a binder, respectively.

Coq can natively show the termination of mutually defined fixed points, as long as
they are each recursive on one of the mutually recursive types and make recursive calls
to each other on strict subterms of their arguments. One important pattern this naive
treatment of termination prohibits is “preprocessing” – recursion that goes through
an extra function which simply forwards to one of the recursive functions. This is
something we see in as simple a definition as that of exprSize and bindSize. Along
the way, the function altSize is called, which simply unpacks a tuple and recurses
into exprSize and bindSize. From Coq’s perspective, that means all three of these
functions are mutually recursive, and one of them has as its only argument a tuple.
And there’s a fourth function, pairSize, which has the same problem.

Since a tuple isn’t a mutually recursive inductive data type, for Coq to accept
the definitions of exprSize et al., we must inline the definitions of pairSize and
altSize into the mutually recursive definitions that use them. To tell hs-to-coq to
do this, we use the inline mutual edit:

inline mutual CoreStats.pairSize
inline mutual CoreStats.altSize

This results in the Coq definition on the right in Figure 7.4, as well as new free-standing
non-recursive definitions of pairSize and altSize which are the same as their (local)
let-bound definitions.

Partiality. As we saw earlier, our previous work either avoided partial operations
altogether (Chapter 5) or attempted to isolate them behind total interfaces (Chapter 6).
That isn’t possible with GHC – many more operations may fail, for a number of

94

exprSize :: CoreExpr -> Int
-- ^ A measure of the size of the expressions,
-- strictly greater than 0
exprSize (Var _) = 1
exprSize (Lit _) = 1
exprSize (App f a) = exprSize f + exprSize a
exprSize (Lam b e) = bndrSize b + exprSize e
exprSize (Let b e) = bindSize b + exprSize e
exprSize (Case e b _ as) =

exprSize e + bndrSize b + 1 + sum (map altSize as)
exprSize (Cast e _) = 1 + exprSize e
exprSize (Tick n e) = tickSize n + exprSize e
exprSize (Type _) = 1
exprSize (Coercion _) = 1

bindSize :: CoreBind -> Int
bindSize (NonRec b e) = bndrSize b + exprSize e
bindSize (Rec prs) = sum (map pairSize prs)

pairSize :: (Var, CoreExpr) -> Int
pairSize (b,e) = bndrSize b + exprSize e

altSize :: CoreAlt -> Int
altSize (_,bs,e) = bndrsSize bs + exprSize e

Definition exprSize : CoreExpr -> nat :=
fix exprSize (arg_0__ : CoreExpr) : nat :=

let altSize (arg_0__ : CoreAlt) : nat :=
let 'pair (pair _ bs) e :=

arg_0__ in
bndrsSize bs + exprSize e in

match arg_0__ with
| Mk_Var _ => 1
| Lit _ => 1
| App f a => exprSize f + exprSize a
| Lam b e => bndrSize b + exprSize e
| Let b e => bindSize b + exprSize e
| Case e b _ as_ =>

((exprSize e + bndrSize b) + 1) +
sum (map altSize as_)

| Cast e _ => 1 + exprSize e
| Mk_Type _ => 1
| Mk_Coercion _ => 1
end

with bindSize (arg_0__ : CoreBind) : nat :=
let pairSize

(arg_0__ : (Var * CoreExpr)%type)
: nat :=

let 'pair b e := arg_0__ in
bndrSize b + exprSize e in

match arg_0__ with
| NonRec b e => bndrSize b + exprSize e
| Rec prs => sum (map pairSize prs)
end

for exprSize.

Figure 7.4. Mutual recursion in Haskell (left) and Gallina (right).

reasons. At the same time, we only really care about total compiler code. If a compiler
fails to produce an output for some input, then a compiler correctness proof says
nothing.

One source of partiality comes from the use of GHC’s operation for signaling a
run-time error (i.e., a compiler bug) – the function Panic.panic. We cannot translate
this function, since it actually throws an exception (using unsafeDupablePerformIO,
no less). Instead, we axiomatize this operation as follows:

Axiom panic : forall {a} `{GHC.Err.Default a}, GHC.Base.String -> a.

The Default class, which we introduced when verifying containers (Breitner
et al., 2018) and I previously discussed in Section 3.8, is a class for types with at
least one inhabitant, which is used with opacity to avoid any dependence on what the
specific inhabitant is. Instances of it are mostly autogenerated by hs-to-coq. This
constraint therefore enforces that panic can only be called with a return type that is
known to be inhabited, ensuring that it does not introduce unsoundness. Although
panic does not terminate the entire Coq program as it does in Haskell, arriving at
it in a proof terminates our ability to reason about the code. Therefore, proving
properties about code that uses panic also increases our confidence that it will not be
triggered on that code path.

95

Partiality turns out to be important for translating GHC, much more so than
we realized going in. For example, Haskell can define record selectors for single
constructors of data types with multiple branches; these record selectors are thus
necessarily partial.

While the Default class is not new, we made much more significant use of it than
before when translating GHC due in particular to GHC’s pervasive use of partial record
selectors. As a result, we sometimes need to add Default constraints to types where
they weren’t already present. To guide this translation, we use the new set type
edit, which allows us to change the type of a definition to a new type of our choosing.
It is always safe to use this edit, as Coq’s typechecker will prevent us from assigning
an inconsistent type to a definition.

Type inference. Haskell’s ability to perform type inference is significantly stronger
than Coq’s, particularly for program fragments that remain (as many do) within the
bounds of Hindley-Milner type inference. For the most part, Coq’s type inferencer is
powerful enough, when combined with the presence of type annotations on top-level
bindings, to infer all the types we need. There are, however, occasional exceptions.
One subtle case is that Coq cannot infer a polymorphic type without explicit binders,
as it cannot insert binders for type variables automatically.

In order to work around this, we augmented hs-to-coq in two ways. The most
direct way is not an edit; instead, we taught hs-to-coq to annotate the binders of a
fixpoint with their types. In other words, it will replace

let f : A -> B := fix f x := ... in ...

with
let f : A -> B := fix f (x : A) : B := ... in ...

Without this transformation, Coq’s type inferencer would sometimes fail to infer the
type of a fixpoint, as the type information was just too far away.

This change solves most cases of type inference failure, but not quite all of
them. To address some corner cases of type inference failure, we also used the above
set type edit. While this edit has a broader purpose, its use in this case is that
it allowed us to monomorphize local functions that could have been polymorphic
but were only ever used at one type. In particular, this monomorphization was
relative to the containing function, as though providing a type signature in Haskell
with {-# LANGUAGE ScopedTypeVariables #-}. Most of a time, this situation is
not an issue, as the context of the function provides enough information. However,
in combination with inline mutual, we can produce dead code that Coq sees as
ambiguous.

To see this type inference failure in action, as well as how to use set type to fix
it, I present some simple Haskell code that exhibits the same problem we see in GHC.
We define a function, concatFsts, that takes a list of pairs whose first component is
a string and concatenates those strings:

concatFsts :: [(String,a)] -> String
concatFsts = go where

go [] = []
96

go (t:ts) = goTuple t ts

goTuple (s,x) ts = s ++ go ts

Notice that goTuple could instead have the more polymorphic type

forall b. (String,b) -> [(String,a)] -> String

(where a refers to the a bound in the top-level type signature of concatFsts). This is
the crux of the problem.

To translate this code into Coq, we need to use inline mutual to ensure that
goTuple is handled correctly:

in Mod.concatFsts inline mutual goTuple

This produces the following translated Coq code:

Definition concatFsts {a}
: list (GHC.Base.String * a)%type -> GHC.Base.String :=

let fix go arg_0__
:= let goTuple arg_3__ arg_4__ :=

match arg_3__, arg_4__ with
| pair s x, ts => Coq.Init.Datatypes.app s (go ts)
end in

match arg_0__ with
| nil => nil
| cons t ts => goTuple t ts
end in

let goTuple :=
fun arg_3__ arg_4__ =>

match arg_3__, arg_4__ with
| pair s x, ts => Coq.Init.Datatypes.app s (go ts)
end in

go.

Thanks to inline mutual, we now have two definitions of goTuple inside concatFsts:
one inside go, and one free-standing. The former is fine; its type is inferred to be
constrained based on the surrounding context. However, the latter is a problem.
Thanks to inline mutual, it is not linked to the definition inside go. And because we
never actually use goTuple in the definition of concatFsts outside of go, this outside
definition can be polymorphic, and Coq cannot constrain it: it produces the error
“Cannot infer the 2nd argument of the inductive type (prod) of this term”, referring
to the use of arg_3__ in the match inside the free-standing definition of goTuple. To
fix this, we could just delete that definition of goTuple; without an obvious way to do
that with edits, however, we settle for monomorphizing the type. If we set the type of
goTuple to have just the specific type we use it at, all our problems disappear. The
full slate of edits is thus

97

in Mod.concatFsts inline mutual goTuple
in Mod.concatFsts set type goTuple : ←↩

(GHC.Base.String * a) -> ←↩
(list (GHC.Base.String * a) -> ←↩

GHC.Base.String)

The resulting Coq code differs from the previous code only in the presence of the extra
type annotations on (both copies of) goTuple:

Definition concatFsts {a}
: list (GHC.Base.String * a)%type -> GHC.Base.String :=

let fix go arg_0__
:= let goTuple (arg_3__ : GHC.Base.String * a)

(arg_4__ : list (GHC.Base.String * a))
: GHC.Base.String :=
match arg_3__, arg_4__ with
| pair s x, ts => Coq.Init.Datatypes.app s (go ts)
end in

match arg_0__ with
| nil => nil
| cons t ts => goTuple t ts
end in

let goTuple : GHC.Base.String * a ->
list (GHC.Base.String * a) ->
GHC.Base.String :=

fun arg_3__ arg_4__ =>
match arg_3__, arg_4__ with
| pair s x, ts => Coq.Init.Datatypes.app s (go ts)
end in

go.

The need for this strategy shows up in the functions CoreUtils.stripTicksE and
CoreUtils.stripTicksT.21 These functions recurse through the tuples we find in
Bind and in the Case constructor of Expr, and when they recurse, they use auxiliary
functions that operate on these tuples parametrically in some of their components. It
is these functions, the analogs of goTuple, that require the use of set type.

7.5. Removing coinduction from GHC

As we discussed back in Section 3.2.4, hs-to-coq generally assumes that Haskell
code is inductive. While we can make individual types coinductive with the
coinductive edit (Section 4.1.7), we chose to work primarily with inductive types for
a variety of reasons outlined above. But among the reasons we outline above to focus
on inductive types instead of coinductive types – ease of use, programmer practice –
one stands out in this context: from the beginning, we had our eyes on verifying pieces

21See Section 7.7.4 for more detail on why and how we translate these functions.

98

of GHC. And when considering our design choices, we considered what we would
need to represent an abstract syntax tree. “Programs are finite,” we thought, “so
surely inductive types are the correct representation to use.” And so things continued
happily, right until we got into the weeds of translating GHC.

One of the core data types of GHC’s AST is IdInfo, a type that records information
– metadata – about identifiers. As we discussed in Section 7.3, this type is part of the big
cluster of mutually-recursive modules and types that define the central components of
GHC, including the type Expr of Core expressions. As we saw, from Coq’s perspective,
this collection is uncooperative; but the mutuality is not the only way this is so.
Among the pieces of information stored by an IdInfo, we find two sorts that cause
problems. The first is that the types may contain functions which take other types
that are part of this same mutually-recursive morass as input; this is a violation of
the strict positivity condition Coq requires for all data types. The second problem is
more surprising: it turns out that some of the metadata stored by IdInfo may be
coinductive.

The source of this coinduction lies in optimization information: identifiers have an
unfolding, which is used during inlining, and may have attached rewrite rules, which
are applied during optimization (Peyton Jones, Tolmach, and Hoare, 2001). These
may be generated from annotations in the source code, or they may be generated
automatically by the compiler. (For example, unfoldings can be produced when the
compiler decides to inline a small function or when the user adds an {-# INLINE #-}
pragma; rewrite rules are used automatically to specialize class methods or written
by the user in a {-# RULES #-} pragma.) These attached pieces of information may
themselves reference other identifiers; because Haskell is lazy, these references are to
full-fledged identifiers, which may themselves have these annotations, ad infinitum.

So what do we do here? Since Expr and IdInfo (and the other types; I’ll refer
to them all synecdochally as Expr) are coinductive, and coinduction produces larger
types that contain their inductive equivalents, we could just make Expr and friends
coinductive with coinductive edits. However, doing this would be horrible. Firstly,
coinduction in Coq is just more challenging to work with in practice, and we would lose
access to all the standard inductive and recursive techniques. But more importantly,
GHC also treats Expr as inductive. Recall that the coinduction is localized to the
metadata in IdInfo; other parts of the data structure are treated inductively. For
instance, consider the exprSize function, shown in Figure 7.4, that computes the
size of a Core expression. This is a classic structurally-recursive function, and works
because, just as we thought when we started, programs are finite objects. In other
words, Expr and friends are neither inductive nor coinductive, but both, depending
on which portion of the recursion is being considered. I have discussed how types
like [] are used both inductively and coinductively at different use sites (back in
Section 3.2.4); this is a similar problem but for a single group of mutually recursive
data types.

The solution – to both this coinductive problem and the strict positivity problem
mentioned above – is to use edits to elide the problematic details of this mutually-
recursive tangle of types. Thankfully, since the non–strictly-positive and coinductive
components are only in metadata that isn’t relevant to our verification goals, this does

99

not cause any further problems. We use the redefine and skip constructor edits
to slice out the portions of the data types that caused problems:

redefine Inductive Core.RuleInfo : Type := Core.EmptyRuleInfo.

skip constructor Core.BootUnfolding
skip constructor Core.OtherCon
skip constructor Core.DFunUnfolding
skip constructor Core.CoreUnfolding

The original definition of RuleInfo contains two fields, one for the rules and one for
the free variables:

data RuleInfo
= RuleInfo

[CoreRule]
DVarSet

The first edit reduces it to a type with zero fields instead. The latter four edits
eliminate four of Unfolding’s five constructors, reducing the type to simply

Inductive Unfolding : Type := | NoUnfolding : Unfolding.

These edits arise because we are working with a version of Core that contains no
metadata, types, or coercions, and where rule information and unfoldings are metadata.
This lack is an invariant we maintain of our translated data structure.

The skip constructor edits also eliminate matches on the skipped constructors,
which is simpler than the situation for RuleInfo. Since the new definition of RuleInfo
has a single brand new constructor, we need to redefine values that interact with
RuleInfo as well, such as by

redefine Definition Core.emptyRuleInfo := Core.EmptyRuleInfo.
redefine Definition Core.isEmptyRuleInfo : Core.RuleInfo -> bool

:= fun x => true.
redefine Definition Core.ruleInfoFreeVars : Core.RuleInfo -> ←↩

Core.DVarSet
:= fun x => Core.emptyDVarSet.

(Note that the redefine edit is one of the few edits that can span multiple lines; all
of the line breaks above except for the single marked one are present in the real source
code, and not inserted due to page width constraints.) Along the way, these edits
have helped break up the mutually-recursive types into smaller groups, simplifying
our proof work later on.

We could instead have chosen to replace these types with axiomatized versions.
However, this comes with downsides. First, the fact that we can keep an existing
constructor of Unfolding is “nicer”, as it provides more of a connection to the original,
and has the potential to let us reuse slightly more code. A bigger advantage, however,
is that both of these approaches produce types with true inhabitants. This means
that we don’t need to axiomatize up values of these types if we need to store them in

100

types or pass them in functions, and has the potential to make computation easier as
it can proceed by evaluation.

These simplifications provide what we need out of RuleInfo and Unfolding, but
of course, the corecursion is in fact used. Functions that operate on Core often need
to update the metadata, and this needs to be adjusted. For example, the definition
of substitution calls the function CoreSubst.substRecBndrs when substituting in a
mutually-recursive group (a fitting example):

-- | Substitute in a mutually recursive group of 'Id's
substRecBndrs :: Subst -> [Id] -> (Subst, [Id])
substRecBndrs subst bndrs

= (new_subst, new_bndrs)
where -- Here's the reason we need to pass rec_subst to subst_id

(new_subst, new_bndrs) =
mapAccumL (substIdBndr (text "rec-bndr") new_subst)

subst
bndrs

(This code was taken from GHC and reformatted; the comments are in the original.)
Here, we see that the substitution “ties the knot” with new_subst, which looks like a
problem. But it turns out that substIdBndr only uses that substitution to update
the metadata – and not merely metadata in general, but the coinductive unfoldings
and rules that we have already eliminated. Thus, we can safely replace new_subst
with any well-typed term, as it will never be used by our translation. We enact this
with the edit

in CoreSubst.substRecBndrs ←↩
rewrite forall x, ←↩

CoreSubst.substIdBndr x new_subst = ←↩
CoreSubst.substIdBndr x (GHC.Err.error Panic.someSDoc)

to replace the use of new_subst with a call to error. Applying this edit results in a
function without any corecursion – or recursion – at all (reformatted):

Definition substRecBndrs
: Subst -> list Id -> (Subst * list Id)%type :=

fun subst bndrs =>
let 'pair new_subst new_bndrs :=

mapAccumL
(substIdBndr

(Datatypes.id (GHC.Base.hs_string__ "rec-bndr"))
(GHC.Err.error Panic.someSDoc))

subst
bndrs in

pair new_subst new_bndrs.

101

While this rewrite may seem destructive, we know that it is safe because we have
already eliminated the relevant metadata; what’s more, if we accidentally made a
mistake, our proof will encounter the call to error, blocking us from continuing and
prompting us to go back and fix the problem.

7.6. Axioms vs. rewrites

As seen above, when verifying parts of GHC, we focused less on generating Coq
code with an exact correspondence to the Haskell than we had in the past. This
meant we were more willing to elide details of the implementation, and this meant we
had to make some design decisions about how to do so. One particularly interesting
decision had to do with the representation of types and coercions. Since we were
only interested in verifying term-level operations that don’t rely on type information
(see the next section for more details), we do not need to analyze the types Type
and Coercion of types and coercions (as mentioned in Section 7.4). However, even if
we don’t analyze them, we can’t simply reduce them to unit or empty types, since
the code does assume there are many distinct types and coercions. This means that
we cannot simply use redefine or skip constructor as we did for RuleInfo and
Unfolding in the previous section. Instead, we axiomatize these types. We define the
Coq axioms

Axiom Coercion : Type.
Axiom Type_ : Type.

in the handwritten module AxiomatizedTypes, and then attach the existing types to
them with the edits

rename type TyCoRep.Coercion = AxiomatizedTypes.Coercion
rename type TyCoRep.Type_ = AxiomatizedTypes.Type_

Both Type and Coercion are defined in the module TyCoRep; the type Type in that
module was automatically renamed to Type_ because Type is a reserved word in Coq.
Additionally, when translating TyCoRep, we also suppress the translation of those
types:

skip AxiomatizedTypes.Coercion
skip AxiomatizedTypes.Type_

The final result is that all references to the original Type and Coercion are replaced
by references to the new axiomatized versions, and their definitions are skipped.
These edits also have the pleasant side effect of reducing the size of the set of
mutually-recursive types, as the original Type and Coercion are very involved in the
interdependence. The reason we used the handwritten module AxiomatizedTypes
is to help break the mutual recursion between the modules and types that make up
Core; since the types are now axioms, they have no dependencies, and since we’ve
manually placed them all in one module, that module can now come earlier in the
dependency chain.

However, now that we have done this, we have further problems: all the functions
that match on or directly construct types and coercions no longer work. And we can’t

102

actually give those functions meaningful definitions, since we’re axiomatizing the types
they depend on. So how can we best handle this?

To keep things concrete, let’s consider the following two functions from TyCoRep,
which compute the free type variables in a Type and a Coercion, respectively:

tyCoFVsOfType :: Type -> FV
tyCoFVsOfCo :: Coercion -> FV

Thanks to axiomatizing Type and Coercion, we can treat these functions as always
returning empty sets of free variables. However, we don’t get that for free; instead,
since both these functions are defined by pattern matching, they need to be handled
directly in order for the translations to be usable.

The simplest approach is to axiomatize these functions with edits, and then
axiomatize their behavior in the specification. We could accomplish this by adding
the edits

axiomatize definition Core.tyCoFVsOfType
axiomatize definition Core.tyCoFVsOfCo

which would generate the Coq definitions
Axiom tyCoFVsOfType : Core.Type_ -> Core.FV.
Axiom tyCoFVsOfCo : Core.Coercion -> Core.FV.

Then, when writing our specification, we could add axioms specifying their behavior:
Axiom tyCoFVsOfType_empty : ←↩

forall ty, Core.tyCoFVsOfType ty = FV.emptyFV.
Axiom tyCoFVsOfCo_empty : ←↩

forall co, Core.tyCoFVsOfCo co = FV.emptyFV.

Anywhere in our proofs that we got stuck on an application of tyCoFVsOfType or
tyCoFVsOfCo, we could then rewrite by the corresponding _empty axiom to proceed.

However, this is not what we do. Instead, we take a different approach: since
we know that applying these functions should always produces FV.emptyFV, why not
encode that with a rewrite rule instead? This means that we don’t need the original
functions at all, so we have the following four edits:22

rewrite forall ty, Core.tyCoFVsOfType ty = FV.emptyFV
rewrite forall co, Core.tyCoFVsOfCo co = FV.emptyFV

skip Core.tyCoFVsOfType
skip Core.tyCoFVsOfCo

We now no longer need the _empty axioms, and in fact have no axioms at all. All calls to
the functions are replaced by FV.emptyFV, and the tyCoFVsOfType and tyCoFVsOfCo
functions no longer show up in the translated code.

Why do we take this approach rather than the perhaps more direct axiom approach?
There are two main reasons:

22I’ve adjusted the spacing, but these are all applied in our actual development

103

(1) It makes our proofs easier.
(2) It is guaranteed to be sound.

The first reason, namely that using rewrite makes our proofs easier, comes about
because hs-to-coq is doing more work for us. In the axiom variant, we have to use
Ltac to rewrite by an axiom (that we defined!) whenever we need these functions
to compute during a proof. By using the rewrite edit, on the other hand, this
computation is done during translation (“at compile time”, if you will), and there is
no need for us to think about performing it ourselves.

The second reason, namely that rewrite edits are guaranteed to be sound but
Axioms are not, is a little more interesting. These two approaches seem like they
ought to be the same – both allow a function to compute to a specific value in all
cases. However, Axioms can be inconsistent. There would be nothing stopping us from
adding both the _empty axioms as well as

Axiom tyCoFVsOfType_unit :
forall ty, Core.tyCoFVsOfType ty = FV.unitFV someVariable

Now, we can prove that FV.emptyFV = FV.unitFV someVariable, and thus probably
derive a contradiction. On the other hand, rewrite edits can only replace one Gallina
term with another; the resulting code is type checked, and if this succeeds, then we
know that we did not introduce any inconsistency.

This approach does have downsides; in particular, rewrite edits leave no trace
in the generated Coq code. If a rewrite edit has gone awry – say, if we rewrote
Core.tyCoFVsOfType ty to FV.unitFV someVariable – the user may not know why
their code is filled with arbitrary terms that they don’t understand. We can also use
Print Assumptions in Coq to check what axioms a term depends on; rewrite edits
apply silently, and cannot be tracked in this way.

The tradeoffs between these two approaches are real, and we settled on the rewrite
edit approach because its benefits exceeded the drawbacks for our work on GHC.
But this is another iteration of the observation that when we relax our desires for
input-output similarity (from “exact” to “as good as we can while completing the
proofs”), there are more design choices that need to be made, and more possible
solutions to those designs. I have had to ensure that hs-to-coq and the edit language
remain powerful enough to express these different techniques, because we can no
longer assume that one size fits all; as we can see here, the different pieces of the edit
language can fit together to give rise to these multiple solutions.

7.7. Justifying edits with proofs

Most of the previous discussion of edits in this chapter has shown us how to use
them to make dramatic changes to the Haskell code; this is in contrast to the previous
chapters, which use edits to adjust things but largely preserve both the semantics and
most of the structure of the Haskell code through the translation. A third kind of
situation that shows up in GHC is a combination of the two: we might need to perform
a more dramatic transformation of the code between two equivalent representations,
if Coq can more easily process the new version. For instance, this commonly comes

104

up when we need to restructure code so that it will be accepted by Coq’s termination
checker.

We can, of course, use an edit to perform these transformations, but this does not
guarantee the equivalence that we desire. While working on GHC, I began to develop
a technique for increasing our confidence in these edits: we could prove that they
were correct in Coq, and then annotate the edits with comments appealing to these
theorems. While this connection is not live, it provides some justifications that these
edits are correct, even though we can’t verify them. This technique is already giving
us increased confidence, but its final form is not yet settled; we are still exploring the
design space of coupling Coq proofs with hs-to-coq edits.

In this section, I first demonstrate why we might want to rewrite an expression
to equivalent code, using a real example from GHC (Section 7.7.1). I then discuss
a fine point of Coq’s termination checker which drives most of our justified edits
(Section 7.7.2). Finally, I discuss the remaining justified edits that we use in our
translation of GHC, both those that are there because of the termination checker and
those that are not (Sections 7.7.3 and 7.7.4). This latter category includes an edit
with a bug introduced because the justification of edits is not live, providing a look at
the tradeoffs of this developing technique.

7.7.1. Why rewrite to equivalent code? The first question one might ask,
when confronted with this technique, is: “why bother using an edit to transform
between two equivalent representations?” After all, if the two representations are
equivalent, it seems like this would be unnecessary. As I alluded to above, the most
common answer to this question is: “to satisfy Coq’s termination checker.” This
is not our only strategy to deal with termination: as we have discussed previously,
we can use the termination edit to alter the translation of functions to use more
sophisticated termination arguments than Coq supports as long as we provide a proof.
However, sometimes this termination proof may be complicated, and the function in
question may be almost structurally inductive if only Coq could see a little further.
In these cases, an alternative approach is to use a rewrite (or similar) edit to change
the offending part of the code to make it more transparent to Coq.

One problem of this nature we ran into was the following recursion pattern. Recall
the mutually recursive types Expr and Bind of Core expressions and binders from
Figure 7.2. In its Rec constructor, the type Bind contains a list of Exprs; thus,
functions on Bind may be mutually recursive via calls to higher-order functions like
map, or more generally via any recursive function on lists. However, if not handled
carefully, Coq can quickly become unable to see through this sort of recursion; even a
little complexity can cause a problem.

Consider, for instance, the Haskell functions freeVars and freeVarsBind in the
module CoreFVs. These functions annotate Exprs and Binds, respectively, with their
sets of free variables “at every tree node” as per a comment in the source; this means
that, for instance, a value App e1 e2 would have e1 annotated with its free variables,
e2 annotated with its free variables, and the whole App node annotated with the union
of those two sets. These functions are also mutually recursive. The details of how
they calculate these free variable sets are not important here; instead, what we care

105

about is certain details of the implementation of freeVarsBind. Those details are in
the Rec case of the definition, which we present here, dimming out the portions we
don’t care about:

freeVarsBind (Rec binds) body_fvs
= (AnnRec (binders `zip` rhss2)

, delBindersFV binders all_fvs)
where

(binders, rhss) = unzip binds
rhss2 = map freeVars rhss
{- .. omitted ... -}

We start with the argument to the function, Rec binds, whose contents are a list of
pairs of variable binders and their right-hand sides. This list is then taken apart with
the function unzip :: [(a,b)] -> ([a],[b]), producing two parallel lists: one list
of the binders, and one list, rhss, of their right-hand sides. The function then recurses
by mapping freeVars over rhss.

This function always terminates: unzip does not create new data, but simply
restructures the contents of its arguments, and freeVarsBind recurses on the out-
put of unzip. But if we translate this function to Coq, then Coq cannot see this:
since Coq’s termination checker is strictly syntactic, the fact that rcqs semanti-
cally contains only subterms of binds does not matter. Thus, in order to get Coq’s
termination checker to accept freeVarsBind, we need to ensure that the recursive
calls are directly on binds. Luckily, this is something we can do: unzip binds is
identical to (map fst binds, map snd binds), so we could rewrite the recursive
call as map freeVars (map snd binds), and then fuse the two maps together as
map (freeVars ◦ snd) binds. Because we are now recursing on binds directly,
Coq can see that this call to freeVars is indeed on a subterm of the original input
(Rec binds), and will verify that freeVarsBind is terminating.

This is the exact change I applied to this code with hs-to-coq for our translation
of GHC, providing the following edit and commentary:

Justified by
• In `let 'pair _ ys := GHC.List.unzip xys in ...`, we know
that `ys = GHC.Base.map snd xys`
(`Proofs.GHC.List.snd_unzip`).
• Successive `map`s can be converted to one `map` plus function
composition (`Proofs.GHC.Base.map_map`).
in CoreFVs.freeVarsBind rewrite forall, ←↩

GHC.Base.map CoreFVs.freeVars rhss = ←↩
GHC.Base.map (CoreFVs.freeVars GHC.Base.◦ snd) binds

I include the comment here because comments like it are a key part of this new approach
of justifying edits. The previous paragraph of text explained why this transformation
was safe, and the comment here does the same more tersely and via an appeal to two

106

Coq theorems: Proofs.GHC.List.snd_unzip and Proofs.GHC.Base.map_map. These
theorems are from our specification of the base library:23

Lemma snd_unzip:
forall a b (xs : list (a * b)),
snd (List.unzip xs) = map snd xs.

Proof.
intros.
induction xs.
* reflexivity.
* simpl. repeat expand_pairs. simpl. f_equal. apply IHxs.

Qed.

Lemma map_map {a b c} (f : a -> b) (g : b -> c) (x : list a) :
map g (map f x) = map (g ◦ f) x.

Proof. by rewrite !hs_coq_map Coq.Lists.List.map_map. Qed.

So long as the prose description of how they apply to the rewrite edit is correct,
these two theorems prove that the transformation done by the rewrite is correct and
so does not change the behavior of freeVarsBind. By adding the comment pointing
to these Coq proofs, we have significantly increased our confidence that the associated
edit is correct.

7.7.2. Recursion through nested fixpoints. When translating freeVarsBind,
we were able to appeal to general lemmas about general-purpose functions from base,
but in general, we found that we needed to provide custom reasoning about translations
involving custom functions. In order to understand why we needed to provide those
translations while translating GHC, we must first pause here to understand why Coq
was able to see through the call to map above, when it wasn’t able to see through the
call to unzip. Understanding when Coq can verify recursion through nested fixpoints
like this is key to understanding why we needed to make most of the edits that we
justified.

We saw above that Coq was able to correctly understand that the expression
map (freeVars ◦ snd) binds only contained structurally recursive calls to freeVars,
but that it was not able to understand the same of (the equivalent of) the expression
map freeVars (snd (unzip binds)); indeed, it also would not have understood
map freeVars (map snd binds), because Coq never propagates informational about
structural subterms through function calls. It is the fact that freeVars and binds
both occurred directly in the argument to a single call to map that mattered. But
what makes map special? Why does this work?

The answer has to do with how Coq’s termination checker interacts with nested
fixpoints: just why Coq can see through the use of map above and, more importantly,
when it can’t (Herbelin, 2010). The situation where this issue arises is one where
we have a nested inductive type: an inductive type which has a recursive occurrence
within another recursive type. In order to write recursive functions on such types, we

23As you can see, the collaborative nature of this project gives rise to a variety of proof styles!
107

correspondingly need nested fixpoints: a fixpoint within a fixpoint. This is what we
saw above: on the type side, Bind is a nested recursive type, as one of its constructors
contains a list of Exprs; and on the fixpoint side, freeVarsBind is a fixpoint and
it calls freeVars recursively through map, which is itself implemented in terms of a
fixpoint.

To understand Coq’s behavior around this, we’ll look at something simpler than
Core’s Bind type: the type of nonempty rose trees. These trees contain a value and a
list of zero or more child trees, which makes them about as simple as nested inductive
types come:

Inductive Tree a :=
Node : a -> list (Tree a) -> Tree a.

Arguments Node {_} _ _.

Now that we have a simple nested inductive type, we also need a simple function
on it. We’ll define the map function on rose trees, which applies a function to every
value in the tree; we call this function map_tree. In order to define this, we have to
recurse over the list of child trees; the natural way to do that is to map over said list.
We can thus now give the definition of map_tree, highlighting the call to map which
performs the nested recursion:

Fixpoint map_tree {a b} (f : a -> b) (t : Tree a) : Tree b :=
let 'Node x ts := t
in Node (f x) (map (map_tree f) ts).

As we saw above, Coq can see through this definition when we use the standard
library’s map (which we use as the body of our translation of the Haskell map from
base via a redefine edit). But what is that definition?

The natural definition of map in Coq is the following, which we call map1; we use
the name g for the function argument so we can refer to it separately from the function
argument to map_tree.

Fixpoint map1 {a b} (g : a -> b) (xs : list a) : list b :=
match xs with
| nil => nil
| cons x xs => cons (g x) (map1 g xs)
end.

This defines a single fixpoint that takes four arguments (two types, a function, and
a list) and produces a list. Unfortunately, using this for the map in map_tree fails:
Coq reports that the “[r]ecursive call to map_tree has not enough arguments” if we
specify that map_tree recurses via t with a {struct t} annotation; without that
annotation, Coq is sufficiently confused that it simply says that it “[c]annot guess
decreasing argument of fix.”

108

The definition of map that we need to use instead is the following, which we call
map2; it is extensionally equivalent to map1, but not identical.24

Definition map2 {a b} (g : a -> b) : list a -> list b :=
fix map2_rec xs :=

match xs with
| nil => nil
| cons x xs => cons (g x) (map2_rec xs)
end.

Here, the first three arguments to map2 are provided through a (non-recursive) function;
the result is a fixpoint of one argument which closes over those parameters and actually
performs the recursion underlying map. When we use this definition for the map in
map_tree, Coq is happy.

To see the difference between map1 and map2, consider what happens when we
β-reduce the body of map_tree. In the latter case, since map2 is a function that
returns a fixpoint, the definition of map_tree becomes

Fixpoint map_tree {a b} (f : a -> b) (t : Tree a) : Tree b :=
let 'Node x ts := t
in Node (f x) ((fix map2_rec xs :=

match xs with
| nil => nil
| cons x xs => cons (map_tree f x) (map2_rec xs)
end) ts).

Within map2_rec, its g parameter is replaced with map_tree f x. Coq can now
see that the recursive call to map_tree is on a subterm of t as through transitivity:
first, map_tree is applied to x; second, x is a direct subterm of xs, the argument to
map2_rec; third, map2_rec is applied to ts; and fourth, ts is a direct subterm of t.
The tricky piece of reasoning is the passage from the second observation to the third:
Coq is willing to propagate subterm information down through the inputs to fixpoints,
so within this call to map2_rec, every subterm of xs is known to be a subterm of
ts. This is exactly the nested generalization of the condition for nonnested fixpoints:
just as Coq can see that the nested occurrence of the type Tree a within list is
permissible, it can see that the nested call to the fixpoint on Tree within the fixpoint
on list is permissible. Coq does not go any further than this; in particular, Coq does
not propagate subterm information on to function outputs, either in the nested or
nonnested case, which is why the versions of freeVarsBind with unzip or with two
calls to map were not accepted by the termination checker.

Contrast this situation with what would happen if we used map1: we would wind
up with the body of map_tree containing

Node (f x) ((fix map1 {a b} g xs := ...) (map_tree f) ts)

24The definition of map in the Coq standard library is effectively the same, but written in terms
of a Coq Section (The Coq Development Team, 2020a). We use that standard map as the body of
our translation of the Haskell map from the base library via a redefine edit.

109

and could do no further reduction, since fixpoints don’t reduce until applied to a
constructor. Because Coq’s termination analysis is strictly syntactic and the recursive
call to map_tree is not being applied to a subterm of t (in fact, it’s not being applied
to anything), Coq cannot accept this definition. For Coq to accept this, it would have
to see that the fixpoint could be partially applied, perhaps by seeing that g remains
unchanged at every recursive call – effectively, it would have to realize that g (and
a and b) could be “pulled out” to turn map1 into map2. This is a deeper syntactic
analysis than the termination checker will perform, so we must use map2 directly
instead.

What we have seen here is that, in order to aid Coq’s termination checker, it is
critical to ensure that function arguments to fixpoints are closed over instead of passed
directly if there is any chance that the higher-order fixpoint in question will ever be
used in a nested context. In this example, that means using map2 instead of map1.
Furthermore, even if that’s been done, the higher-order fixpoint containing a recursive
call must be applied directly to a subterm of the input. If there are one or more
intervening fixpoints between the one with the recursive call and the subterm, they
must somehow all be “fused” into one fixpoint containing the recursive call. In the
case of freeVarsBind, this is the difference between map (freeVars ◦ snd) binds,
which works, and map freeVars (map snd binds), which does not.

Unfortunately, these conditions don’t come naturally when working with hs-to-coq.
The output it generates is of the natural, map1 form, which means we cannot satisfy
the first requirement; and Haskell code is often written as the composition of many
smaller functions, which means we often do not satisfy the second requirement. We
have already seen the first edit we apply to deal with this problem: we redefine
the map function from base to be implemented in terms of Coq’s map, which smooths
the recursion situation over in many places. More generally, in order to avoid both
of these problems and allow Coq to verify that our nested recursive functions are
structurally terminating, we need to rewrite some subterms of recursive functions
to refer to new, custom fixpoints that are written to satisfy these requirements. In
the case of freeVarsBind, instead of a new fixpoint, we could just reuse map, but
in general, we need more specific functionality. And because we need this specific
functionality but don’t want to change the meaning of the code, we want to justify
these edits by pointing to Coq equality proofs.

7.7.3. Justified edits to satisfy the termination checker. All told, there
are eight places in our GHC translation that applied this technique of using justified
edits. Six of these cases, including the CoreFVs.freeVarsBind case we discussed in
Section 7.7.1, were for edits that enabled Coq’s termination checker to understand
recursion through nested fixpoints; the remaining two cases were about removed code,
and I discuss them in the next section.

As previously mentioned, each of the five nested fixpoint cases besides
freeVarsBind required writing a custom function. In order to organize our code, we
keep all these functions and the custom correctness proofs in a single Coq module
called NestedRecursionHelpers. The simplest use of that module is the second
edit we apply when translating CoreFVs: a simple unscoped rename value edit to

110

replace a function’s uses wholesale. This is the only justified edit added by one of my
collaborators, namely my advisor Stephanie Weirich; it is the first example of this
technique being adopted by another user of hs-to-coq.

rename value ←↩
Util.mapAndUnzip = NestedRecursionHelpers.mapAndUnzipFix

The function mapAndUnzip has type (a -> (b, c)) -> [a] -> ([b], [c]), and
is equivalent to the composition of unzip and map; however, it is implemented in
GHC as a single recursive function. This is already convenient for us, since this sort
of fusion of recursive functions is one of the components of satisfying the termina-
tion checker with nested fixpoints. It isn’t enough, though, because, as discussed
above, hs-to-coq’s translation of mapAndUnzip passes all the arguments, includ-
ing the function, to the resulting fixpoint. Thus, we define an almost-identical
function, NestedRecursionHelpers.mapAndUnzipFix, that simply keeps the first ar-
gument, the function, fixed between recursive calls; the map2-style implementation to
hs-to-coq’s default map1-style implementation, using the names of the examples we
saw in the previous section. Renaming the original function to the replacement then
allows us to translate CoreFVs.freeVars, which uses mapAndUnzip when computing
the free variables of different arms of a Case. (The edit would also alter any other
uses of mapAndUnzip in CoreFVs, but this was the only one.)

Normally, if we were doing such a global renaming, we could then
skip Util.mapAndUnzip; however, Coq has no trouble with the definition of
Util.mapAndUnzip, just its nested use in CoreFVs.freeVars. Thus, we translate
Util.mapAndUnzip and include a proof (also in NestedRecursionHelpers) that our
new definition is the same as the old one:

Theorem mapAndUnzipFix_is_mapAndUnzip
: forall a b c (f : a -> (b * c)) l,

mapAndUnzip f l = mapAndUnzipFix f l.

We note that this edit is justified in a comment, although the comment doesn’t give
the specific theorem name:
Make it easier for Coq to see termination

The next two justified edits we consider are the ones we apply in the module
CoreUtils, both of which I added in order to enable Coq to accept the translation of
the function eqExpr. This function compares two Core expressions for α-equivalence,
and has the type InScopeSet -> CoreExpr -> CoreExpr -> Bool; we translate this
function, but do not verify it, as none of our final theorems (Section 7.8) require it. It
is defined in terms of a recursive function on Expr (not mutually recursive with Bind,
interestingly enough25); since this inner function compares two terms for α-equivalence,
it needs to compute the conjunction of multiple recursive calls in the Let (Rec ps)
and Case cases, confirming that all the bindings or case arms, respectively, are also
α-equivalent. This is done through the function Util.all2, which is defined as follows:

25The Haskell code is mutually recursive, but inessentially – this mutual recursion is eliminated
in the translation via an inline mutual edit.

111

all2 :: (a -> b -> Bool) -> [a] -> [b] -> Bool
-- True if the lists are the same length, and
-- all corresponding elements satisfy the predicate
all2 _ [] [] = True
all2 p (x:xs) (y:ys) = p x y && all2 p xs ys
all2 _ _ _ = False

As the comment says, this function returns True if and only if the two lists have the
same length and the supplied predicate returns True for each pair of elements at the
same index. Put another way, it is equivalent to the composition of all and zip, with
the additional requirement that the lists be the same length.

As we have seen by now, all2 is translated by hs-to-coq in such a way that p
is bound by the resulting fixpoint. However, this time, just swapping all2 for a
definition that closes over p is insufficient, because of the same problem we had back in
Section 7.7.1 with CoreFVs.freeVarsBind: one of the recursive calls is actually applied
to unzip. I thus needed to fuse all2 with map snd, much as we saw before. I could have
done this via a replacement definition of NestedRecursionHelpers.all2, followed by
bringing snd in directly by rewriting the offending application from Util.all2 p to
Util.all2 (fun x y => p (snd x) (snd y)); however, I decided that it would be
clearer to instead defined a single fused function NestedRecursionHelpers.all2Map,
which takes two transformation functions and applies them to the respective input
lists before forwarding the result to the predicate. I also proved that this function is
equivalent to the composition of Util.all2 with two maps, which is the theorem that
justifies the edits where we replace Util.all2.
(* `all2Map p f g xs ys = all2 p (map f xs) (map g ys)` (see

`all2Map_is_all2_map_map`).

We need this for use in `CoreUtils.eqExpr` so Coq can see that
it's terminating. We also need to replace `unzip` with
`map snd`, which we don't justify here.

[...] *)
Definition all2Map {a b a' b'}

(p : a -> b -> bool)
(f : a' -> a) (g : b' -> b)

: list a' -> list b' -> bool :=
fix all2Map xs0 ys0 :=

match xs0 , ys0 with
| nil , nil => true
| x :: xs , y :: ys => p (f x) (g y) && all2Map xs ys
| _ , _ => false
end.

Theorem all2Map_is_all2_map_map {a b a' b'}
112

(p : a -> b -> bool)
(f : a' -> a) (g : b' -> b)
xs ys :

all2Map p f g xs ys = all2 p (map f xs) (map g ys).
Proof.

elim: xs ys => [|x xs IH] [|y ys] //=.
by rewrite IH.

Qed.

The comment at the start, though not part of the Coq code, is part of our justification
scheme: it points to both the theorem that I proved about it and the edits in which I
used it. (The omitted text contains a pointer to an explanation of the problem we’re
solving; that is, it contains a pointer to a shorter version of Section 7.7.2.)

This proof then backs up the two justified edits we need to apply to
CoreUtils.eqExpr. The definition of exExpr is in terms of a local recursive function
called go; the relevant portions of go are as follows, dimming out the portions we
don’t care about:

go env (Let (Rec ps1) e1) (Let (Rec ps2) e2)
= equalLength ps1 ps2
&& all2 (go env') rs1 rs2 && go env' e1 e2
where

(bs1,rs1) = unzip ps1
(bs2,rs2) = unzip ps2
env' = rnBndrs2 env bs1 bs2

go env (Case e1 b1 t1 a1) (Case e2 b2 t2 a2)
| null a1 -- See Note [Empty case alternatives] in TrieMap
= null a2 && go env e1 e2 && eqTypeX env t1 t2
| otherwise
= go env e1 e2 && all2 (go_alt (rnBndr2 env b1 b2)) a1 a2

{- ... omitted ... -}

go_alt env (c1, bs1, e1) (c2, bs2, e2)
= c1 == c2 && go (rnBndrs2 env bs1 bs2) e1 e2

There’s a bit of noise here, but we can see that in the first case, we’re using all2 to
confirm that all the right-hand sides of two recursive let bindings are the same; we
can also see that in the second case, we’re using all2 to confirm that the result of
every pattern match in a case expression is the same via the local function go_alt.
(Recall that a Case contains a list of Alts, which are triples of the constructor, the
binders, and the right-hand side, as we saw in Figure 7.2.)

These two different calls need two different edits. In the first case, we also need to
avoid an unzip, so we pass snd to all2Map; in the second case, we just need the basic

113

functionality of all2 since go_alt is doing the unpacking, so we pass id to allMap2
(in this case, simply using a more cooperative definition of all2 would have sufficed).
The two edits that implement this are as follows:

Justified by `NestedRecursionHelpers.all2Map_is_all2_map_map`
plus changing
#
let '(xs,ys) := unzip xys in ... ys ...
#
to
#
... (map snd xys) ...
in CoreUtils.eqExpr rewrite forall p, ←↩

Util.all2 p rs1 rs2 = ←↩
NestedRecursionHelpers.all2Map p snd snd ps1 ps2

Justified by `NestedRecursionHelpers.all2` plus `map id =1 id`.
Could also work with a better version of `Util.all2`; see
issue #109.
in CoreUtils.eqExpr rewrite forall p, ←↩

Util.all2 p a1 a2 = NestedRecursionHelpers.all2Map p id id a1 a2

The edits distinguish between the two cases by matching on the lists being iterated over
by name (rs1 and rs2 vs. a1 and a2). The comments justify the correctness of these ed-
its by pointing to the theorem NestedRecursionHelpers.all2Map_is_all2_map_map,
which we saw above. And indeed, the rewrites here look a lot like instantiations of
that theorem. (Issue #109 is the GitHub issue26 that documents that hs-to-coq’s
default translation runs into the nested fixpoint problem we’re addressing here.)

The final two justified edits for termination we consider here are the ones I added
to support the translation of common subexpression elimination (CSE), a Core-to-Core
optimization pass. This pass, which we translate but do not prove, is responsible for
taking duplicated expressions in Core programs, binding them to a variable, and then
referring to the variable. For example, it could take the two Core variable definitions
(written in a Haskell-like syntax)

p1 = (x, Just 42)
p2 = (x, Just 42)

and replace them with

p1 = (x, Just 42)
p2 = p1

(CSE is also the sole consumer of CoreUtils.eqExpr, the function that we translated
with the previous two justified edits, in our translated version of GHC.)

26https://github.com/plclub/hs-to-coq/issues/109

114

https://github.com/plclub/hs-to-coq/issues/109

This time, unlike in CoreUtils, our two edits affect two different portions of
CSE, both having to do with how CSE operates on Binders. CSE is defined in the
eponymous module CSE, and the core of the definition is the pair of mutually-recursive
functions

cseExpr :: CSEnv -> InExpr -> OutExpr
cseBind :: TopLevelFlag -> CSEnv -> CoreBind -> (CSEnv, CoreBind)

These functions perform common subexpression elimination on an expression and a
binder, respectively. Here, the types InExpr and OutExpr are mnemonic synonyms
for CoreExpr; the type CSEnv contains the necessary substitution and maps that
allow translating between core expressions and the variables they can be bound to;
and the type TopLevelFlag tells us whether or not the binder being translated is at
the top level (like the definitions of cseExpr and cseBind themselves) or not (like
a let-bound variable). These functions are themselves defined in terms of various
auxiliary functions, several of which we have to collapse into cseExpr and cseBind
via inline mutual. But even once we’ve done this, there are still two more changes
we need to make in the service of termination, both of which we justify.

The first of these changes looks much like what we have seen before. Instead
of a combination of map and unzip, the function cseBind uses a combination of
mapAccumL and zip, which does not pass the termination checker for the same reason.
The function mapAccumL can be thought of in two different ways: as a combination of
map and foldl, as the documentation has it (The Core Libraries Committee, 2018, the
Data.Traversable module); or as traverse (aka mapM) in the state monad (modulo
the order of function arguments and tuple components), as the implementation has it.
The type of mapAccumL is given in terms of Traversable:

mapAccumL :: Traversable t
=> (a -> b -> (a, c)) -> a -> t b -> (a, t c)

It applies the provided function to each element of the Traversable of bs (such as
a list of bs, [b]), passing an accumulator of type a along from left to right as well
(hence the L in the name), and then returning the final value of the accumulator and
the results of each function application. For instance, the function

enumerate :: Traversable t => t String -> (Int, t String)
enumerate = mapAccumL (\i s -> (i+1, show i ++ ". " ++ s)) 1

takes a list or other Traversable of Strings and numbers them, returning a pair of
the putative next index and the numbered items:

enumerate ["Haskell", "Edits", "Coq"] ==
(4, ["1. Haskell"

, "2. Edits"
, "3. Coq"])

Just as we have seen before, in order to make the recursion apparent to the
termination checker, I combined mapAccumL and zip into a single Coq function, which
I called NestedRecursionHelpers.zipMapAccumL, that I also proved to be equivalent
to the composition of the original two functions:

115

(* `zipMapAccumL f s xs1 xs2 = mapAccumL f s (zip xs1 xs2)` (see
`zipMapAccumL_is_mapAccumL_zip`).

We need this for use in `CSE.cseBind` so Coq can see that it's
terminating.

[...]
*)

Definition zipMapAccumL
{acc x1 x2 y}
(f : acc -> (x1 * x2) -> acc * y)

: acc -> list x1 -> list x2 -> acc * list y :=
fix go (s : acc) (xs1 : list x1) (xs2 : list x2)

{struct xs1} : acc * list y :=
match xs1 , xs2 with
| nil , _ => (s, nil)
| _ , nil => (s, nil)
| x1 :: xs1' , x2 :: xs2' =>

let: (s', y) := f s (x1,x2) in
let: (s'', ys) := go s' xs1' xs2' in
(s'', y :: ys)

end%list.

Theorem zipMapAccumL_is_mapAccumL_zip
{Acc X1 X2 Y}
(f : Acc -> (X1 * X2) -> Acc * Y)
(s : Acc)
(xs1 : list X1)
(xs2 : list X2) :

zipMapAccumL f s xs1 xs2 = mapAccumL f s (zip xs1 xs2).

We can see in the definition of zipMapAccumL that it contains the inlined definition of
bind for the state monad, as promised. The comment above zipMapAccumL, is, as we
saw with all2, part of the justification scheme: again, it points to the correctness
theorem and the use case for this function. (The omitted text explains the problem
we are solving; in other words, it’s a shorter version of Section 7.7.2, and is the text
that was pointed to by the comment above all2.)

The last justified edit for termination is somewhat different. While still solving the
same nested fixpoint problem, the transformation involved is much more dramatic, and
the correctness theorem is not a simple equality. The function in question this time
is cse_bind, one of the aforementioned auxiliary functions that’s inline mutualed.
This function does the core of the work of cseBind in the non- and mutually-recursive

116

cases (the single recursive function case is handled specially). In particular, in the
mutually-recursive Rec pairs case, cse_bind is applied to the pairs through a
combination of mapAccumL and zip in order to build and propagate the binding
information:27

cseBind toplevel env (Rec pairs)
= (env2, Rec pairs')
where

(env1, bndrs1) = addRecBinders env (map fst pairs)
(env2, pairs') = mapAccumL do_one env1 (zip pairs bndrs1)

do_one env (pr, b1) = cse_bind toplevel env pr b1

The purpose of cse_bind is to take care of the two pieces of CSE for variable bindings:
first, it is supposed to apply CSE on the right-hand side of the binder. Second, after
doing so, the resulting new right-hand side will be bound to a variable; cse_bind
is responsible for remembering that this binding exists so that further occurrences
of the resulting right-hand side can be eliminated and replaced with the variable
that is bound here. In order to implement this behavior, core_bind must keep track
of special cases where it must replace its basic functionality with something more
complicated. The special case of interest to us here is the following, where we dim the
code that isn’t involved in the recursion:

cse_bind toplevel env (in_id, in_rhs) out_id
{- ... omittted ... -}
| Just arity <- isJoinId_maybe in_id

-- See Note [Don’t tryForCSE the RHS of a Join Point]
= let (params, in_body) = collectNBinders arity in_rhs

(env', params') = addBinders env params
out_body = tryForCSE env' in_body

in (env, (out_id, mkLams params' out_body))
{- ... omittted ... -}

In this case, we have found a join point, a special kind of lambda; we explain join
points in Section 7.8.2, as they are part of our final theorems about GHC, but all
that matters here is that they are literal lambdas with a known minimum number
of bound variables (the join arity). Join points cannot be duplicated, and so we
should never use the entire join point as a common subexpression to eliminate.
Instead, we use collectNBinders to split the lambda apart after the first several
binders. For example, collectNBinders 2 applied to a representation of the Core
program \x -> \y -> \z -> x+y+z would return ([x,y], \z -> x+y+z). We then
recursively apply CSE to this deeper right-hand side that was under the binders
(in_body in the definition of cse_bind; the function \z -> x+y+z in our little example)

27One thing to note here is that the first component of pairs is the variable being bound, which
isn’t mutually recursive; this is why we aren’t worried about the definition of bndrs1.

117

using the auxiliary function tryForCSE; this function wraps cseExpr and was, like
cse_bind, also inline mutualed.

There are two problems we have here that we didn’t have before. The first is that,
while we recurse on its output (in_body), collectNBinders isn’t higher order. This
means that, unlike in all the previous cases we saw in this section, we can’t simply
rearrange things so that the recursive call to tryForCSE appears in an argument to
collectNBinders. The second is that collectNBinders n e assumes the presence
of n binders in e; if they are not there, the function crashes. We have not yet had to
think about how to justify rewrites in the presence of partiality.

We tackle the first-order problem first: collectNBinders, instead of being higher-
order, has the simple first-order type Int -> Expr b -> ([b], Expr b).28 As ob-
served above, the problem here is less like the other cases in this section, and more like
the problem with CoreFVs.freeVarsBind that we saw in Section 7.7.1: we recurse
on the result of a recursive function, rather than inside a higher-order function. As
outside observers, we understand that collectNBinders always returns a subterm of
its input; all it is doing is stripping off leading Lam constructors, as we can see by its
definition (in the module CoreSyn, which becomes part of the merged Core module
in the Coq output):

-- | Strip off exactly N leading lambdas (type or value). Good for
-- use with join points.
collectNBinders :: Int -> Expr b -> ([b], Expr b)
{- ... other function definitions omitted ... -}
collectNBinders orig_n orig_expr

= go orig_n [] orig_expr
where

go 0 bs expr = (reverse bs, expr)
go n bs (Lam b e) = go (n-1) (b:bs) e
go _ _ _ = pprPanic "collectNBinders" $ int orig_n

The eventual recursion in cse_bind happens on the second component of the tuple
returned by collectNBinders. Examining the first two cases of go, we can see that
this will indeed transitively be a subterm of orig_expr; what’s more, within go, Coq
can see that expr is a syntactic subterm of the original input orig_expr. As we saw
in when defining map_tree via map2 in Section 7.7.2, because go recurses directly on
its expression argument, Coq can see at every step that the expression argument is a
syntactic subterm of the original input; the only difference with the map_tree case is
that the subexpressions and the original input are the same type.

However, the catch is that as soon as we return expr in the base case and leave
go, this syntactic subterm information is lost: back in cse_bind, Coq can’t see that
in_body is actually a subterm of in_rhs. Flipped around, the problem is that the
recursion happens outside go. What if we could recurse directly on the right-hand
side of the go 0 case?

28Technically, due to currying, this type is also higher-order, but not meaningfully.

118

To do that, all we need to do is rewrite collectNBinders in continuation-passing
style (in Coq): if we give it an extra function argument k, then the base case can
be k (reverse bs) expr instead. And just as before, if we make sure to close
over k, then Coq will inline the definition of k in the same way. So, when the
recursive call to tryForCSE is placed in the continuation, Coq can now see that it
is on a subterm of the original input. Another way to think about this solution
is that it changes collectNBinders from a first-order function into a higher-order
function, allowing us to implement a solution much like those we saw in the preceding
justified edits where we place the recursive call to tryForCSE within the newly-
provisioned higher-order argument. We provide this CPSed version as the Coq
function NestedRecursionHelpers.collectNBinders_k:

(* `collectNBinders_k n e (fun bs e' => ...) =
let '(bs,e') := collectNBinders n e in ...`,
or both functions panicked (see
`collectNBinders_k_is_collectNBinders`).

We need this for use in `CSE.cseBind` so Coq can see that the
recursive call under join points is terminating. *)

Definition collectNBinders_k `{Default r} {b}
(orig_n : nat) (orig_expr : Expr b)
(k : list b -> Expr b -> r) :=

let fix go n bs expr {struct expr} :=
match n , bs , expr with
| 0 , _ , _ => k (reverse bs) expr
| _ , _ , Lam b e => go (n - 1) (cons b bs) e
| _ , _ , _ => panicStr &"collectNBinders_k" someSDoc
end

in go orig_n nil orig_expr.

To replace collectNBinders with collectNBinders_k, I needed to write an edit
that was able to capture a continuation of the function after collectNBinders – it
did not need to be the full continuation, so long as it contained the recursive call.
In this case, that continuation was easy to find, as the pattern binding in the where
clause in cse_bind that destructures the tuple is translated to a match in Coq, and
the body of the match is exactly the continuation we need since it automatically
includes everything that depends on the result of collectNBinders.

Justified by
NestedRecursionHelpers.collectNBinders_k_is_collectNBinders
in CSE.cse_bind ←↩

rewrite forall arity in_rhs params in_body k, ←↩
match Core.collectNBinders arity in_rhs with ←↩
| pair params in_body => k ←↩
end ←↩

119

= NestedRecursionHelpers.collectNBinders_k ←↩
arity in_rhs (fun params in_body => k)

Now that we have this new edit with an appeal to a named correctness theorem,
we need to look at that theorem’s statement. But as mentioned above, this theorem
statement needs to look a bit different, because collectNBinders is partial. In the
case where there aren’t enough binders to collect, it will crash by calling the function
Outputable.pprPanic. We talked about the related Panic.panic function back in
Section 7.4; these functions, and more generally all the machinery from GHC’s Panic
module, are what GHC uses to crash when there are internal errors. For instance,
GHC will panic when an an invariant is being violated, such as the invariant that
collectNBinders is called only when there are enough binders is one of these.

Much as with output, we are not interested in the details of a panic, only whether
or not (hopefully not) one happened. We might hope that if we could simplify things
so that collectNBinders and collectNBinders_k raised exactly the same error,
then by reflexivity of equality we could prove that the two functions were equal in
that case as well; however, this isn’t true. Because we represent bottom values (⊥) as
either opaque constants (as with the Default type class, which we saw in Section 3.8)
or axioms of inhabited types, any evaluation on them gets completely stuck. This
is fundamentally different than ⊥, which can be passed around and which, when
evaluated, produces even more ⊥s. In our situation, even the slightest rearrangement
of function call orders around a partial value can result in completely different terms,
as the opaque terms or axioms simply will not budge.

To look at this here, we can compare the two error cases. The error case I wrote
in collectNBinders_k is, as we can see above,

panicStr &"collectNBinders_k" someSDoc

The error case in collectNBinders looks different in Haskell, but we use edits to
significantly simplify the various panic functions and the SDoc type that they use for
pretty-printing. At the end of this, hs-to-coq produces the following error case for
collectNBinders:

Panic.panicStr (GHC.Base.hs_string__ "collectNBinders")
Panic.someSDoc

This differs from the error case in collectNBinders only by the substring "_k" (and
in that it doesn’t use the & notation). But even if we adjusted our definition of
collectNBinders_k to drop the substring, it wouldn’t help. Consider what happens
if we do reach an error: both collectNBinders and collectNBinders_k will stop
with a panic. But because the latter is in continuation-passing style, this isn’t the
same thing. When collectNBinders stops with a panic, the pattern binding of
the result to (params, in_body) in cse_bind gets stuck, and Coq is left with a
match expression that’s matching on something that will never reduce. On the other
hand, when collectNBinders_k stops with a panic, that’s it: the continuation, which
corresponds to the body of the match, is never evaluated, and the expression is equal
to the panic. Again, if panics were true bottom values, then matching on them as

120

collectNBinders does would result in a new panic, but that is not achievable; Coq
is fundamentally not a partial language.

Thus, our theorem statement must be weakened from just a simple equality.
One candidate theorem is partial correctness: that collectNBinders is equal to
collectNBinders_k if the invariant that the input has enough Lam constructors is
satisfied. But in fact, this sort of partial correctness result is too weak, as it says
nothing about the other case. This would allow one function to succeed while the
other panicked, which is not what we want. We instead want to say that either the
functions are the same, or they both panicked; when proving something about Haskell
on paper, the result of evaluating ⊥ would bubble up out of the function automatically
and collapse these two cases, but with our Coq representation we must keep them
separate. A property we do preserve from common approaches to Haskell’s semantics
is that, as we said above, we don’t want to distinguish between different kinds of
panics, much as Haskell semantics usually have just one ⊥.

Our approach to capturing “this function panicked” is to define a new proposition
panicked : a -> Prop that tells us if the value is a call to one of the crashing
functions from Panic. We add this proposition to the translated Panic module using
an add edit (another edit that, like redefine, can span multiple lines):

add Panic Inductive Panic.panicked {a} : a -> Prop :=
| PlainPanic `{(GHC.Err.Default a)} {s} :

panicked (Panic.panic s)
| StrPanic `{(GHC.Err.Default a)} {s} {d} :

panicked (Panic.panicStr s d).

(There are other functions that can panic; should they ever be necessary for a proof,
this type can gain more constructors.) This predicate can only look to see if the
expression it is looking at is exactly a call to one of these panicking axioms: no nesting,
no nothing. But with a little judicious framing, this will be exactly what we need to
specify the correctness of the edit that introduces collectNBinders_k.

Now that we have addressed our two concerns, I can finally state the final edit
justification theorem that I proved (reformatted):

Theorem collectNBinders_k_is_collectNBinders
`{Default r} {b} (orig_n : nat) (orig_expr : Expr b)
(k : list b -> Expr b -> r) :

(collectNBinders_k orig_n orig_expr k =
= let '(out_bs, out_expr) := collectNBinders orig_n orig_expr in

k out_bs out_expr)
\/
(panicked (collectNBinders_k orig_n orig_expr k)
/\ panicked (collectNBinders orig_n orig_expr)).

We can see the two halves of the theorem statement: either collectNBinders_k is
the same as collectNBinders, or both functions panicked. We can also see that,
thanks to the CPS transformation, the correctness disjunct is not a simple equality
of function applications; on the right-hand side of the equality, we match on the

121

result of collectNBinders and use k to capture a program context containing the two
variables from that match. Relatedly, we can also see that the panicked checks only
refer to the functions, and even for collectNBinders do not refer to the surrounding
context; this is how we can keep track of whether the functions have panicked without
expecting them to automatically propagate panics like they would ⊥s in Haskell.

We do simplify as much as possible, in a variety of ways. Many functions around
panicking, like around outputting, refer to the type Outputable.SDoc which can be
pretty-printed; we replace this type with String. We then rewrite everything we can
to be as simple as possible: we introduce a special axiom Panic.someSDoc via the
edit

add Panic Axiom Panic.someSDoc : GHC.Base.String.

and rewrite every reference to an SDoc that we can to Panic.someSDoc. We also
simplify the various panicking functions, with the primitive ones becoming axioms.
Simplification here means “simplest set for us to write down”, not minimal in any
sense; for instance, we add the new panicking primitive Panic.panicStr with the edit

add Panic Axiom Panic.panicStr : ←↩
forall {a} `{(GHC.Err.Default a)}, ←↩

GHC.Base.String -> (GHC.Base.String -> a).

We also use a rename value edit in our global-to-GHC edit file to replace the function
Outputable.pprPanic with this new axiom everywhere:

rename value Outputable.pprPanic = Panic.panicStr

7.7.4. Justified Tick removal. We have now seen six different justified edits
that alter code to work with Coq’s termination checker. This context was a natural
one for the use of justified edits: the need for replacement code could not be avoided;
the justification theorems were (mostly) straightforward; and using hs-to-coq means
we’re working in Coq anyway, so proving one more theorem just feels like the right
thing to do. But having come up with this new stratagem of justifying pieces of our
translation, I was also interested in exploring other possible applications of it. And
the other use case that arose naturally came up while I was translating CSE, and was
much like something out of Section 7.6: justifying edits that were present in order to
simplify the code. In particular, the edits for the CSE module contain two rewrite
edits that each entirely eliminated every use of a function. In Section 7.6, we saw the
virtues of this approach vs. using a Coq Axiom; the difference here is that I could still
successfully translate the functions we were rewriting away, which meant that I could
justify these edits with Coq Lemmas rather than need to make any bare assertions.

The obvious question here is: why? If we can translate a function and prove that
it’s equal to something, and we don’t need to appease the termination checker, then
why not just use the translation instead of increasing the formalization gap by adding
an edit? And the answer to that question is that due to the collaborative nature of
this project, work was proceeding in parallel on other parts of GHC; in particular, my
collaborator and advisor Stephanie Weirich was working on simplifying the general
structure of Core at the same time as I was working on translating CSE. The

122

simplification work that included the function-eliminating rewrites happened after I
had set up most of the translation of CSE; once it did, that selfsame simplification
enabled me to prove the justification theorems (instead of the specific preservation
theorems I had before) that said that eliminating these functions was just fine.

The next question is: was it worth it? And the answer to that question is: I don’t
know yet! The pros and cons of justifying edits are still in flux, and while this approach
may not have gained us anything here, it was still a useful lesson in the design space
of this technique. In particular, hs-to-coq is designed to enable gradually increasing
verification coverage by allowing for translating more code, reducing the number of
simplifications, and so on. The ability to change between a proof-driven approach
(with the advantages of greater confidence in our code) and a rewrite-driven approach
(with the simplicity advantages outlined in Section 7.6) is part and parcel of this, and
the fact that we can do both is encouraging.

The two functions in question operate on the “profiling ticks” in a Core Expr.
Recall from Figure 7.2 that the Haskell definition of Expr contains a Tick constructor,
which wraps an expression with some profiling metadata (a Tickish Id). The two
functions we are considering are

stripTicksE :: (Tickish Id -> Bool) -> Expr b -> Expr b
stripTicksT :: (Tickish Id -> Bool) -> Expr b -> [Tickish Id]

These two functions both operate on a subset of these profiling ticks, as picked out by
a predicate on their contents. The first function, stripTicksE, removes that subset of
Ticks entirely from the expression; the second, stripTicksT, returns the contents of
that subset of Ticks. (Everything stripTicksE removes, stripTicksT returns.) For
example, stripTicksE (const True) would remove all the Ticks from an expression,
and stripTicksT (const False) would always return the empty list.

However, when we recalled the Haskell side from Figure 7.2, we might also recall
that, as we said in Section 7.2, we completely eliminate Tick on the Coq side. This
is the simplification that Stephanie Weirich in parallel with my work on CSE. Since
we were not interested in proving any theorems about the compiler with regard to
this profiling information, she decided to eliminate the Tick constructor entirely, in
keeping with our general approach towards simplifying GHC. This had two effects for
stripTicksE and stripTicksT:

(1) They both became very boring when translated to Coq; and
(2) Stephanie Weirich added edits to eliminate calls to them, as she did for

Tick-related functions in general.
On the first hand, stripTicksE and stripTicksT’s newfound boringness meant

that it was easy to prove that they could be removed: the Coq version of the former
takes a predicate and becomes the identity function, and the Coq version of the latter
takes a predicate and becomes constantly nil. The proofs of these theorems are
straightforward inductive arguments, and I carried them out in Coq; the resulting
theorems are:

Lemma stripTicksE_id {b} p (e : Expr b) :
stripTicksE p e = e.

123

Lemma stripTicksT_nil {b} p (e : Expr b) :
stripTicksT p e = nil.

On the second hand, because she was removing ticks, Stephanie Weirich added
the following edits:
remove reasoning about ticks
#
rewrite forall xs e, CoreUtils.stripTicksE xs e = e
rewrite forall xs e, CoreUtils.stripTicksT xs e = e

Because they weren’t consciously added as part of a justified edits scheme, they don’t
appeal to stripTicksE_id and stripTicksT_nil explicitly; however, they still serve
as the appropriate justification.

7.7.4.1. An edit bug. There’s one thing that story leaves out: the second edit above
isn’t quite right! If we look at it again, we see that it rewrites stripTicksT xs e
to its second argument, e – but this isn’t even well-typed! Instead of an Expr b,
stripTicksT returns a [Tickish Id]. I proved stripTicksT_nil, but this edit
would have to appeal to an impossible stripTicksT_id.

So why wasn’t this caught? It wasn’t caught because the edits to remove Ticks
and related information were very thorough, and also eliminated all references to
the list of tick information that stripTicksT would have returned. The only uses of
stripTicksT in CSE followed the following pattern:

let ticks = stripTicksT tickishFloatable expr1
in ... mkTicks ticks expr2 ...

The function mkTicks is responsible for adding all the annotations in ticks to the
given expression; without the Tick constructor, it can’t do anything, so during the
simplification, it was also removed with the edit

rewrite forall ts e, CoreUtils.mkTicks ts e = e

(This edit is in fact found on the line right after the removal of stripTicksT.) This
means that the output of stripTicksT was no longer actually used, and so the fact
that it had the wrong type (not merely the wrong semantics) was completely hidden.

This example demonstrates the weaknesses of this technique of justifying edits.
While Coq proofs are always correct, they don’t have any intentionality – they aren’t
automatically about anything else. This is why we are so interested in making sure
that specifications are two-sided and live (Appel et al., 2017): those concepts connect
formal proofs to the object that we actually want to verify. And while hs-to-coq
is deeply invested in making sure its output is live, these justified edits simply are
not. The only connection between a Coq proof and the edit it justifies is at most a
comment, which allows the theorem and the edit to drift out of sync with no ability
to catch that this is happening.

There are still advantages to justifying edits: while things can go wrong, they can’t
get any worse than not having the justification in place at all. But this approach is
still not fully fleshed out, and the tradeoffs are not fully resolved. In future work,

124

it might be possible to further explore this approach and build more support for it
into hs-to-coq in such a way that we could ensure that the connection between the
justification and the edit was live; however, it is not yet clear how to make such a
connection systematically formal.

7.8. Verifying properties of the compiler

The purpose of all the edits we have discussed was to enable us to verify some
properties of GHC. As discussed in Section 7.2, this verification work is applied to the
Core intermediate language, where we verified that two different optimization passes
use variables correctly. What this means for us is two-fold:

(1) All terms are well-scoped.
(2) All join points are used correctly.

In this section, I explain these in more detail, including defining the notion of a “join
point”.

We are of course not the only people to have verified compilers, including those
for functional languages. For instance, CompCert (Leroy, 2009) is a fully formally
verified C compiler written in Coq; and CakeML (Kumar, Myreen, Norrish, and
Owens, 2014; Tan, Myreen, Kumar, Fox, Owens, and Norrish, 2016), which we discuss
further in Section 9.5, is a functional language with a verified compiler implemented
by translation from HOL4. Similarly, hs-to-coq is not the only way to use Haskell
to apply these verification techniques; we demonstrate how to use LiquidHaskell to
verify well-scopedness checking for a simple lambda calculus implemented in Haskell
in Section 9.4.5.

7.8.1. Well-scoped Core terms. Core, like any lambda calculus, has variables
and bindings, and so we must ensure that all variables are bound. As usual, the devil
is in the details. GHC uses an explicitly named representation of variables, so we must
ensure that each local variable occurs within a binder. At the same time, we must
distinguish between local and global variables – only local variables must be bound in
this way.

Variables in GHC have a rather complicated representation, which we need to
use hs-to-coq to simplify. You can see the original Haskell and the resulting Coq
in Figure 7.5. In GHC, the same Var type is used to represent type and term vari-
ables; as we are only concerned with term-level behavior and scoping, we use the
skip constructor edit to eliminate the TyVar and TcTyVar constructors. Further-
more, the IdInfo type contains a great deal of metadata about the variable, not all
of which we need and some of which we cannot translate. Some of the information in
the id_info field includes unfoldings – the value of the variable, exposed for inlining
optimizations. As we discussed above in Section 7.5, this means that the id_info
field makes reference to other Vars in those unfoldings, which themselves may have
id_infos that reference Vars – and in fact, this structure can be cyclic! This sort of
infinite data is perfectly common in Haskell, but forbidden in Coq, so there is even
more simplification that goes on behind the scenes.

We also see the presence of a “unique”. This is an (unboxed) integer used to
make comparison efficient – if two Vars have different uniques, they are different.

125

data Var
= TyVar { -- Type and kind variables

varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
varType :: Kind }

| TcTyVar { -- Used only during type inference
varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
varType :: Kind,
tc_tv_details :: TcTyVarDetails }

| Id {
varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
varType :: Type,
idScope :: IdScope,
id_details :: IdDetails,
id_info :: IdInfo }

Inductive ...
(* part of a mutually inductive type *)

with Var : Type
:= | Mk_Id (varName : Name.Name)

(realUnique : BinNums.N)
(varType : Type_)
(idScope : IdScope)
(id_details : IdDetails)
(id_info : IdInfo) : Var

Figure 7.5. The representation of variables in GHC, and its conversion
into Coq.

Unfortunately, the name is a lie: it is an explicitly-documented requirement that two
different variables can have the same unique. Additionally, the name realUnique is
used because the Name field also contains the same unique – it is stored in both places
for efficiency. This sort of duplication also shows up when determining if this variable
is local or global; that information is stored both in the idScope and in the unique
itself. Thus, to ensure that our variables are well-formed, we need more than just
“every variable is bound” – first, the variables must satisfy these rules. We represent
this with the Coq proposition GoodVar : Var -> Prop:

Definition GoodVar (v : Var) : Prop :=
isLocalVar v = isLocalScope v /\
varUnique v = nameUnique (varName v).

126

While at the end of the compilation pipeline, this may change (for instance, the last
Core-to-Core pass makes all variable scopes global), this invariant holds of all variables
that we look at.

Once we know this, we can talk about what it means for a variable to be well-
scoped. Well-scoped variables are those GoodVars that lie within the currently in-scope
set of variables. However, there are again wrinkles around uniques. In particular,
GHC has a type VarSet of sets of variables, and this type is indexed by the unique.
Again, however, this is not truly unique, so we need to check that the variable we get
out is the right variable with the same unique. One might think an equality check
would work, but alas no: the id_info field of the record may be updated during
an optimization pass to store information, but this does not change which variable
is present. We thus define a relation almostEqual : Var -> Var -> Prop which
asserts that two Vars are equal in every other field, and can then say what it means
to be a WellScopedVar:

Definition WellScopedVar (v : Var) (in_scope : VarSet) : Prop :=
if isLocalVar v then
match lookupVarSet in_scope v with
| None => False
| Some v' => almostEqual v v' /\ GoodVar v
end

7.8.2. Join points. Join points were a recent addition to GHC (Maurer, Downen,
Ariola, and Peyton Jones, 2017), in part by Joachim Breitner, one of my collaborators.
They can be viewed as a form of enhanced tail calls: a join point is a special kind of
function that can only be called in tail position, and must be fully applied. This way,
operationally, a call to a join point is simply a jump instruction, rather than a full
function call.

As we saw in Figure 7.2, there is no distinct syntactic category for join points
– instead, join points are simply distinguished variables. As such, they need to be
used appropriately; GHC requires the following invariants hold of join points, as
documented in a comment in the module CoreSyn:

1. All occurrences must be tail calls. Each of these tail calls must pass the
same number of arguments, counting both types and values; we call this
the “join arity” (to distinguish from regular arity, which only counts
values).

2. For join arity n, the right-hand side must begin with at least n lambdas.
No ticks, no casts, just lambdas! C.f. CoreUtils.joinRhsArity.

2a. Moreover, this same constraint applies to any unfolding of the binder.
Reason: if we want to push a continuation into the RHS we must push
it into the unfolding as well.

3. If the binding is recursive, then all other bindings in the recursive group
must also be join points.

4. The binding’s type must not be polymorphic in its return type (as
defined in Note [The polymorphism rule of join points]).

—GHC, the Note [Invariants on join points]
in the module CoreSyn, lines 592–607

127

Invariant 1 tells us how join points must be used, and specifies that this is the
only way they can be used – they cannot even be bound to other variables, much less
passed to higher-order functions. Invariant 2 tells us that the join point must be a
literal function – no point-free applications, no profiling information (Tick), no casts.
This builds on the concept of “join arity” from invariant 1: a join point j_f may
have type A -> B -> C -> D, but join arity 2. In this case, all calls must be of the
form j_f a b, and the definition can be j_f = \a -> \b -> g a b – note the two
lambdas, followed by g a b :: C -> D. Invariant 3 tells us that join points may not
be mutually recursive with normal functions – we must keep the two worlds separate
for efficiency.

We cannot, however, validate invariants 2a or 4. Invariant 2a discusses “unfoldings”
– metadata about identifiers used for optimization, so that values can be replaced by
their definitions. We elide this sort of metadata to break some infinite self-reference in
the definition of Core, so we cannot prove anything about it. Invariant 4 deals with
type information, which we similarly elide.

7.8.3. The theorems. Our final main proofs were the following two theorems:
Lemma WellScoped_substExpr : forall e s vs subst,

WellScoped_Subst subst vs ->
WellScoped e vs ->
WellScoped (substExpr s subst e)

(getSubstInScopeVars subst).

Theorem exitifyProgram_WellScoped_JPV:
forall pgm,
WellScopedProgram pgm ->
isJoinPointsValidProgram pgm ->
WellScopedProgram (exitifyProgram pgm) /\
isJoinPointsValidProgram (exitifyProgram pgm).

The former, wellscoped_substExpr, states that substitution on terms, substExpr,
preserves well-scopedness of variables. The latter, exitifyProgram_WellScoped_JPV,
states that the exitify optimization pass preserves the conjunction of well-scopedness
and the join point invariants.

The substitution result is broadly clear, although the particular formulation of the
theorem is tricky. In particular, substitutions in GHC maintain a set of variables that
will be in scope – all the variables that will be present once the substitution has been
applied. (We defined the function getSubstInScopeVars to perform the necessary
composition of projections to access this set.) In other words, this set is for the range
of the substitution, not the domain.

Exitification is a more full-fledged optimization pass, designed, essentially, to find
opportunities for inlining optimizations by identifying the base cases of recursive
functions (the exit path). Inlining is tricky because it can be both an optimization
and a pessimization: if we inline the definition of a variable into a function, and the
function is called only once, then this is a win. If the function is called many times,

128

this is only a win if computing the value of the variable is fast enough, which the
compiler cannot determine. Thus, in general, GHC usually avoids doing this inlining.

However, join points are always tail calls, and so, in the simple case, inlining into
one is always safe – once it’s called, there are no more chances to call it! Except for in
one case: if the join point is recursive. Then what? The answer is that in that case,
the base case of the recursion is still only called once – this is what it means to be the
base case. Once this case is found, it can be abstracted into a single join point, and
then inlining into that join point can be automatically done (by a later optimization
pass).

7.9. Gradations of being live

As we’ve applied these new edits and techniques to the large problem of verifying
GHC, we’ve had cause to reconsider our approach. The theme of the past three
chapters (Chapter 5, Chapter 6, and this current chapter) has been broadening the
scope of this project in two ways: first, broadening the scope of what hs-to-coq can
verify; but second and more interestingly, broadening our perspective on what a good
translation looks like. When we started working with hs-to-coq, our goal was to
produce translated code that was as close to an exact copy of the Haskell code as
possible – part of DeepSpec’s notion of being live (Appel et al., 2017). But as the size
of the goals we set ourselves broadened, we realized that this was too restrictive. The
key insight, which was due to collaborative effort by the whole hs-to-coq team, was
that we were still learning something valuable even while adjusting the semantics of
the translated code. Back in Chapter 5, we were focused on being “exactly live” in
this way. In Chapter 6, when working on containers, we loosened our requirements
to require identical semantics at the top level, but were more flexible with function
internals. What we have seen in this chapter, with verifying parts of GHC, is the
natural evolution: relaxing the semantics to focus on the details we care about.

One way to see why we needed to take this step is to look at the scale of GHC.
GHC 8.4.3 contains 182 174 (nonblank noncomment) lines of Haskell code29 and 464
modules, a full order of magnitude larger than our previous largest verification target,
the containers library. What’s more, it was far more entangled, with a complex
dependency graph and mutual recursion between modules; we saw the mutually
recursive portion of this graph in Figure 7.3, but this leaves out everything else. We
translate 99 modules comprising 29 703 lines of Haskell, or roughly 16 % of GHC; this
generates 22 715 lines of Coq code. (Here and going forward, all line counts refer only
to nonblank, noncomment lines of code.)

On the other hand, containers, which was no small potatoes, was nevertheless
much more manageable, both numerically and conceptually. Numerically speaking,
the 7 modules we translated clocked in at 6 596 lines of Haskell, of which we skipped very
little; this is an order of magnitude smaller than our translation of GHC. Conceptually
speaking, the dependency graph of containers is significantly simpler than that of
GHC; instead of a single compiler, the library defines seven different data structures,
all of which are relatively orthogonal to each other. This means that, while the full

29This and all other line counts were computed with Al Danial’s cloc tool, available at https:
//github.com/AlDanial/cloc.

129

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

scope of containers is an order of magnitude larger than what we translated – it
has an additional 41 modules and 10 485 lines of Haskell, for a total of 48 modules
and 17 081 lines of Haskell30 – we did not need to think about the modules we did not
translate beyond skipping four utility modules. When translating GHC, on the other
hand, figuring out which modules to skip (and which modules to axiomatize) was a
challenge in and of itself. This added up to make GHC a much more complicated code
base to deal with than containers was: not only did we have an order of magnitude
more code to look at than when translating GHC than when translating containers,
and not only did we then translate an order of magnitude more code, figuring out
which modules contained the code we needed to translate in the first place was also a
significantly more difficult process.

As this comparison helps demonstrate, without adopting this more flexible ap-
proach, we would never have been able to verify the portions of GHC that we did. GHC
was simply too large, too partial, too Haskell to otherwise be compatible with Coq
verification. And our experience conducting this verification leaves us confident that
the results are meaningful. In almost all verification settings, after all, we appreciate
results that verify approximations of the running code: verifying models, verifying
trusted kernels, using SMT solvers for portions of code, and similar such things. With
Coq, we do not expect this gap, and tend to expect total coverage and correctness.
But there is nothing intrinsic about Coq that requires this, assuming that we can get
our partial model in the first place. And it is exactly this which hs-to-coq allows:
producing a model in Coq of Haskell code, and allowing the user to configure the
precision of that model by using edits.

While this approach is valuable, it – like everything else – has tradeoffs. The major
downsides to this approach is that we lose the comprehensive guarantees that being
fully live give you, and weaken the “deepness” of our specification. But the benefits
are more than worth it. We can scale our verification effort based on what our target
is. We can verify larger codebases by slicing out the portion we care about. We can
evolve our verification over time, starting by ignoring as much code as we need to and
then adding more verification in over time. We can verify either kernels that need to
be trusted, or we can assume that a trusted kernel is correct and verify what lies on
top of it. In short, we get flexibility, both between projects and within a project, and
we still get enough guarantees for the result to be worth it.

To sum up, live verification – by which we here mean verifying the exact code that’s
running – is a valuable goal, but fundamentally impossible for some codebases. But
writing down the differences and aiming for “almost entirely live” remains valuable!
And freeing ourselves from that exactness, while still retaining “as live as we can” as
something to think about, opens up Coq for use as a verification tool in particular
ways that had never available before.

30Because we used testing code as part of our translation, these numbers include the tests as
well as the regular modules. Breaking down our numbers along these lines: of the 7 modules we
translated, 5 were regular and 2 were from the tests, for 6 214 and 382 lines of Haskell, respectively;
of the remaining 41 modules, 30 were regular and 11 were from the tests, for 6 875 and 3 610 lines of
Haskell, respectively; and in total, of all 48 modules, 35 were regular and 13 were from the tests,
for 13 089 and 3 992 lines of Haskell, respectively.

130

CHAPTER 8

A Comprehensive Exposition of the Edit Language

In the past three chapters, we have seen how hs-to-coq can be used to verify
Haskell code; along the way, we have seen the wide array of features of hs-to-coq’s
edit language, and how that language was built up over time. It is now time, in this
chapter, to provide a detailed reference for the whole edit language. After covering the
detailed syntax of edits (Section 8.1), I present an explanation of each of the 34 distinct
edits that hs-to-coq supports.31 Each of these examples contains the following pieces:

(1) The syntax of the edit.
(2) A written explanation of its behavior.
(3) A concrete example of how the edit behaves when applied to a piece of Haskell

code, showing the Haskell and edit file inputs and the translated Coq output.
We present these edits according to the same categories that were outlined in

Chapter 4: eight categories of edits divided by their purpose, as well as the “meta-edit”
in. As a refresher, these are the categories of edit purposes that we saw in Section 4.1:

• Skipping Haskell code (Section 8.2);
• Axiomatizing Haskell code (Section 8.3);
• Adding Coq code (Section 8.4);
• Changing the structure of the Haskell code (Section 8.5);
• Rewriting expressions (Section 8.6);
• Providing extra information (Section 8.7);
• Proving termination (Section 8.8); and
• Meta-edits (Section 8.9).

8.1. The syntax of edits

Each individual edit begins with a sequence of keywords that say which edit it
is; for example, above, we saw skip module, skip class, rename, and add. These
demonstrate the following points:

• Edit names can be multiple words (e.g., skip module);
• Edit names can share words, even the first word, and be distinct (e.g.,

skip module vs. skip class); and
• Edit names can be followed by further non-name keywords, (e.g., rename type
vs. rename value).

31Some of these explanations are based on documentation I wrote for hs-to-coq, which is
available at https://hs-to-coq.readthedocs.io/en/latest/edits.html; the contents of that
site, however, may have changed since the publication of this dissertation.

131

https://hs-to-coq.readthedocs.io/en/latest/edits.html

We also saw that edits can have more syntax after the edit name; for example, rename
is followed by a Haskell namespace (type or value), a Haskell name, an equals sign
(=), and a Coq name.

Edits are in general composed of ten kinds of lexemes: keywords, identifiers,
operators, numbers, strings, opening delimiters, closing delimiters, Ltac tactics, Coq
proof terminators, and newlines.

Keywords are identifiers or operators that have a special meaning in edit files. They
come in three classes: portions of edit names, such as skip or module; edit keywords,
which are used within edits, such as = or value; and a subset of Coq keywords and
syntax, such as Inductive or :=. There is some overlap between these categories; for
example, : is both an edit keyword and a Coq keyword.

Identifiers, also called Words, are programming-language style identifiers – al-
phanumeric sequences, such as foldr or liftA2. More precisely, as in Haskell or Coq,
these names can contain all alphanumeric characters, underscores, and apostrophes
(primes), although they must start with a letter or an underscore; similar to the GHC
Haskell extension MagicHash, they can also contain #. Furthermore, these identifiers
can be module-qualified, such as Data.Map.Strict.fromList. A qualified name in
this context is as in Haskell: a sequence of unqualified names separated with periods,
all but the last of which must start with an uppercase letter.

Operators are programming-language style infix operators – sequences of general
punctuation characters, such as + or =<<. We also include some less standard strings
in this category: the Haskell tuple operators in parentheses, such as (,) and (,,),
and the special tokens () and [] (containing optional space). Just as identifiers can
be fully qualified, so can operators, such as Data.Set.\\.

Numbers are natural numbers represented as strings of decimal digits, such as 42
or 000.

Strings are arbitrary sequences of non-quote characters enclosed in double quotes,
such as "Hello, world!". There are no escape sequences; "no \n" is a five-character
string that begins and ends with an n.

Opening delimiters are characters such as (and {. They are paired with closing
delimiters

Closing delimiters are characters such as } and). They are paired with opening
delimiters.

Ltac tactics are arbitrary sequences of text – while one edit attempts to parse a
very limited subset of Ltac, we do not attempt to parse its full generality as used in
proof bodies. These sequences are stopped by one of the Coq proof terminators.

Coq proof terminators are the three ways you can end proofs in Coq: Qed, Defined,
or Admitted. (The period comes from the surrounding context.) These strings
cannot occur inside Ltac tactics, but are not treated specially except for their use in
terminating Ltac.

Newlines are just that, or more properly any sequence of vertical whitespace. They
generally terminate edits, although some edits take arbitrary Coq as a parameter, and
the Coq code is permitted to extend through line breaks.

132

Thus, for example, I represent the syntax of the skip module edit seen above as
skip module Identifier, where the leading uppercase letter and italics to indicate
a metavariable.

As expected for a programming language, we of course extend the grammar to
include more complex structure, but we do not present the whole thing here. We do,
however, present some particularly common ones:

• Qualids are any possibly-qualified name; that is, either an identifier or an
operator.
• Patterns are a subset of the Coq pattern language, containing constructor ap-
plication, variables, underscores, numbers, and as-patterns. AtomicPatterns
are those patterns which are either a single identifier number or underscore,
or parenthesized.
• CoqDefinitions are Coq definitions. They are given by one of the following
Coq Vernacular commands: Inductive, CoInductive, Definition, Let,
Fixpoint, CoFixpoint, Instance, Axiom, Theorem, Lemma, Remark, Fact,
Corollary, Proposition, or Example (the latter seven coming with Proofs.)
These definitions, unlike other portions of edits, may contain newlines; they
are terminated with a period. Our grammar of Coq is a very limited subset
of the full grammar, does not understand precedence, and does not include
all of the Coq’s syntactic sugar, so some rewriting of terms may be necessary.

Now that we have seen the syntax of edits, we can turn to documenting each
individual edit in turn.

8.2. Skipping Haskell code

8.2.1. skip.

Edit: skip Qualid

Effect: This edit suppresses the translation of a single value or type. The value
or type being skipped is given by its translated Coq name, so operator names must
be expanded and renamings have already been applied.

This edit cannot skip subcomponents of larger definitions, and nor can it skip type
classes. It can, however, skip type class instances, which are simply value definitions
in Coq. Instance names are deterministic, so to find the name of an instance to skip,
hs-to-coq can be run once without the skip edit to find the name.

Examples.
Input:
Edits
skip Data.Set.some_function

-- Haskell
module Data.Set where

some_function = ...
133

other_function = ...

Output:
(* Coq *)
Definition other_function := ...

Input:
Edits
skip Data.Set.Eq___Set_

-- Haskell
module Data.Set where

data Set a = ...
deriving (Eq)

Output:
(* Coq *)
Inductive Set_ a := ...

(* No `Instance` for `Eq_` *)

8.2.2. skip constructor.

Edit: skip constructor Qualid

Effect: This edit takes the name of a single constructor of a data type, such as
GHC.Base.Just, and completely omits it from the translated code: it is not present
in the translated data type, and any branches of a pattern match that match on it
are eliminated. Just as with skip, it does not remove uses of the constructor as a
function, which must be handled separately. Because of this, however, a successful
skip constructor edit does indicate that the translated code does not depend on
the skipped constructor.

Examples.
Input:
Edits
skip constructor Mod.Impure

-- Haskell
module Mod where

data Reference a = Pure a
| Impure (IO a)

isPure :: Reference a -> Bool
134

isPure (Pure _) = True
isPure (Impure _) = False

impurelyPure :: a -> Reference a
impurelyPure x = Impure (pure x)

Output:
(* Coq *)
Inductive Reference a : Type := | Pure : a -> Reference a.

Arguments Pure {_} _.

(* Converted value declarations: *)

Definition isPure {a} : Reference a -> GHC.Types.Bool :=
fun '(Pure _) => GHC.Types.True.

Definition impurelyPure {a} : a -> Reference a :=
fun x => Impure (GHC.Base.pure x).

8.2.3. skip class.

Edit: skip class Qualid

Effect: This edit takes the name of a type class, such as GHC.Show.Show32, and
omits both the definition and all future instances of it from the translated code.

Examples.
Input:
Edits
skip class GHC.Show.Show

-- Haskell
module GHC.Show where

-- ...

class Show a where
-- ...

-- ...

module Mod where
32This is a translated name.

135

data T = C
instance Show T where show C = "C"

Output:
(* Coq *)

(* GHC/Show.v *)

(* ... *)

(* Mod.v *)

Inductive T : Type := | C : T.

8.2.4. skip method.

Edit: skip method Qualid Word

Effect: This edit takes the name of a type class, such as GHC.Base.Alternative,
and the (unqualified) name of one of its methods, such as some, and both omits that
method from the translated class definition and omits all future implementations of it.
Any default implementation of that method is also omitted, both from the definition
and from instances.

Examples.
Input:
Edits
skip method GHC.Base.Alternative some
skip method GHC.Base.Alternative many

-- Haskell
module GHC.Base where

-- ...

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a

some :: f a -> f [a]
some = ...

many :: f a -> f [a]
many = ...

136

-- ...

module Mod where

data Opt a = No | Yes a

instance Functor Opt where
fmap _ No = No
fmap f (Yes x) = Yes $ f x

instance Applicative Opt where
pure = Yes

No <*> _ = No
_ <*> No = No
Yes f <*> Yes x = Yes $ f x

instance Alt Opt where
empty = No

No <|> o = o
y@(Yes _) <|> _ = y

some = ...

Output:

(* Coq *)

(* GHC/Base.v *)

(* ... *)

(* Mod.v *)

Inductive Opt a : Type := | No : Opt a | Yes : a -> Opt a.

(* ... *)

Local Definition Alternative__Opt_empty : forall {a}, Opt a :=
fun {a} => No.

137

Local Definition Alternative__Opt_op_zlzbzg__
: forall {a}, Opt a -> Opt a -> Opt a :=

fun {a} =>
fun arg_0__ arg_1__ =>

match arg_0__, arg_1__ with
| No, o => o
| (Yes _ as y), _ => y
end.

Program Instance Alternative__Opt : Alternative Opt :=
fun _ k__ =>

k__ {| empty__ :=
fun {a} => Alternative__Opt_empty ;

op_zlzbzg____ :=
fun {a} => Alternative__Opt_op_zlzbzg__ |}.

8.2.5. skip equation. (Originally from the documentation.33)

Edit: skip equation Qualid AtomicPattern+

Effect: skip equation qualified_function pattern... skips the equation
of the function definition whose arguments are the specified patterns. Guards are not
considered, only the patterns themselves.

For example, consider the following (silly) function definition:
redundant :: Maybe Bool -> Maybe Bool -> Bool
redundant (Just True) _ = False
redundant (Just False) _ = True
redundant _ _ = True
redundant _ (Just b) = b

The last case is redundant, so Coq will reject this definition. However, we can add the
following edit:

skip equation ModuleName.redundant _ (Some b)

And the last case will be deleted on the Coq side:
Definition redundant : option bool -> option bool -> bool :=

fun arg_0__ arg_1__ =>
match arg_0__, arg_1__ with
| Some true, _ => false
| Some false, _ => true
| _, _ => true
end.

33Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-
equation-skip-one-equation-of-a-function-definition

138

https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-equation-skip-one-equation-of-a-function-definition
https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-equation-skip-one-equation-of-a-function-definition

Note that you have to use the translated name (Some vs. Just), and most constructor
names will be fully qualified.

Why would you want this? This edit is most useful in tandem with the
skip constructor edit (Section 8.2.2). Suppose we have a function where the
final catch-all case can only match skipped constructors, such as

data T = TranslateMe
| SkipMe

function :: T -> Bool
function TranslateMe = True
function _ = False

Then, on skipping SkipMe, this function’s _ case will be redundant, and Coq would
reject it. We can fix this with

skip equation ModuleName.function _

to translate just the TranslateMe case.
See also skip case pattern for the equivalent edit for case and lambda-case

expressions.

8.2.6. skip case pattern. (Originally from the documentation.34)

Edit: skip case pattern Pattern

Effect: skip case pattern pat skips any alternative of a case expression (or
a lambda-case expression) which matches against the given pattern. Guards are not
considered, only the pattern itself.

For example, consider the following (silly) function definition:
redundant :: Bool -> Bool
redundant b = not (case b of

True -> False
False -> True
_ -> True)

The last case is redundant, so Coq will reject this definition. However, we can add the
following edit:

in ModuleName.redundant skip case pattern _

And the last case will be deleted on the Coq side (reformatted):
Definition redundant : bool -> bool :=

fun b => negb (match b with
| true => false
| false => true
end).

34Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-case-
pattern-skip-one-alternative-of-a-case-expression

139

https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-case-pattern-skip-one-alternative-of-a-case-expression
https://hs-to-coq.readthedocs.io/en/latest/edits.html#skip-case-pattern-skip-one-alternative-of-a-case-expression

You can use an arbitrary pattern, not simply _; constructor names must be fully
qualified and the names used must be those that appear after renaming.

Why would you want this? This edit is most useful in tandem with the
skip constructor edit (Section 8.2.2); see the discussion in skip equation for
a worked example (with a named function).

This edit is unusual in that you very likely want to use it with the in meta-
edit (Section 8.9.1) to scope its effects to within a specific definition. However, this
isn’t mandatory; if, for some reason, you want to skip every _ in every case, then
skip case pattern _ will do what you want.

See also skip equation for the equivalent edit for named functions.

8.2.7. skip module.

Edit: skip module Word

Effect: This edit takes the name of a Coq module, and refrains from generating
any Require statements for it. If in recursive translation mode, hs-to-coq will also
refrain from translating this module if it otherwise would.

In non-recursive mode, this edit will not generally be useful: hs-to-coq auto-
matically detects all the modules that its names come from, and Requires them
automatically. However, during development, it may be useful to allow translation of a
prefix of a file, prior to any missing modules, and this edit enables that developmental
workflow.

Examples.
Input:
Edits
skip module GHC.Show

-- Haskell
module Mod where

-- Show is from GHC.Show
showTwice :: Show a => a -> String
showTwice x = show x ++ show x

Output:
(* Coq *)

Require GHC.Base.
Import GHC.Base.Notations.

Definition showTwice {a} `{GHC.Show.Show a}
: a -> GHC.Base.String :=

fun x => GHC.Show.show x GHC.Base.++ GHC.Show.show x.

140

8.3. Axiomatizing Haskell code

8.3.1. axiomatize module.

Edit: axiomatize module Word

Effect: This edit takes the name of a Coq module and changes how it is translated.
Instead of translating the types and values as normal, the types and type class defini-
tions are translated and the values are replaced with axioms having the appropriate
type. This is useful for stubbing out a module during development, or for taking an
untranslated (or even untranslatable) module and treating it as part of the trusted
code base. To replace types with axioms as well, use the axiomatize definition
edit (Section 8.3.3).

Examples.
Input:
Edits
axiomatize module Mod

-- Haskell
module Mod where

data Pair a = MkPair a a

diag :: Pair (Pair a) -> Pair a
diag (MkPair (MkPair x _) (MkPair _ y)) = MkPair x y

fix :: (a -> a) -> a
fix f = f (fix f)

Output:
(* Coq *)

(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> MkPair a.

Arguments MkPair {_} _ _.

(* Converted value declarations: *)

Axiom fix_ : forall {a}, (a -> a) -> a.

Axiom diag : forall {a}, Pair (Pair a) -> Pair a.

141

8.3.2. axiomatize original module name. (Originally from the documenta-
tion.35)

Edit: axiomatize original module name Word

Effect: You probably do not need to use this edit; it’s only important when using
rename module to merge multiple modules into one. If you are doing this, however,
and wish you could use axiomatize module on some of the input modules but not
others, then axiomatize original module name is the edit for you.

The behavior of axiomatize original module name is the same as the behavior
of axiomatize module, except for how it picks which module to axiomatize. While
every other edit operates in terms of the Coq name after any renamings from the
edits have been applied, axiomatize original module name checks the original,
pre-rename module, form of the module name. Most of the time, this would be
confusing, and axiomatize module would be preferable.

However, if you have used rename module to merge two (or more) modules into
one, but you only want one of them (or some other strict subset) to be axiomatized,
then axiomatize original module name is the only way to get this behavior.

Examples.
Input:
Edits
axiomatize original module name Part1
rename module Part1 Whole
rename module Part2 Whole

-- Haskell
module Part1 where

data Type1 = Con1

axiom :: Type1
axiom = Con1

-- Haskell
module Part2 where

data Type2 = Con2

definition :: Type2
definition = Con2

35Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-
original-module-name-replace-all-definitions-in-a-module-with-axioms-using-the-
pre-renaming-module-name

142

https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-original-module-name-replace-all-definitions-in-a-module-with-axioms-using-the-pre-renaming-module-name
https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-original-module-name-replace-all-definitions-in-a-module-with-axioms-using-the-pre-renaming-module-name
https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-original-module-name-replace-all-definitions-in-a-module-with-axioms-using-the-pre-renaming-module-name

Output:
(* Coq *)

(* Whole.v *)

(* Converted type declarations: *)

Inductive Type2 : Type := | Con2 : Type2.

Inductive Type1 : Type := | Con1 : Type1.

Instance Default__Type2 : GHC.Err.Default Type2 :=
GHC.Err.Build_Default _ Con2.

Instance Default__Type1 : GHC.Err.Default Type1 :=
GHC.Err.Build_Default _ Con1.

(* Converted value declarations: *)

Axiom axiom : Type1.

Definition definition : Type2 :=
Con2.

8.3.3. axiomatize definition.

Edit: axiomatize definition Qualid

Effect: (Originally from the documentation.36) Replaces a single definition with
an axiom. This takes the name of a value-level definition and, when translat-
ing it, translates only the type and generates an axiom with that type. See also
axiomatize module (Section 8.3.1), and also redefine Axiom (Section 8.4.3) for
type-level axiomatization.

Examples.
Input:
Edits
axiomatize definition Mod.fix_

-- Haskell
module Mod where

36Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-
definition-replace-a-value-definition-with-an-axiom

143

https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-definition-replace-a-value-definition-with-an-axiom
https://hs-to-coq.readthedocs.io/en/latest/edits.html#axiomatize-definition-replace-a-value-definition-with-an-axiom

data Pair a = MkPair a a

diag :: Pair (Pair a) -> Pair a
diag (MkPair (MkPair x _) (MkPair _ y)) = MkPair x y

fix :: (a -> a) -> a
fix f = f (fix f)

Output:

(* Coq *)

(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> MkPair a.

Arguments MkPair {_} _ _.

(* Converted value declarations: *)

Axiom fix_ : forall {a}, (a -> a) -> a.

Definition diag {a} : Pair (Pair a) -> Pair a :=
fun '(MkPair (MkPair x _) (MkPair _ y)) => MkPair x y.

8.3.4. unaxiomatize definition.

Edit: unaxiomatize definition Qualid

Effect: (Originally from the documentation.37) Translates a single definition,
axiomatize module (Section 8.3.1) notwithstanding.

If the module containing the given value-level definition is being axiomatized, then
this definition will be translated in the usual way.

If a definition is both unaxiomatized and skipped, then it will simply be skipped.

Examples.
Input:

Edits
axiomatize module Mod
unaxiomatize definition Mod.diag

37Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#unaxiomatize-
definition-override-whole-module-axiomatization-on-a-case-by-case-basis

144

https://hs-to-coq.readthedocs.io/en/latest/edits.html#unaxiomatize-definition-override-whole-module-axiomatization-on-a-case-by-case-basis
https://hs-to-coq.readthedocs.io/en/latest/edits.html#unaxiomatize-definition-override-whole-module-axiomatization-on-a-case-by-case-basis

-- Haskell
module Mod where

data Pair a = MkPair a a

diag :: Pair (Pair a) -> Pair a
diag (MkPair (MkPair x _) (MkPair _ y)) = MkPair x y

fix :: (a -> a) -> a
fix f = f (fix f)

Output:

(* Coq *)

(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> MkPair a.

Arguments MkPair {_} _ _.

(* Converted value declarations: *)

Axiom fix_ : forall {a}, (a -> a) -> a.

Definition diag {a} : Pair (Pair a) -> Pair a :=
fun '(MkPair (MkPair x _) (MkPair _ y)) => MkPair x y.

8.4. Adding Coq code

8.4.1. add.

Edit: add Word CoqDefinition

Effect: Adds a Coq definition to the value section translation of a module. The
module name is given as the first parameter to add, and the definition follows. The
Coq parser is limited, but supports newlines and binary operators; the definition must
end with a period. All names used in the definition must be fully qualified, including
the name being defined; hs-to-coq will strip that module qualifier and make the term
syntactically valid.

Theorem-like environments (Theorem, Lemma, Remark, Fact, Corollary,
Proposition, and Example) are permitted, although Ltac is not parsed. Instead,
each of them must be followed immediately by Proof., some unparsed text (Ltac),
and then any of Qed, Defined, or Admitted, followed by a period.

The inserted definition is placed into the module in dependency order.
145

This is one of three edits that can span multiple lines, as line breaks are permitted
anywhere inside the Coq definition (but not before it); the other such edits, which also
contain Coq definitions, are add type (Section 8.4.2) and redefine (Section 8.4.3).

Examples.
Input:
Edits
add Mod Definition Mod.diag {a}

: Mod.Pair (Mod.Pair a) -> Mod.Pair a :=
fun p => match p with

| (Mod.MkPair (Mod.MkPair x _) (Mod.MkPair _ y)) =>
Mod.MkPair x y

end.

add Mod Theorem Mod.double_00 : Mod.Pair nat.
Proof.

exact (MkPair 0 0).
Qed.

-- Haskell
module Mod where

data Pair a = MkPair a a

Output:
(* Coq *)

(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> Pair a.

Arguments MkPair {_} _ _.

(* Converted value declarations: *)

Theorem double_00 : Pair nat.
Proof.

exact (MkPair 0 0).
Qed.

Definition diag {a} : Pair (Pair a) -> Pair a :=
fun '(MkPair (MkPair x _) (MkPair _ y)) => MkPair x y.

8.4.2. add type.
146

Edit: add type Word CoqDefinition

Effect: Adds a Coq definition to the types-and-classes section of the translation of
a module. This works just like add (Section 8.4.1), but places the definition amongst
the types. The reason that hs-to-coq separates the types and classes is that, thanks
to type inference, we cannot detect which types are used in a Haskell term from
strictly syntactic examination. Consequently, we do separate dependency analysis
among (1) types and classes and (2) values. The choice of add vs. add type is about
which universe you would like your inserted term to live in.

This is one of three edits that can span multiple lines, as line breaks are permitted
anywhere inside the Coq definition (but not before it); the other such edits, which
also contain Coq definitions, are add (Section 8.4.1) and redefine (Section 8.4.3).

Examples.
Input:

Edits
add type Mod Inductive Mod.Triple a :=

| Mod.MkTriple : a -> (a -> (a -> Mod.Triple a)).

add Mod Definition Mod.diag3 {a} (t : Mod.Triple (Mod.Triple a))
: Mod.Triple a :=

match t with
| Mod.MkTriple (Mod.MkTriple x _ _)

(Mod.MkTriple _ y _)
(Mod.MkTriple _ _ z) =>

Mod.MkTriple x y z
end.

-- Haskell
module Mod where

data Pair a = MkPair a a

diag :: Pair (Pair a) -> Pair a
diag (MkPair (MkPair x _) (MkPair _ y)) = MkPair x y

(* Coq *)
(* midamble.v *)

Arguments MkTriple {_} _ _ _.

147

Output:

(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> Pair a.

Arguments MkPair {_} _ _.

Inductive Triple a : Type := | MkTriple : a -> a -> a -> Triple a.

(* Converted value declarations: *)

Definition diag {a} : Pair (Pair a) -> Pair a :=
fun '(MkPair (MkPair x _) (MkPair _ y)) => MkPair x y.

Definition diag3 {a} (t : Triple (Triple a)) : Triple a :=
let 'MkTriple (MkTriple x _ _) (MkTriple _ y _) (MkTriple _ _ z)

:= t in
MkTriple x y z.

8.4.3. redefine.

Edit: redefine CoqDefinition

Effect: Replaces one Coq definition with another. The identifier that is the name
of the given definition, which must be fully-qualified and include a module name, is
monitored for and, if it would be translated, the given redefinition is used instead.

This can also be viewed as a combination of the skip (Section 8.2.1) and
add/add type (Section 8.4.1/Section 8.4.2) edits.

This edit can be used, among other things, to replace type definitions with ax-
ioms; for example, consider Haskell’s IORef type, which represents real mutable
variables. Coq doesn’t support this feature, so IORef could be translated by redefin-
ing it into an axiom with redefine Axiom Data.IORef.IORef : Type -> Type..
However, for redefining term-level definitions, please prefer axiomatize definition
(Section 8.3.3), which preserves the type of the term. (We cannot do this automatically
for type-level terms because GHC’s kind inference is both more aggressive and more
commonly used.)

This is one of three edits that can span multiple lines, as line breaks are permitted
anywhere inside the Coq definition (but not before it); the other such edits, which
also contain Coq definitions, are add (Section 8.4.1) and add type (Section 8.4.2).

Examples.
148

Input:
Edits
redefine Definition Mod.display {a} (_ : Pair a)

: GHC.Base.String :=
GHC.Base.hs_string__ "".
We don't deal with the `Show` class

-- Haskell
module Mod where

data Pair a = MkPair a a

display :: Show a => Pair a -> String
display (MkPair x y) = show x ++ " & " ++ show y

diag :: Pair (Pair a) -> Pair a
diag (MkPair (MkPair x _) (MkPair _ y)) = MkPair x y

Output:
(* Converted type declarations: *)

Inductive Pair a : Type := | MkPair : a -> a -> Pair a.

Arguments MkPair {_} _ _.

(* Converted value declarations: *)

Definition display {a} (_ : Pair a) : GHC.Base.String :=
GHC.Base.hs_string__ "".

Definition diag {a} : Pair (Pair a) -> Pair a :=
fun '(MkPair (MkPair x _) (MkPair _ y)) => MkPair x y.

8.4.4. import module.

Edit: import module Word

Effect: If the given module is required by the translated Coq source code, it will
be imported directly, and references to the names it contains will be unqualified. This
edit is only necessary for making the Coq output easier to read, but it can do an
effective job of that.

When using this edit, it is important to remember that Coq does not behave
like Haskell: it has no notion of import or export lists, and its notion of module
re-exporting is completely different (in particular, re-exporting a name in Haskell
introduces a new qualified name, whereas Coq’s Export command does not). You

149

may have to pick a module name further up the hierarchy to import (for example,
import module Prelude won’t do anything, as all the definitions are in other modules
re-exported by Prelude), and you will get all names that would otherwise be hidden.

Examples.
Input:

Edits
No `import module`

-- Haskell
module Mod where

import Control.Monad

flatten3 :: [[[a]]] -> [a]
flatten3 = join . join

Output:

(* Converted imports: *)

Require GHC.Base.
Import GHC.Base.Notations.

(* No type declarations to convert. *)

(* Converted value declarations: *)

Definition flatten3 {a} : list (list (list a)) -> list a :=
GHC.Base.join GHC.Base.◦ GHC.Base.join.

Input:

Edits
import module GHC.Base

-- Haskell
module Mod where

import Control.Monad

flatten3 :: [[[a]]] -> [a]
flatten3 = join . join

150

Output:
(* Converted imports: *)

Require Import GHC.Base.

(* No type declarations to convert. *)

(* Converted value declarations: *)

Definition flatten3 {a} : list (list (list a)) -> list a :=
join ◦ join.

8.4.5. type synonym.

Edit: type synonym Word :-> Word

Effect: Specify the result type of the given type synonym. Sometimes, Haskell
code specifies type synonyms where GHC’s kind inference is more cooperative than
Coq’s. This edit allows you to tell hs-to-coq the result kind of a type synonym,
which it may otherwise be unable to figure out. This does not allow the user to specify
the kinds of the arguments.

Examples.
Input:
Edits
type synonym Three :-> Type

-- Haskell
module Mod where

type Two a = (a,a)
type Three a = (a,a,a)

Output:
(* Coq *)
Definition Two a :=

(a * a)%type%type.

Definition Three a : Type :=
(a * a * a)%type%type.

8.4.6. add scope.

Edit: add scope Scope for ScopePlace Qualid
151

Effect: Adds a Coq scope annotation to the given term. The scope place, which
can be constructor or value, tells hs-to-coq the sort of term to annotate. The
scope itself can be any word, including the usually-reserved word type as this is a
common scope in Coq and only reserved for Haskell reasons.

Examples.
Input:
Edits
add scope ctor_scope for constructor Mod.C
add scope val_scope for value Mod.f

-- Haskell
module Mod where

data T a b = C a b
| D b a

f :: T a b -> T b a
f (C a b) = C b a
f (D b a) = D a b

Output:
(* Converted type declarations: *)

Inductive T a b : Type
:= | C : (a -> b -> T a b)%ctor_scope
| D : b -> a -> T a b.

Arguments C {_} {_} _ _.

Arguments D {_} {_} _ _.

(* Converted value declarations: *)

Definition f {a} {b} : T a b -> T b a :=
(fun arg_0__ =>

match arg_0__ with
| C a b => C b a
| D b a => D a b
end)%val_scope.

8.5. Changing the structure of the Haskell code

8.5.1. collapse let.
152

Edit: collapse let Qualid

Effect: (Originally from the documentation.38)If a converted definition is of the
form

Definition outer := let inner := definition in inner.

then convert it to simply

Definition outer := definition.

Both outer and inner can have arguments; inner can have a type annotation, but
it’s ignored.

Additionally, if definition is a non-mutual fixpoint fix f args := body, the
recursive calls to f in body are rewritten to direct calls to outer. This is particularly
important for mutual recursion: if inner is mutually recursive with another top-level
function, then if outer has no arguments, it would otherwise appear not to be a
function and would thus cause conversion to fail, as Coq doesn’t support recursion
through non-functions.

Examples.
Input:

Edits
collapse let Mod.map

-- Haskell
module Mod where

-- Two identical copies of `map`

map_plain :: (a -> b) -> [a] -> [b]
map_plain = go where

go f [] = []
go f (x:xs) = f x : go f xs

map_collapse :: (a -> b) -> [a] -> [b]
map_collapse = go where

go f [] = []
go f (x:xs) = f x : go f xs

38Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#collapse-let-
if-a-definition-is-just-a-let-expression-inline-it

153

https://hs-to-coq.readthedocs.io/en/latest/edits.html#collapse-let-if-a-definition-is-just-a-let-expression-inline-it
https://hs-to-coq.readthedocs.io/en/latest/edits.html#collapse-let-if-a-definition-is-just-a-let-expression-inline-it

Output:
(* Coq *)

Definition map_plain {a} {b} : (a -> b) -> list a -> list b :=
let fix go arg_0__ arg_1__

:= match arg_0__, arg_1__ with
| f, nil => nil
| f, cons x xs => cons (f x) (go f xs)
end in

go.

Definition map_collapse {a} {b} : (a -> b) -> list a -> list b :=
fix map_collapse (arg_0__ : (a -> b)) (arg_1__ : list a) : list b

:= match arg_0__, arg_1__ with
| f, nil => nil
| f, cons x xs => cons (f x) (map_collapse f xs)
end.

8.5.2. simple class.

Edit: simple class Qualid

Effect: Translates a Haskell type class directly into a Coq type class.
By default, hs-to-coq’s translation of type classes is (surprisingly) a CPSed

encoding, as we saw back in Section 3.7. To reiterate the example from that section,
the simple Haskell class and instance

class C a where
m :: a
f :: a -> Bool

instance C () where
m = ()
f _ = True

is translated via a continuation-passing encoding into the following Coq code:
(* class C a where ... *)

Record C__Dict a := C__Dict_Build {
f__ : a -> bool ;
m__ : a }.

Definition C a :=
forall r__, (C__Dict a -> r__) -> r__.

Existing Class C.
154

Definition f `{g__0__ : C a} : a -> bool :=
g__0__ _ (f__ a).

Definition m `{g__0__ : C a} : a :=
g__0__ _ (m__ a).

(* instance C Bool where ... *)

Local Definition C__unit_f : unit -> bool :=
fun arg_0__ => true.

Local Definition C__unit_m : unit :=
tt.

Program Instance C__unit : C unit :=
fun _ k__ => k__ {| f__ := C__unit_f ; m__ := C__unit_m |}.

The simple record form of the type class is translated as C__Dict, and its methods
have trailing double underscores; The type class C itself is the universally-quantified
CPSed wrapper around C__Dict.

In Section 3.7, I mentioned that this encoding allows Coq to evaluate terms more
easily, but gets in the way of encoding more complex Haskell type classes that contain
associated types. Here’s why that is. There is no fundamental obstacle to translating
associated type synonyms into Coq; associated type synonyms make type classes
records of types and values instead of just records of values, which is not a distinction
Coq makes. However, this CPSed encoding breaks down. Consider the following
Haskell type class:

class D a where
type T a
g :: T a -> a

Translating this to the CPSed form would be a problem. First, we’d get
Inductive D__Dict a := D__Dict_Build {

T__ : Type ;
g__ : T__ -> a }.

Definition D a :=
forall r__, (D__Dict a -> r__) -> r__.

Existing Class D.

So far, so good. But now we have to encode T and g, and we run into problems. T
goes smoothly:

Definition T a `{g__0__ : D a} : Type :=
155

g__0__ _ (T__ a).

But defining g won’t work. We define it by “unwrapping” the CPS-ed D at the type of
the type class method, which has above been inferred (it’s the _ in every g__0__). But
here, the type depends on the D__Dict a argument, since it contains the definition of
T and thereby determines the value of T a! So this encoding scheme won’t work.

Thus, enter the simple class edit: it replaces this complex desugaring with a
direct one in terms of Coq type classes. Because the desugaring affects only definitions
of type classes and the auto-generated instance machinery, it does not change use-sites
and so can be switched around without clients having to care.

Examples.
Input:
Edits
simple class Mod.C
simple class Mod.D

-- Haskell
{-# LANGUAGE TypeFamilies #-}

module Mod where

class C a where
m :: a
f :: a -> Bool

instance C () where
m = ()
f _ = True

class D a where
type T a
g :: T a -> a

instance D () where
type T () = Bool
g _ = ()

Output:
(* Coq *)

(* Converted type declarations: *)

Class D a := {
156

T : Type ;
g : T -> a }.

Arguments T _ {_}.

Class C a := {
f : a -> bool ;
m : a }.

(* Converted value declarations: *)

Local Definition C__unit_f : unit -> bool :=
fun arg_0__ => true.

Local Definition C__unit_m : unit :=
tt.

Program Instance C__unit : C unit :=
{ f := C__unit_f ; m := C__unit_m }.

Local Definition D__unit_T : Type :=
bool.

Local Definition D__unit_g : D__unit_T -> unit :=
fun arg_0__ => tt.

Program Instance D__unit : D unit :=
{ T := D__unit_T ; g := D__unit_g }.

8.5.3. inline mutual.

Edit: inline mutual Qualid

Effect: (Originally from the documentation.39 The example was initially presented
on Stack Overflow.40) The specified definition must be part of a mutually recursive set
of definitions. Instead of being defined as another mutual fixpoint, it will be inlined
into each of the other mutual fixpoints that needs it with a let-binding; additionally,
a top-level Coq definition is generated for each let-bound function that simply calls
into the predefined recursive functions.

This facility is useful when translating groups of mutually recursive functions that
contain “preprocessing” or “postprocessing” functions, where the group is otherwise

39Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#inline-
mutual-move-mutually-recursive-functions-into-let-bindings

40https://stackoverflow.com/q/52599324/237428

157

https://hs-to-coq.readthedocs.io/en/latest/edits.html#inline-mutual-move-mutually-recursive-functions-into-let-bindings
https://hs-to-coq.readthedocs.io/en/latest/edits.html#inline-mutual-move-mutually-recursive-functions-into-let-bindings
https://stackoverflow.com/q/52599324/237428

structurally recursive. These functions are not “truly” mutual recursive, as they just
hand along values of the type being recursed, and so if Coq could only see through
them, everything would work fine. And indeed, as let-bindings, Coq can see through
them.

As an example, consider the following pair of mutually recursive data types, which
represent a Forest of nonempty Trees. Each Branch of a Tree holds an extra boolean
flag, which we can extract with isOK. In Haskell:

data Forest a = Empty
| WithTree (Tree a) (Forest a)

data Tree a = Branch Bool a (Forest a)

isOK :: Tree a -> Bool
isOK (Branch ok _ _) = ok

And in cleaned-up Coq:
Inductive Forest a : Type

:= Empty : Forest a
| WithTree : Tree a -> Forest a -> Forest a

with Tree a : Type
:= Branch : bool -> a -> Forest a -> Tree a.

Arguments Empty {_}.
Arguments WithTree {_} _ _.
Arguments Branch {_} _ _ _.

Definition isOK {a} : Tree a -> bool :=
fun '(Branch ok _ _) => ok.

Now we can define a pair of mapping functions that only apply a function inside
subtrees where the boolean flag is true. The Haskell code is simple:

mapForest :: (a -> a) -> Forest a -> Forest a
mapForest f Empty = Empty
mapForest f (WithTree t ts) = WithTree (mapTree f t)

(mapForest f ts)

mapTree :: (a -> a) -> Tree a -> Tree a
mapTree f t | isOK t = mapOKTree f t

| otherwise = t

mapOKTree :: (a -> a) -> Tree a -> Tree a
mapOKTree f (Branch ok x ts) = Branch ok (f x) (mapForest f ts)

However, the (cleaned-up) Coq translation fails:
158

Fail Fixpoint mapForest
{a} (f : a -> a) (ts0 : Forest a) {struct ts0} : Forest a :=

match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

with mapTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
if isOK t
then mapOKTree f t
else t

with mapOKTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

The issue is that mapTree calls mapOKTree on the same term, and not a subterm.
But this just a preprocessing/postprocessing split – there’s nothing actually recursive
going on.

But with

inline mutual mapOKTree

we instead get working Coq code (again, cleaned up):

Fixpoint mapForest {a} (f : a -> a) (ts0 : Forest a) {struct ts0}
: Forest a :=

match ts0 with
| Empty => Empty
| WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

with mapTree {a} (f : a -> a) (t : Tree a) {struct t} : Tree a :=
let mapOKTree {a} (f : a -> a) (t : Tree a) : Tree a :=

match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t
then mapOKTree f t
else t.

Definition mapOKTree {a} (f : a -> a) (t : Tree a) : Tree a :=
match t with
| Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

159

This is the idea. However, to be completely fair, we never produce Fixpoint
commands; both in the failing case and in the successful case, we generate fix terms.
In this example, this looks like (reindented)

Definition mapForest {a} : (a -> a) -> Forest a -> Forest a :=
fix mapTree f t :=

let mapOKTree arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t : bool
then mapOKTree f t
else t

with mapForest arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Empty => Empty
| f, WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

for mapForest.

Definition mapOKTree {a} : (a -> a) -> Tree a -> Tree a :=
fun arg_0__ arg_1__ =>

match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end.

Definition mapTree {a} : (a -> a) -> Tree a -> Tree a :=
fix mapTree f t :=

let mapOKTree arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Branch ok x ts => Branch ok (f x) (mapForest f ts)
end in

if isOK t : bool
then mapOKTree f t
else t

with mapForest arg_0__ arg_1__ :=
match arg_0__, arg_1__ with
| f, Empty => Empty
| f, WithTree t ts => WithTree (mapTree f t) (mapForest f ts)
end

for mapTree.

Examples. To see inline mutual in action, see the mapOKTree example above.
160

8.6. Rewriting expressions

8.6.1. rewrite.

Edit: rewrite forall Word*, Term = = Term

Effect: The rewrite edit replaces arbitrary expressions in the translated Coq code.
Everywhere that the the expression before the equal sign is found,41 it is replaced
by the expression on the right. The forall clause brings into scope metavariables;
everywhere a metavariable shows up on the left-hand side, it can match an arbitrary
expression, and that expression is substituted in for the metavariable on the right-hand
side during replacement. Variables that were not brought into scope are matched
literally, and need to be fully module-qualified if necessary.

This edit often wants to be used with the in meta-edit (Section 8.9.1) to scope its
effects to within a specific definition. However, this isn’t mandatory; sometimes, you
are expressing global rules about code structure, and a global rewrite is appropriate.

Examples.
Input:

Edits

Strictness does not affect the translation
rewrite forall a b, GHC.Prim.seq a b = b

Remove an inessential use of laziness
rewrite forall xs, ←↩

GHC.List.zip (GHC.Enum.enumFrom (GHC.Num.fromInteger 0)) xs ←↩
= GHC.List.zip (GHC.Enum.enumFromTo ←↩

(GHC.Num.fromInteger 0) ←↩
(GHC.Num.fromInteger (GHC.List.length xs))) ←↩

xs

-- Haskell
strictAppend :: [a] -> [a] -> [a]
strictAppend xs ys = xs `seq` ys `seq` (xs ++ ys)

evens :: [a] -> [a]
evens xs = map snd . filter (even . fst) $ zip [0..] xs

41Term = refers to a term that does not contain a bare =, as otherwise there would be ambiguity.

161

Output:
(* Coq (reformatted) *)
Definition strictAppend {a} : list a -> list a -> list a :=

fun xs ys => Coq.Init.Datatypes.app xs ys.

Definition evens {a} : list a -> list a :=
fun xs =>

(GHC.Base.map Data.Tuple.snd GHC.Base.◦
GHC.List.filter (GHC.Real.even GHC.Base.◦ Data.Tuple.fst))
(GHC.List.zip (GHC.Enum.enumFromTo

#0 (GHC.Num.fromInteger (GHC.List.length xs)))
xs).

8.6.2. rename.

Edit: rename Namespace Qualid = Qualid

Effect: The rename edit replaces one Haskell name with another. The Namespace
can be type or value, corresponding to Haskell’s two namespaces. Suppose we have
the Haskell file

module Mod where

data X = X

idX :: X -> X
idX X = X

which defines and uses a trivial unit type whose type and constructor have the same
name, X. Then the edit rename type Mod.X = Mod.T changes only the type name,
producing the output

Inductive T : Type := | X : T.

Definition idX : T -> T :=
fun '(X) => X.

On the other hand, the edit rename value Mod.X = Mod.V instead changes the name
of the constructor, producing the output

Inductive X : Type := | V : X.

Definition idX : X -> X :=
fun '(V) => V.

This also demonstrates one reason why rename is important: without either of those ed-
its, the translated definition of the type would be Inductive X : Type := | X : X.,
which is illegal as X is being used in two different ways and Coq only has one namespace.

162

The customary pattern is to rename constructors that need depunning to begin with
Mk_.

The rename edit can also help avoid names that are already in use (reserved names
are avoided automatically by hs-to-coq). Lastly, it can be used to effectively redefine
types to be existing Coq types, by renaming all uses to refer to the Coq standard
library (or similar) and then skipping the original definition; this is how we link things
like Haskell [] and Bool to Coq list and bool.

Examples.
Input:

Edits
rename type GHC.Types.[] = list
rename value GHC.Types.[] = nil
rename value GHC.Types.: = cons
rename value GHC.Base.++ = Coq.Init.Datatypes.app

rename type GHC.Base.Maybe = option
rename value GHC.Base.Just = Some
rename value GHC.Base.Nothing = None

rename value Data.Functor.Identity.Identity = ←↩
Data.Functor.Identity.Mk_Identity

-- Haskell
module Mod where

import Data.Functor.Identity
-- newtype Identity a = Identity { runIdentity :: a }

f :: Identity a -> [Maybe a]
f (Identity x) = [Just x, Nothing]

Output:

(* Coq *)
Definition f {a}

: Data.Functor.Identity.Identity a -> list (option a) :=
fun '(Data.Functor.Identity.Mk_Identity x) =>

cons (Some x) (cons None nil).

8.6.3. rename module.

Edit: rename module Word Word
163

Effect: The rename module edit replaces the name of one Haskell module with
another. This is much like the above rename edit, with three key differences:

(1) It affects modules instead of types and values; thus it affects portions of
names, not whole names.

(2) It affects the output filename, since the Coq module Mod lives in the file
Mod.v.

(3) Two different Haskell modules can be renamed into a single Coq module, which
will cause hs-to-coq to merge the contents of those two Haskell modules
and treat them like a single module during compilation. This is particularly
useful when translating mutually recursive Haskell modules, which are used
in GHC; we combine these into a single mega-module.

Examples.
Input:

Edits
rename module FirstHalf Whole
rename module SecondHalf Whole

rename module HsMod CoqMod

-- Haskell

-- FirstHalf.hs
module FirstHalf where

true :: Bool
true = True

-- SecondHalf.hs
module SecondHalf where

false :: Bool
false = False

-- HsMod.hs
module HsMod where

import FirstHalf
import SecondHalf

booleans :: [Bool]
booleans = [true, false]

164

Output:
(* Coq *)

(* Whole.v *)

Definition true : bool :=
true.

Definition false : bool :=
false.

(* CoqMod.v *)

(* Converted imports: *)

Require Whole.

(* Converted value declarations: *)

Definition booleans : list bool :=
cons Whole.true (cons Whole.false nil).

8.7. Providing extra information

8.7.1. data kinds.

Edit: data kinds Qualid Term , Term

Effect: The data kinds edit allows the hs-to-coq user to provide kind annota-
tions (which are really just type annotations) on data type definitions that the original
Haskell program omitted. For the most part, Haskell programmers don’t write kind
annotations, since GHC can infer the correct kinds; because kinds are usually simple,
Coq can also infer the correct kinds in most cases. But not always. The problem arises
when data types have parameters that are used in slightly unusual ways: higher-order,
or phantom, or polymorphic. In these cases, GHC and Coq will sometimes disagree
about the correct kind for a parameter, or even whether or not one can be inferred.
Enter data kinds, which for a data type with n parameters specifies n + 1 kinds:
one for each of the type variables, and one for the return kind.

Examples.
Input:
Edits
data kinds Mod.Phantom Type, Type
data kinds Mod.HO (Type -> Type), Type, Type

165

-- Haskell
module Mod where

-- Coq would fail to deduce the type of either "a"
data Phantom a = MkPhantom
data HO f a = MkHO (f a)

Output:
(* Coq *)
Inductive Phantom (a : Type) : Type := | MkPhantom : Phantom a.

Inductive HO (f : Type -> Type) (a : Type) : Type :=
| MkHO : (f a) -> HO f a.

8.7.2. class kinds.

Edit: class kinds Qualid Term , Term

Effect: Data type definitions are not the only source of type-level definitions in
Haskell; there are also type classes. The class kinds edit is like data kinds, but
for type classes; it allows the hs-to-coq user to provide kind annotations (which are
still really just type annotations) on class definitions that the original Haskell program
omitted. Again, these are usually omitted and inferred identically by both GHC and
Coq, but not always, particularly in the case of higher-order uses.

Examples.
Input:
Edits
class kinds Mod.Alternative Type -> Type, Type

-- Haskell
module Mod where

-- It's clear to Coq that @f : _ -> Type@, but not what @_@ is
class Alternative f where

empty :: f a
(<|>) :: f a -> f a -> f a

Output:
(* Coq *)
Record Alternative__Dict (f : Type -> Type) :=

Alternative__Dict_Build {
empty__ : forall {a}, f a ;
op_zlzbzg____ : forall {a}, f a -> f a -> f a }.

Definition Alternative (f : Type -> Type) :=
166

forall r__, (Alternative__Dict f -> r__) -> r__.
Existing Class Alternative.

Definition empty `{g__0__ : Alternative f} : forall {a}, f a :=
g__0__ _ (empty__ f).

Definition op_zlzbzg__ `{g__0__ : Alternative f}
: forall {a}, f a -> f a -> f a :=

g__0__ _ (op_zlzbzg____ f).

Notation "'_<|>_'" := (op_zlzbzg__).

Infix "<|>" := (_<|>_) (at level 99).

(* Converted value declarations: *)

Module Notations.
Notation "'_Mod.<|>_'" := (op_zlzbzg__).
Infix "Mod.<|>" := (_<|>_) (at level 99).
End Notations.

8.7.3. delete unused type variables. (Originally from the documentation.42)

Edit: delete unused type variables Qualid

Effect: Don’t translate binders for any type variables that aren’t visibly used in
the specified definition.

An explanation: sometimes, poly-kinded Haskell data types have extra invisible
type parameters. For instance, in Data.Functor.Const, we have the type

newtype Const a b = Const { getConst :: a }

which, since the PolyKinds language extension is enabled at its definition site, is
secretly

newtype Const {k} (a :: Type) (b :: k) = Const { getConst :: a }

Often, such as here, this doesn’t show up in the translated Coq code; we get
Inductive Const a b : Type := Mk_Const (getConst : a) : Const a b.

Unlike in Haskell 2010, b causes an inference failure error instead of being inferred to
have kind Type; we have to use data kinds (Section 8.7.1) to fix that. But that’s
not the case at every use of this data type; sometimes, we still introduce spurious
kind variables in the translation. For example, the derived Eq instance for Const is
translated to

42Available at https://hs-to-coq.readthedocs.io/en/latest/edits.html#delete-
unused-type-variables-remove-unused-type-variables-from-a-declaration

167

https://hs-to-coq.readthedocs.io/en/latest/edits.html#delete-unused-type-variables-remove-unused-type-variables-from-a-declaration
https://hs-to-coq.readthedocs.io/en/latest/edits.html#delete-unused-type-variables-remove-unused-type-variables-from-a-declaration

Program Instance Eq___Const {a} {k} {b} `{GHC.Base.Eq_ a}
: GHC.Base.Eq_ (Const a b : GHC.Prim.TYPE GHC.Types.LiftedRep) :=

fun _ k =>
k {| GHC.Base.op_zeze____ := Eq___Const_op_zeze__ ;

GHC.Base.op_zsze____ := Eq___Const_op_zsze__ |}.

The implicit argument {k} isn’t useful in the Coq code, and causes a type-checking
failure when its type cannot be determined. We can avoid this with

delete unused type variables Data.Functor.Const.Eq___Const

which will detect that k is not referenced in the body of the definition, drop the {k}
binder, and leave the definition with just the {a} and {b} binders it needs:

Program Instance Eq___Const {a} {b} `{GHC.Base.Eq_ a}
: GHC.Base.Eq_ (Const a b : GHC.Prim.TYPE GHC.Types.LiftedRep) :=

fun _ k =>
k {| GHC.Base.op_zeze____ := Eq___Const_op_zeze__ ;

GHC.Base.op_zsze____ := Eq___Const_op_zsze__ |}.

Examples.
Input:
Edits
Adapted from our translation of `base`
rename value Data.Functor.Const.Const = Data.Functor.Const.Mk_Const
data kinds Data.Functor.Const.Const Type, Type, Type
delete unused type variables Data.Functor.Const.Eq___Const

-- Haskell
-- Simplified from `base`
{-# LANGUAGE PolyKinds #-}
module Mod where

newtype Const a b = Const { getConst :: a } deriving Eq

Output:
(* Coq *)

Inductive Const (a : Type) (b : Type) : Type
:= | Mk_Const (getConst : a) : Const a b.

Program Instance Eq___Const {a} {k} {b} `{GHC.Base.Eq_ a}
: GHC.Base.Eq_ (Const a b : GHC.Prim.TYPE GHC.Types.LiftedRep) :=

fun _ k__ =>
k__ {| GHC.Base.op_zeze____ := Eq___Const_op_zeze__ ;

GHC.Base.op_zsze____ := Eq___Const_op_zsze__ |}.
168

8.7.4. order.

Edit: order Qualid+

Effect: Adjusts the order in which definitions are output after translation. For
example, the edit order Mod.f1 Mod.f2 Mod.f3 will ensure that, in mod.v, the
definition of f1 comes before the definition of f2, which itself comes before the
definition of f3. Other definitions may intervene, but this order will be maintained.

By default, hs-to-coq topologically sorts all definitions in a module (or a let
expression, or something similar) before writing them out. While Haskell does not
care about definition order, allowing names within a file (or a alet expression, or
something similar) to find their referent either before or after their use, Coq is not so
lenient, and requires all references to names to occur to syntactically earlier binding
sites.

However, while this works most of the time, a simple syntactically-driven topological
sort is not enough for all cases of interest. Thanks to type classes, names may be
referenced invisibly; a dependency on the Num Int type class instance is not visible in
the source in Haskell or Coq. Thus, the order edit, which allows the programmer to
specify the dependencies that hs-to-coq cannot see. This is particularly useful when
defining type class methods that may depend on other type class instances; these
often feature these invisible name references in a way that hs-to-coq gets wrong.

Examples.
Input:
Edits
Ensures the `C (option a)` type class instance is in scope before
the definition of `m` for the `C (list a)` instance, despite it
not appearing in the source code.
order Mod.C__option Mod.C__list_m
simple class Mod.C # For concision

-- Haskell
module Mod where

import Data.Maybe

class C a where
m :: a

instance C a => C (Maybe a) where
m = Just m

instance C a => C [a] where
m = maybeToList m

169

Output:

(* Coq *)

(* Converted type declarations: *)

Class C a := {
m : a }.

(* Converted value declarations: *)

Local Definition C__option_m {inst_a} `{C inst_a}
: (option inst_a) :=

Some m.

Program Instance C__option {a} `{C a} : C (option a) :=
{ m := C__option_m }.

Local Definition C__list_m {inst_a} `{C inst_a} : list inst_a :=
Data.Maybe.maybeToList m.

Program Instance C__list {a} `{C a} : C (list a) :=
{ m := C__list_m }.

8.7.5. manual notation.

Edit: manual notation Word

Effect: This edit allows the user to specify that a module has Coq Notations
defined in preamble files, allowing them to work smoothly with hs-to-coq’s auto-
matic notation translation. (See Section 3.5 for the details of that translation.) The
idea behind manual notation is that you may need to define some of our faux-
qualified operators – or other such operators you want to expose – by hand, in a
preamble or midamble Coq file. But these then won’t be automatically imported
through the Notation module, and will only be available if the module is actually
imported, not simply required. This is what manual notation allows you to change:
manual notation Some.Mod simply places the line Export ManualNotations. at
the top of the Notation module (and assures that the Notation module exists). This
means that whenever Some.Mod.Notation is manually imported by a downstream
module, anything from the ManualNotation module is made available to that down-
stream module as well. This edit does nothing to generate that module; it is designed
for uses where you’ve already defined such notations and placed them in there, hence
the need for a preamble or midamble. It is strictly for making the code therein more
available to hs-to-coq’s internal tracking.

170

We need to use this edit exactly once, for the equality and comparison type class
operators in GHC.Base.

Examples.
Input:
Edits
manual notation Operators
skip Operators.!

-- Haskell
-- Operators.hs
module Operators where

(&) :: a -> (a -> b) -> b
x & f = f x

(!) :: Int -> Int -> Int
(!) = somethingLowLevel

-- Mod.hs
module Mod where

import Operators

x :: Int
x = (1 ! 2) & negate

(* Coq *)
(* preamble.v *)
Definition bang := plus.
Notation "'_!_'" := bang.
Infix "!" := _!_ (at level 99).

Module ManualNotations.
Notation "'_Operators.!_'" := bang.
Infix "Operators.!" := _!_ (at level 99).
End ManualNotations.

Output:
(* Coq *)

(* Operators.v *)

(* Preamble *)
171

Definition bang := plus.
Notation "'_!_'" := bang.
Infix "!" := _!_ (at level 99).

Module ManualNotations.
Notation "'_Operators.!_'" := bang.
Infix "Operators.!" := _!_ (at level 99).
End ManualNotations.

(* No imports to convert. *)

(* No type declarations to convert. *)

(* Converted value declarations: *)

Definition op_za__ {a} {b} : a -> (a -> b) -> b :=
fun x f => f x.

Notation "'_&_'" := (op_za__).

Infix "&" := (_&_) (at level 99).

Module Notations.
Export ManualNotations.
Notation "'_Operators.&_'" := (op_za__).
Infix "Operators.&" := (_&_) (at level 99).
End Notations.

(* Mod.v *)

(* Converted imports: *)

Require GHC.Num.
Require Operators.
Import GHC.Num.Notations.
Import Operators.Notations.

(* Converted value declarations: *)

Definition x : GHC.Num.Int :=
(#1 Operators.! #2) Operators.& GHC.Num.negate.

172

8.7.6. set type.

Edit: set type Qualid : Term
set type Qualid no type

Effect: This edit changes the type annotation hs-to-coq places on a term. By
default, hs-to-coq uses the type annotation provided in the Haskell source code, or
none if no such type annotation was specified. The set type edit allows the user to
override this, either by using the specified type annotation (in the : Term case) or by
omitting a type annotation (in the no type case). One particularly important use of
this edit is to add Default constraints to allow for the use of “nontermination” (see
Section 7.4). It is pleasant to note that this edit can never introduce unsoundness;
because Coq typechecks the resulting definition, the only harm that can come from
this edit is that a type could be too restrictive.

Examples.
Input:
Edits
set type Mod.head : forall {a} `{(GHC.Err.Default a)}, list a -> a
set type Mod.unit no type

-- Haskell
module Mod where

head :: [a] -> a
head (x:xs) = x

unit :: ()
unit = ()

Output:
(* Coq *)

Definition unit :=
tt.

Definition head {a} `{GHC.Err.Default a} : list a -> a :=
fun arg_0__ =>

match arg_0__ with
| cons x xs => x
| _ => GHC.Err.patternFailure
end.

8.7.7. data type arguments.
173

Edit: data type arguments Qualid
(parameters : Qualid*)?

(indices : Qualid*)?

Effect: In Haskell, data types do not differentiate between their parameters and
their indices, either syntactically or semantically. In Coq, indices are distinguished
both syntactically (parameters are bound as arguments to the type, indices are built
through the arrows on its type/universe annotation) and semantically (parameters
come first and don’t raise the universe level, indices come last and do raise the
universe level). Thus, a Haskell GADT translated naïvely into Coq may be invalid
for this reason (if the GADT does separate its indices from its parameter,s then
everything will work fine). The data type arguments edit, given the name of a data
type, reorganizes its Haskell parameters into Coq parameters and indices, adjusts the
arguments to the translated type appropriately. The names used in the parameter
and index lists must be exactly the same as the names bound in the Haskell file; this
is only about reorganization, not rewriting. Furthermore, changing the order of the
type arguments likely will not do what you want, as it will not reorder the arguments
at use sites.

Examples.
Input:
Edits
data type arguments Mod.Has (parameters : a) (indices : p)
data kinds Mod.Has Type, YN

-- Haskell
{-# LANGUAGE GADTs, DataKinds #-}

module Mod where

data YN = Y | N

data Has a p where
Yes :: a -> Has a Y
No :: Has a N

maybeHas :: Has a p -> Maybe a
maybeHas (Yes x) = Just x
maybeHas No = Nothing

Output:
(* Coq *)

(* Converted type declarations: *)

174

Inductive YN : Type := | Y : YN | N : YN.

Inductive Has (a : Type) : forall (p : YN), Type
:= | Yes : forall {p : YN}, a -> Has a Y
| No : forall {p : YN}, Has a N.

(* Converted value declarations: *)

Definition maybeHas {a} {p} : Has a p -> option a :=
fun arg_0__ =>

match arg_0__ with
| Yes x => Some x
| No => None
end.

8.8. Proving termination

8.8.1. termination.

Edit: termination Qualid TerminationArgument

Effect: This edit allows us to avoid running head-on into Coq’s termination
checker by specifying an alternative proof that the specified function is terminating.
In many ways, the four distinct termination arguments are three distinct edits, but
they all serve the same purpose: alter the translation of a Coq fixpoint so that you
can prove that it will terminate. The four termination arguments are:43

(1) { measure Atom (Term)? }
(2) { wf Atom Qualid }
(3) deferred
(4) corecursive

The first two use Coq’s Program command to translate the fixpoint (Sozeau, 2006);
deferred uses a highly classical fixpoint axiom for maximum flexibility, requiring the
user to provide a termination argument when calling the function (Breitner et al.,
2018); and corecursive uses (guarded) corecursion instead of (structural) recursion.

When using one of the termination arguments that invokes Program, the measure
and wf arguments are passed on to the Program Fixpoint that is now being used
to define f. The former, termination f {measure (m x)}, permits the user to
prove that f is terminating by proving that m x is monotonically decreasing on ever
call (by default, with respect to lt, the less than relation on natural numbers, but
another relation can be provided). The latter, termination f {wf R x}, is the same
as termination f {measure x R}; in other words, these two are same, but they
take their parameters in opposite orders and only measure permits you to omit one
parameter. These annotations are documented further in the Coq manual, which

43Atom denotes either a parenthesized term or a single term that can be written without a space
(usually an identifier).

175

explains the use of Program (The Coq Development Team, 2020b, “Program”44). The
use of Program incurs immediate proof obligations; to solve these, see the next edit,
obligations.

When using the termination argument deferred, the fixpoint is translated to a
call to our GHC.DeferredFix.deferredFix axiom:

Axiom deferredFix:
forall {a r} `{Default r}, ((a -> r) -> (a -> r)) -> a -> r.

This axiom has the same shape as any classic fixpoint axiom that is limited to
producing functions, except that it constraints the result type of the function to be
inhabited through the use of the Default r constraint. This allows us to ensure that
deferredFix is consistent, as we can never use it to produce False. However, the
evaluation rule for deferredFix is highly classical:

Definition recurses_on {a b}
(P : a -> Prop) (R : a -> a -> Prop)
(f : (a -> b) -> (a -> b)) :=

forall g h x,
P x ->
(forall y, P y -> R y x -> g y = h y) ->
f g x = f h x.

Axiom deferredFix_eq_on:
forall {a b} `{Default b}

(f : (a -> b) -> (a -> b))
(P : a -> Prop)
(R : a -> a -> Prop),

well_founded R -> recurses_on P R f ->
forall x, P x -> deferredFix f x = f (deferredFix f) x.

The statement recurses_on P R f says, informally, that any recursive calls in f are
on arguments that are smaller with respect to R; we use P to restrict the domain, so we
can apply the axiom in more cases. Then as long as this holds and R is well-founded,
we can unroll deferredFix one step (Breitner et al., 2018, §5.4). Because all we
need to use deferredFix is a proof that the result type is inhabited, we can use
termination f deferred even without a proof of termination (we are deferring that
proof, hence the name). This is helpful, as it allows further separation of translation
and proof; the sheer classical power of the axiom also allows us to employ a wide
variety of termination arguments.

Finally, when using the termination argument corecursion, the fix is simply
translated to a cofix. No other work is done, so the cofixpoint must be guarded, just
as fixpoints must be structural.

Examples.

44This chapter is available at https://coq.inria.fr/refman/addendum/program.html.

176

https://coq.inria.fr/refman/addendum/program.html

Input:
Edits
termination TerminationProgram.smaller {measure (length arg_0__)}
obligations TerminationProgram.smaller ←↩

intros; Tactics.program_simpl; ←↩
do 3 try destruct arg_0__; simpl; intuition

-- Haskell
module TerminationProgram where

-- A very fancy way to compute []
smaller :: [Int] -> [Int]
smaller [] = []
smaller xs = smaller (drop 2 xs)

Output:
(* Coq *)

Program Fixpoint smaller (arg_0__ : list GHC.Num.Int)
{measure (length arg_0__)}

: list GHC.Num.Int
:= match arg_0__ with

| nil => nil
| xs => smaller (GHC.List.drop #2 xs)
end.

Solve Obligations with
(intros; Tactics.program_simpl;
do 3 try destruct arg_0__; simpl; intuition).

Input:
Edits
rename type GHC.Integer.Type.Integer = GHC.Num.Integer
termination TerminationDeferred.ackermann deferred

-- Haskell
module TerminationDeferred where

-- The Ackermann–Péter function, from Wikipedia
-- <https://en.wikipedia.org/wiki/Ackermann_function>
ackermann :: Integer -> Integer -> Integer
ackermann m n

| m <= 0 = n+1
| n <= 0 = ackermann (m-1) 1

177

| otherwise = ackermann (m-1) (ackermann m (n-1))

Output:
(* Coq *)

Definition ackermann
: GHC.Num.Integer -> GHC.Num.Integer -> GHC.Num.Integer :=

GHC.DeferredFix.deferredFix1
(fun ackermann (m n : GHC.Num.Integer) =>

if m GHC.Base.<= #0 : bool
then n GHC.Num.+ #1
else if n GHC.Base.<= #0 : bool
then ackermann (m GHC.Num.- #1) #1
else ackermann (m GHC.Num.- #1)

(ackermann m (n GHC.Num.- #1))).

Input:
Edits
coinductive TerminationCorecursive.Stream
termination TerminationCorecursive.repeat corecursive

-- Haskell
module TerminationCorecursive where

data Stream a = Cons a (Stream a)

repeat :: a -> Stream a
repeat x = Cons x (repeat x)

Output:
(* Coq *)

(* Converted type declarations: *)

CoInductive Stream a : Type := | Cons : a -> (Stream a) -> Stream a.

(* Converted value declarations: *)

Definition repeat {a} : a -> Stream a :=
cofix repeat (x : a) := Cons x (repeat x).

8.8.2. obligations.

Edit: obligations Qualid TrivialLtac
178

Effect: The obligations edit takes the definition with the given name, translates
it using the Program command (Sozeau, 2006), and then uses the given tactic to
solve the generated obligations. This is commonly paired with the termination edit
using the {measure e R} or {wf R e} termination arguments, which will have already
caused the definition to be translated with Program; however, this isn’t necessary, in
case the programmer wants the facilities of Program simply for dealing with implicit
arguments.

When Program is used, proof obligations are incurred; in interactive devel-
opment, it’s typical to go through these one by one with Next Obligation.,
which places you in the appropriate proof environment after running the tactic
Coq.ProgramTactics.program_simpl. However, it’s not uncommon to instead use
Solve Obligations, which takes a single Ltac tactic and applies it to solve every
single obligation in one fell swoop. This is much more suitable to hs-to-coq’s
automatic translation, and obligations f tactic will follow the definition of
f with Solve Obligations (tactic). It is common to begin the tactic with
Tactics.program_simpl; ..., as this brings things into the (more useful) state
they would be in after a Next Obligation. command.

The grammar production TrivialLtac indicates that while we are still (Sec-
tion 8.4.1) not parsing Ltac, we have to do a little work; we support parsing (nested)
applications of identifiers, numbers, underscores, @ident terms, and parenthesized
terms, separated by ; or ||. Anything more complex must be defined as an actual
tactic in the preamble or midamble, and then referenced.

Finally, there is one special case: writing obligations f admit generates
Admit Obligations. instead of Solve Obligations with (admit)., as the latter
does not work properly.

Examples. (From Section 1.1.)
Input:
Edits
termination Sort.merge {measure (length arg_0__ + length arg_1__)}
obligations Sort.merge Tactics.program_simpl; simpl; lia

-- Haskell
module Sort where

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys

(* Coq *)
(* preamble.v *)

179

Require Import Lia.

Output:

(* Coq *)

(* Preamble *)

Require Import Lia. (* For the `lia` tactic *)

(* Converted imports: *)

Require GHC.Base.
Import GHC.Base.Notations.

(* No type declarations to convert. *)

(* Converted value declarations: *)

Program Fixpoint merge
{a} `{Ord a} (arg_0__ arg_1__ : list a)
{measure (length arg_0__ + length arg_1__)} : list a :=

:= match arg_0__, arg_1__ with
| nil, ys => ys
| xs, nil => xs
| cons x xs, cons y ys =>

if Bool.Sumbool.sumbool_of_bool (x GHC.Base.<= y)
then cons x (merge xs (cons y ys)) else
cons y (merge (cons x xs) ys)

end.
Solve Obligations with (Tactics.program_simpl; simpl; lia).

8.8.3. coinductive.

Edit: coinductive Qualid

Effect: Given a data type definition named Qualid , the coinductive edit
instructs hs-to-coq to translate that definition as a CoInductive instead of an
Inductive. No other changes are made; any uses of this type must be correctly coin-
ductive, or made such with edits such as termination f corecursive. Even with
this edit, a single type cannot be used both inductively and coinductively; although
Haskell merges lists and streams, Coq cannot.

Examples.
180

Input:
Edits
coinductive Mod.Stream
coinductive Mod.CoList

-- Haskell
module Mod where

data Stream a = SCons a (Stream a)

data CoList a = CoNil
| CoCons a (CoList a)

Output:
(* Coq *)
CoInductive Stream a : Type

:= | SCons : a -> (Stream a) -> Stream a.

CoInductive CoList a : Type
:= | CoNil : CoList a
| CoCons : a -> (CoList a) -> CoList a.

8.9. Meta-edits

8.9.1. in.

Edit: in Qualid Edit

Effect: The unique meta-edit, in allows a whole edit – any of the previous forms
we’ve discussed, or another nested in – to only apply within the definition of the name
Qualid . This name can be any sort of top-level definition (variable, type class, type
class method, etc.), as well as a let-bound local variable (likely only applicable within
an outer in that references a top-level name). This is useful particularly for edits such
as rewrite (Section 8.6.1) or skip case pattern (Section 8.2.6) that have broad
effects only useful in narrow areas, but can be applied to anything.

Examples.
Input:
Edits
rewrite forall a, GHC.Num.fromInteger 1 GHC.Num.* a = a
in Mod.double2 rewrite forall a, ←↩

a GHC.Num.+ a = (GHC.Num.fromInteger 2) GHC.Num.* a
in Mod.quadruple rewrite forall a, ←↩

a GHC.Num.+ a = (GHC.Num.fromInteger 2) GHC.Num.* a

181

-- Haskell
module Mod where

double1 :: Int -> Int
double1 x = 1*x + 1*x

double2 :: Int -> Int
double2 x = 1*x + 1*x

quadruple :: Int -> Int
quadruple x = let x' = 1*x + 1*x in 1*x' + 1*x'

Output:
(* Coq *)
Definition quadruple : GHC.Num.Int -> GHC.Num.Int :=

fun x => let x' := #2 GHC.Num.* x in #2 GHC.Num.* x'.

Definition double2 : GHC.Num.Int -> GHC.Num.Int :=
fun x => #2 GHC.Num.* x.

Definition double1 : GHC.Num.Int -> GHC.Num.Int :=
fun x => x GHC.Num.+ x.

182

CHAPTER 9

Related Work

I am hardly the first person to do work on verification, verification of Haskell, or
verification by translation. In this chapter, I discuss some of the other work in these
fields.

9.1. Extraction

Coq natively includes a feature that is essentially the inverse of hs-to-coq: extrac-
tion (Letouzey, 2002; The Coq Development Team, 2020b, sec. “Program extraction”).
Extraction is a feature of the Coq system that allows the programmer to generate
OCaml, Haskell, or Scheme source code from a Coq program. This can be viewed as a
form of compilation, since (pending work on Certicoq (Anand et al., 2017)) Coq does
not otherwise have a compiler. Indeed, when running Coq code for the purposes of
running it – much as we would run a program written in Haskell, OCaml, or Scheme –
extraction is the order of the day.

At the same time, extraction is a direct translation between Coq and another
high-level functional language. When targeting Haskell, this means that extraction is
a sort of coq-to-hs: a way to move from a language suited for proof to a language
suited to computation. This dual nature means that extraction from Coq also leads
to mechanically verified Haskell programs; however, the properties of these programs
are also turned around from hs-to-coq. Where hs-to-coq allows Coq verification
of existing Haskell programs, extraction instead allows generating Haskell programs
from existing verified Coq programs (or unverified Coq programs, if you have one).
Thus, extraction cannot be used to increase the number of verified programs in the
world – while it can increase the number of verified Haskell programs, it can only do
so if the corresponding Coq program already exists.

Letouzey does discuss readability, and make some effort towards that end – while the
output often has extra parentheses and odd line breaks (a situation I am very familiar
with from hs-to-coq), the result in simple cases often remains very “legible”, in the
similarity sense. However, because the user will not be verifying the output, the need
to maintain strict parity is not the same as we have with hs-to-coq. Consequently,
Letouzey is willing to make certain changes, such as inlining small functions and
turning simple wrapper data types into type synonyms (but see Section 9.1.2). One
particular loss of legibility comes with type classes. Even when extracting to Haskell,
Coq uses the same representation of type classes as it does in OCaml: an explicitly-
passed record of functions. This makes interfacing with existing Haskell programs
less pleasant (and is one reason we cannot simply “round-trip”, running hs-to-coq,
extracting the result, and comparing it with the original source). However, this is in
many ways unavoidable: it means that Coq does not depend on the details of Haskell’s

183

constraint solver. In particular, Coq does not guarantee coherence of type classes, and
so it accepts strictly more type-class–using programs than Haskell does.

On the other hand, this willingness to adapt representations also improves other
kinds of legibility. Consider the sig type

(* From Coq.Init.Specif *)
Inductive sig (A:Type) (P:A -> Prop) : Type :=

exist : forall x:A, P x -> sig P.

The type sig A P is the type of all As such that P holds of them, and is implemented
as a dependent pair. For example, sig Z (fun n => n > 0) is the type of all positive
integers. Because proofs are erased at runtime (see Section 9.1.1), this is a simple
wrapper around A at extraction-time, and is thus elided. This means that extracted
code that operates on these dependent pairs – a common way to do verification in
Coq! – contains no verification cruft at all. Much cleaner!

9.1.1. Making Coq extraction-friendly. Just like hs-to-coq, Coq’s extrac-
tion has to deal with the fact that Haskell (and OCaml, and Scheme) are all thoroughly
different from Coq. One principle difference stems from the fact that the target lan-
guages’ type systems are weaker than Coq’s (or in Scheme’s case, nonexistent). When
necessary, Coq is happy to insert unsafe conversion functions to convince OCaml or
Haskell that a piece of code is well-typed (Obj.magic or unsafeCoerce, respectively.)
However, there are often simpler things that can be done. For example, in Coq, type
arguments to polymorphic functions are exactly like regular arguments; in OCaml and
Haskell, polymorphism is strictly at the type level, and in Scheme, it doesn’t exist
thanks to the lack of types. Extraction therefore must translate polymorphism at the
type level only, and elide the arguments at the value level. Similarly, the three sorts –
Set, Type, and Prop – are also elided. This sort of elision is essential to compatibility
with the weaker type systems of the target language.

One of the biggest purposes of elision during extraction is to completely eliminate
the “logical” portions of Coq: those parts that live in Prop. By design, Coq splits its
universes of proofs and computations apart; proofs live in Prop and computations live
in Set and Type. In its full detail, the story is not quite so simple: Prop also lives
in Type, and thanks to dependent types, there’s nothing stopping you from writing
proof-carrying code in Type. But this distinction is baked in to both the culture and
the semantics of Coq. For example, both the principle of proof irrelevance and the
stronger principle of propositional extensionality are consistent with Coq; the former
says that all proofs of a given proposition are the same, and the later says that all
truth-conditionally equivalent propositions are the same.

(* From Coq.Logic.ProofIrrelevance *)
Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

(* From Coq.Logic.PropExtensionality *)
Axiom propositional_extensionality :

forall (P Q : Prop), (P <-> Q) -> P = Q.
184

Yet we know these are not consistent for the more computationally minded types that
we are used to dealing with: we know that nat has more than one inhabitant; and we
know that, even though we can construct functions from bool to unit and vice versa,
those two types are not equal. So Prop really does have logical properties that the
usual computational universe lacks.

Coq takes advantage of this split to omit all “logical” values – anything whose
type is in Prop will be omitted from the translation if at all possible. For example,
consider the following program:

Fixpoint div (p q : nat) (nonzero : q <> 0) : nat :=
(* implementation elided *).

From Coq Require Import Extraction.
Extraction Language Haskell.
Recursive Extraction div.

This program defines a division function div, and then extracts it: it imports the
module allowing for extraction, sets the output language to Haskell, and then extracts
the div function and all its dependencies. This division function takes two natural
numbers, as well as a proof that the denominator is nonzero. This proof lives in Prop,
and so we know that computation cannot depend on it; consequently, extraction will
produce a two-argument function:

module Main where

import qualified Prelude

data Nat =
O

| S Nat

div :: Nat -> Nat -> Nat
div p q =
{- the translation of the implementation -}

There are two exceptions to the usual rules of elision. First, if a term that would
be elided (e.g., a term in Prop) is extracted directly, then its type will be extracted to
some appropriate trivial type, and the value will be exceptional. In OCaml, the type
will be extracted to Obj.t, the type of OCaml’s internal representation of all objects;
in Haskell, (), the unit type; and in Scheme, there are no types. In OCaml, the value
is constructed to type-check but be unusable; in Haskell, it is simply a call to error;
and in Scheme, it is a one-argument function that returns itself.

Second, given a function with only elided parameters but a non-elided result (e.g.,
a possibly-polymorphic function with only logical arguments and a computational
result), extraction needs to ensure that the result is not evaluated early. For example,

185

consider False_rec : forall (P : Set), False -> P, which eliminates inconsis-
tent hypotheses in computational contexts. If the False argument were deleted, then
there would be no arguments left (recall that type arguments are always elided), and
the extracted term would have the OCaml type 'P and the Haskell type p (or, more
explicitly, forall p. p). This is fine in Haskell, but impossible in OCaml! Since
OCaml and Scheme are both eager languages, all functions are extracted to have
at least one argument, and a dummy argument of the appropriate dummy type is
inserted if necessary. Thus, when extracting False_rec to OCaml, we get output that
expects one argument:

type __ = Obj.t

(** val false_rec : __ -> 'a1 **)

let false_rec _ =
assert false (* absurd case *)

However, when extracting it to Haskell, we get output that expects none:

module Main where

import qualified Prelude

false_rect :: a1
false_rect =

Prelude.error "absurd case"

false_rec :: a1
false_rec =

false_rect

(For some reason, extracting to Haskell results in less aggressive inlining – the Coq
implementation of False_rec is indeed in terms of False_rect.)

9.1.2. Customizing extraction. Extraction is both more and less powerful than
hs-to-coq. More powerful, in that it is guaranteed to work on any Coq program; less
powerful, in that it is not as customizable. But there are still knobs to tune, and they
are similarly important to getting high-quality extracted output. The manual (The
Coq Development Team, 2020b, sec. “Program extraction”) discusses the various
commands that configure the behavior of extraction. There are too many to discuss
them all in detail here, but it is a worthwhile comparison to see how these compare to
hs-to-coq’s edits.

The first category of customizations consists of global changes: setting the extrac-
tion language, turning optimizations on or off, and toggling whether or not to inline
functions and wrapper types. These are global configuration options; unlike with edits,
you cannot specify them for individual definition, only for whole bouts of extraction.

186

The second category consists of per-definition changes, much like for edits. The
three per-definition changes that can be made are:

(1) Toggling inlining for specific definitions, as opposed to the global inlining
behavior (not available for wrapper types).

(2) Declaring that extra arguments should be elided, in addition to the type
arguments and logical arguments.

(3) Defining replacement extraction output for definitions or types.
The first is the most straightforward; it allows, for instance, inlining id and not
inlining andb no matter what the global settings are. The second and third, however,
are a bit more interesting.

Being able to omit extra arguments is done through the Extraction Implicit
directive, and it allows the programmer to declare that some number of named (or
numbered) arguments should be omitted. This could be useful, for example, when
working in the SSReflect style. SSReflect prefers to encode everything possible in the
computational universe, such as by using predicates that compute booleans. One way
that the user may do this is by defining predicates in Type, instead of Prop – there’s
nothing about Type that prevents a proof-like definition. These can be useful within
Coq, allowing different forms of computation, but then extraction will refer to them
even when unnecessary. Thus, Extraction Implicit allows removing them. It will
correctly halt with an error if an omitted argument is actually used; however, this
behavior can be disabled globally for ease of debugging.

Finally, declaring replacement extraction output is most like the rename or
redefine edit. The Extract Constant and Extract Inductive commands allow
for the replacement of the autogenerated translation with an alternative. This is
particularly important for axioms, which normally are translated, with a warning,
to an output-language error – since they lack computational content, they can’t be
meaningfully extracted.45 Extract Constant is almost just that simple – it replaces
one name with another, like rename. However, type constructors must be fully applied,
and their arguments must be fully specified. For example, here is how we would take
an axiomatized type for I/O effects and an axiomatized print function, and translate
them to Haskell’s IO and print:

Axiom io : Type -> Type.
Axiom print_nat : nat -> io unit.

Extract Constant io "a" => "IO a".
Extract Constant print_nat => "print".

(The eagle-eyed observer will note that the use of a as the variable means this is not
output-language agnostic. Indeed, we would have to write "'a" and flip the type
application around to extract to OCaml. In general, when specifying output code as
with these commands, the details will be language-specific.)

45Logical axioms, as they aren’t intended to have computational content, are less of an issue here.

187

The Extract Inductive command is slightly more complex. In the simplest case,
it just tells Coq to translate a Coq inductive type into a target-language inductive
type. For example,

Extract Inductive bool => "Bool" ["True" "False"].

will extract Coq bools as Haskell Bools – the exact opposite of what we do in
hs-to-coq. The first string after the arrow is the type name, and the strings within
square brackets are the constructor names. But what if we don’t want the situation to
be that simple? In that case, we can specify a third argument after the square brackets,
which is an eliminator function to replace pattern matching. This, for instance, allows
us to replace an Coq inductive type with a target-language non-inductive type; the
example from the manual is to replace Coq nats with OCaml integers. The equivalent
code in Haskell would be

Extract Inductive nat => Int ["0" "(+1)"]
"(\f0 fS n -> case n of { 0 -> f0 () ; _ -> fS (n-1) })".

We can see here that the eliminator expects one function per constructor, and a final
argument which is the term being matched on. Each constructor-matching function
expects one argument for every argument to the constructor; in the zero-argument
case, the function gets an extra argument of type unit, which is not necessary in
Haskell but is in eager languages.

9.2. Translating Haskell to non-Coq languages

In contrast to hs-to-coq, there are also several “hs-to-noq”s out there – convert-
ers from Haskell to languages for verification that are not Coq. In particular, there are
multiple tools targeting both (1) Isabelle/HOL and (2) the Agda family of languages .

9.2.1. Isabelle/HOL. Isabelle is a computer-assisted theorem prover. Unlike
Coq, it is not based on dependent type theory, but instead on logic; in fact, it is
parameterized over the logic it uses. Most developments are done in Isabelle/HOL,
which uses higher-order logic, but there are alternatives. There have been at least two
projects that involved translating Haskell into Isabelle/HOL: the Haskabelle project
and seL4.

9.2.1.1. Haskabelle. Haskabelle (Haftmann, 2010) was a direct parallel to
hs-to-coq that targeted Isabelle/HOL, as well as being a direct parallel to extraction
that goes from Isabelle/HOL to Haskell. Unfortunately, it is no longer maintained,
and has since been removed from the Isabelle distribution (see Section 9.2.1.2). Here,
I will focus on the translation from Haskell into Isabelle/HOL.

Though Isabelle and Haskell are in many ways less similar than Haskell and Coq –
Isabelle is not just a functional programming language, the way that Coq is – they
are certainly similar enough. Haskabelle, like hs-to-coq, focused on the question
of legibility. During translation, the goal is to have a one-to-one correspondence
between Haskell declarations and Isabelle/HOL declarations (when translating in
this direction). Isabelle also features type classes, and Isabelle’s eq type class is
automatically identified with Haskell’s Eq type class.

188

Unlike hs-to-coq, however, Haskabelle does not attempt to cover the entire Haskell
language. They target features of Haskell which line up with features of Isabelle/HOL,
thus preserving legibility at the cost of comprehensively covering Haskell. The two
features they call out as not being supported are guards (which we also had trouble
with) and “arbitrary bindings”, which refers to things like partial pattern matches in
let expressions.

Haskabelle also features similar, although less comprehensive, abilities to control the
translation of individual definitions. For example, when translating from Isabelle/HOL
to Haskell, it is possible to completely and safely change the definition of a function:
by annotating a lemma with the code attribute, the user can provide an alternative
set of equations defining a function, which will then be translated to Haskell. Because
this comes from a proven lemma, we know this will not change the meaning of the
translated code.

Haskabelle doesn’t have the same emphasis on never editing code; for example, their
analog of our termination fn edit is to add a {-# HASKABELLE permissive fn #-}
pragma above the definition of fn. This produces Isabelle/HOL output containing
the keyword sorry where a termination argument needs to go.

Much like hs-to-coq, Haskabelle had to make concessions to its target language
during translation. For example, local function definitions in Haskell were automatically
refactored to top-level definitions in Isabelle/HOL. Sometimes, Haskabelle performed
these operations, which they call adaptations, for simpler alignment; for example,
connecting the built-in list type and functions between the two languages.

Sometimes, the features of Isabelle/HOL are actually more useful than Coq’s for
this translation. One key example of this we have already seen back in Section 3.8:
while Isabelle is also a total language, it also, in the logical as opposed to type-theoretic
tradition, has only inhabited types. It is also classical: every type in Isabelle not only
has at least one inhabitant, but we can pick out an undifferentiated inhabitant of
any type with the special constant undefined. Because in Isabelle this is consistent,
Haskabelle can use this to translate partial patterns without any problems.

Continuing in the vein of totality, Isabelle also has more automation around
certain features, including termination. Isabelle’s fun keyword defines a function and
attempts to automatically find a termination proof for it; Haftmann reports that “[t]he
automation of fun succeeds in lots of cases”, which hs-to-coq can only envy.

Haskabelle also chose to validate their work on a library implementing finite
maps (Adams, 1993); the library is not containers, but it too implements finite
maps in terms of balanced binary trees. This library, FiniteMap (Iborra, 2007), is
much simpler than containers (and has since been deprecated in favor of it); it
consists of a single literate Haskell file with 294 nonblank noncomment lines of code.
Consequently, Haftmann was able to verify the entire thing. Rather than an edit file,
he had to make just five substantial changes: remove all literate comments; inline the
definition of isJust from another module; replace guards with if statements; replace
a partial pattern match in a let-binding with a case expression; and dropping the Eq
instance. As we have seen from our need for substantial edit files, this is an excellent
performance!

189

9.2.1.2. When was Haskabelle present? There was no simple announcement of
Haskabelle being discontinued, but we can check the historical list of Isabelle releases.46

This has all releases from 2008–2019 (the current 2020 release is on the home page).
We can see signs of Haskabelle from 2008–2016, before it seems to have been removed
in the 2017 release of Isabelle. From the 2008 release through the 2016-1 release, the
site has a Haskabelle page, but not in 2017.47 We can also check what we would get
by downloading Isabelle: in 2008, there is no sign of Haskabelle. The 200948 and
2009-149 releases contain a reference to Haskabelle on the downloads page. From the
2009-2 release through the 2016 release, we can also see Haskabelle when we download
Isabelle from the downloads page (2009-2 through 2011-150) or the installation page
(2012 through 201651). It is in the contrib/ directory of the top listed tarball, and
then ceases to be in the 2016-1 release52 and beyond.

9.2.2. seL4. The seL4 microkernel is a fully formally verified microkernel that
uses capabilities for security and access control (Derrin, Elphinstone, Klein, Cock, and
Chakravarty, 2006; Elphinstone, Klein, and Kolanski, 2006; Elphinstone, Klein, Derrin,
Roscoe, and Heiser, 2007; Heiser, Elphinstone, Kuz, Klein, and Petters, 2007; Klein,
2009; Klein, Andronick, Elphinstone, Heiser, Cock, Derrin, Elkaduwe, Engelhardt,
Kolanski, Norrish, Sewell, Tuch, and Winwood, 2010). While this might sound a bit
far afield from hs-to-coq, there is in fact a very direct connection: the verification
includes an Isabelle/HOL specification derived from executable Haskell code. The
seL4 microkernel development started with a Haskell prototype (or implementation)
of the desired kernel behavior. Then, through manual refinement, an equivalent C
implementation was written and verified against two higher-level specifications. The
highest level of specification talks about functional correctness, and is written in
Isabelle/HOL. The intermediate level is an executable Isabelle/HOL specification that
corresponds to the Haskell prototype, and was in fact generated semi-automatically
therefrom.

This all means that seL4 contains three hand-written artifacts: the Haskell im-
plementation of the kernel (the prototype); the C implementation of the kernel; and
the Isabelle/HOL abstract specification (which, although generated, is then manually
modified). For our purposes, we are focused on only the first: how does the seL4 team
work with this Haskell code, and how do they bring it into Isabelle/HOL?

46At http://isabelle.in.tum.de/download_past.html.
47At https://isabelle.in.tum.de/website-Isabelle2008/haskabelle.html and https://

isabelle.in.tum.de/website-Isabelle2016-1/haskabelle.html, as well as all the intervening
years, but not afterwards.

48https://isabelle.in.tum.de/website-Isabelle2009/download_x86-linux.html
49https://isabelle.in.tum.de/website-Isabelle2009-1/download_x86-linux.html
50https://isabelle.in.tum.de/website-Isabelle2009-2/download.html, https:

//isabelle.in.tum.de/website-Isabelle2011/download.html, https://isabelle.in.tum.
de/website-Isabelle2011-1/download.html

51At https://isabelle.in.tum.de/website-Isabelle2012/installation.html through
https://isabelle.in.tum.de/website-Isabelle2016/installation.html, for every intervening
year as well.

52https://isabelle.in.tum.de/website-Isabelle2016-1/installation.html

190

http://isabelle.in.tum.de/download_past.html
https://isabelle.in.tum.de/website-Isabelle2008/haskabelle.html
https://isabelle.in.tum.de/website-Isabelle2016-1/haskabelle.html
https://isabelle.in.tum.de/website-Isabelle2016-1/haskabelle.html
https://isabelle.in.tum.de/website-Isabelle2009/download_x86-linux.html
https://isabelle.in.tum.de/website-Isabelle2009-1/download_x86-linux.html
https://isabelle.in.tum.de/website-Isabelle2009-2/download.html
https://isabelle.in.tum.de/website-Isabelle2011/download.html
https://isabelle.in.tum.de/website-Isabelle2011/download.html
https://isabelle.in.tum.de/website-Isabelle2011-1/download.html
https://isabelle.in.tum.de/website-Isabelle2011-1/download.html
https://isabelle.in.tum.de/website-Isabelle2012/installation.html
https://isabelle.in.tum.de/website-Isabelle2016/installation.html
https://isabelle.in.tum.de/website-Isabelle2016-1/installation.html

Their translation of Haskell into Isabelle/HOL echoes many of the same themes
we saw in hs-to-coq, leveraging both conceptual and syntactic similarity. They care
about “legibility” in the sense of Haskell-Isabelle/HOL similarity, and they care even
more than us about making sure the generated output is comfortable to work with as a
specification. On the other hand, unlike hs-to-coq, the authors discuss the translation
much more in terms of textual transformations, as opposed to operations on abstract
syntax trees. They call out regular expressions as a component of the translation;
discuss token-by-token transformations (e.g., turning Haskell’s -> into Isabelle/HOL’s
=>); and even say that “[f]or many basic terms no translation is required”. This means
that they can and do aim, not just for structurally similar Isabelle/HOL and Haskell
code, but textually similar, in terms of the layout of the generated code. They also are
not interested in guaranteeing that the output of their translation is one-and-done;
instead, they are ready and willing to manually adjust the generated Isabelle/HOL as
part of their development process. Even so, they at one point had approximately 90%
of the translation work automated (Elphinstone et al., 2006) – another similarity with
hs-to-coq is that they are happy to have “good enough” techniques, although their
happiness is with translation and ours is with verification.

This all connects to the fact that the seL4 translation from Haskell to Isabelle/HOL
is bespoke and closely tied to the particular Haskell they are translating. They have no
expectation that their translation handle arbitrary Haskell code, and no need for it to,
either. This reduces some of the burden of dealing with mismatches between Haskell
features and Isabelle/HOL features. Some features do line up well regardless, such as
partiality or undefined corresponding to Isabelle/HOL’s undefined as we saw above.
Sometimes, seL4 simply does not use those features; for example, Isabelle/HOL does
not have recursive let-bindings, and its list comprehensions are weaker than Haskell’s.
These would be a problem for GHC, but they simply do not occur in the seL4 kernel
prototype. Other features need to be syntactically adjusted, as we have seen with, e.g.,
guards or record selectors in hs-to-coq; some examples for seL4 are nested patterns
or, for them as well, record selectors. To handle complex patterns, the seL4 translation
turned them into predicate tests followed by extracting the bound variables. Their
record selector desugaring is similar to hs-to-coq’s.

Nevertheless, as is inevitable, there are still differences that cause trouble. Three
features they highlighted as problematic were nontermination, monads, and the
Dynamic type. Nontermination is the same issue hs-to-coq has, the same issue
Haskabelle had, and indeed just a general issue when doing any sort of verification.
For the most part, Isabelle/HOL was able to handle all the termination proofs
automatically; in the one case where they had a challenging termination argument,
they were able to provide a slower-than-necessary one directly. This demonstrates
that Isabelle/HOL’s termination checker is evidently much more powerful than Coq’s,
as the termination argument was “machine words are finite, and this algorithm will
visit each pointer in the data structure once” – would that we could get Coq to accept
such an argument!

Monads were a minor issue because Isabelle/HOL supports type classes, but not
constructor classes (in fact, it does not support abstraction over type constructors at
all (Huffman, Matthews, and White, 2005)). This is a distinction most in the Haskell

191

world have simply forgotten about, but the difference is that type classes are parame-
terized over types, and constructor classes are parameterized over type constructors
(or more complex things); a type class in Haskell has kind Type -> Constraint,
whereas a constructor class has kind (Type -> Type) -> Constraint, or more gener-
ally kind K -> Constraint for any K more complex than Type. The Monad type class
is naturally a constructor class, and so Isabelle/HOL cannot talk about monads in
general. This is unfortunate for seL4, as the kernel is implemented in terms of monad
transformers: all operations are in the State monad transforming the kernel state,
and some have error monad transformers layered on top. The solution here was simply
to work monomorphically for monads; with only three cases (State plus 0, 1, or 2
error monads), the duplication was trivial, and there was minimal proof duplication
necessary. Indeed, the seL4 developers reported being happier with the clarity that
monomorphization provided, not despite but because it meant distinguishing do in
the state monad from doE in the error-over-state monad.

Finally, the Dynamic type in Haskell can be safely created from or cast to a
value of an arbitrary type, by providing a Typeable constraint. As we’ve seen in
hs-to-coq, providing for these complex Haskell type system features in languages
that don’t support them can be tricky, and sometimes you need to provide your
own implementations of missing libraries. The seL4 developers did just that, and
provided a version of Dynamic in terms of encoding the value into a list of bytes. This
functionality covered all the types and behavior they needed, at the small cost of
having to write some of it themselves.

One interesting decision point that the seL4 developers made was to use Is-
abelle/HOL instead of Isabelle/HOLCF. Isabelle is, as mentioned above, parameteriz-
able over the underlying logic, and the choice was between straightforward higher-order
logic (HOL) and a logic of computable partial functions (HOLCF). They chose HOL
and not HOLCF for the same reasons hs-to-coq chose recursion and direct use of
values over pervasive corecursion or an ERR monad (see Section 3.8) – they work with
total code, and they don’t want extra hassle. If you want to prove that all of your
functions are total anyway – and they did – then allowing partial functions isn’t
beneficial; and having to reason about continuity and bottom values and such just
makes your life harder for little to no gain. While they considered (Elphinstone et al.,
2006) using Programatica (Hallgren, Hook, Jones, and Kieburtz, 2004), which targeted
HOLCF, to automate the translation, it was not able to translate their code base.
(For more on Programatica, see Section 9.2.3.1.)

One very interesting difference between how seL4 uses translated Haskell and
how hs-to-coq works with it is that they conceive of the Haskell as a specification
for the actual artifact, which is the C microkernel. The Isabelle/HOL generated
from the Haskell code is the target of a refinement proof with respect to the C code.
Except that at the same time, this generated Isabelle/HOL sits below the abstract
functional-correctness specification, and is itself refined against it! So the (translated)
Haskell code is both verifier and verified, a very different model than hs-to-coq works
with.

192

9.2.3. Agda, Alfa, and Programatica. Agda is a dependently-typed program-
ming language and proof assistant. Unlike Coq, it has a more direct focus on writing
dependently-typed programs; nevertheless, it too is total and thus suitable for theorem
proving. It has gone through multiple major versions, and is descended from an earlier
language, Alfa. For many of the same reasons that hs-to-coq chose Coq as a target
language, there has been much work over the years focused on verifying Haskell using
Agda (or Alfa) as a target language. One locus of this work was the Programatica
project (Hallgren et al., 2004); there has also been work outside of it.

9.2.3.1. Programatica. The Programatica project (Hallgren et al., 2004; The Pro-
gramatica Team, 2003) was a large-scale project focused on writing trustworthy,
validated software. This effort resulted in a large software toolset focused on validating
Haskell code. The scale of their efforts was large; they were interested in building
“a framework for Extreme Formal Methods” (Hallgren et al., 2004) by analogy with
extreme programming. The goal was to enable validation-program codesign, ensuring
that formal methods were present from day 0 of a development project.

The tooling support was not focused solely on formal verification. The idea was
that Haskell code could be augmented with property and assertion declarations at the
top-level, where a function definition could go (Kieburtz, 2002). The Programatica de-
velopment environment could then annotate the assertions with certificates, describing
why these assertions could be trusted. These certificates could be backed by different
kinds of evidence:

(1) “I say so” evidence, their term for evidence that is simply a bare statement
that the assertion is true.

(2) Individual test cases that validate (i.e., provide evidence for) the assertion.
(3) Passing QuickCheck tests.
(4) A formal proof in Alfa.
(5) An automatic proof in P-logic, a program logic for Haskell, using a verifier

called Plover.

As we can see from this selection of evidence types, Programatica was about more than
just total formal verification; it was about the broader question of building formally
validated software using any methods that could increase confidence. We will not
further discuss forms of evidence 1–3, as they are relatively straightforward. However,
using Alfa and Plover are both more involved, and using Alfa in particular is directly
germane to hs-to-coq.

Verification in Alfa. In order to write a proof about a piece of Haskell code in Alfa,
of course, one needs to translate that code to Alfa somehow, and the Programatica
project took the same approach as hs-to-coq: translate Haskell source code to Alfa
source code, and then use all the typical features of Alfa to verify the result. Just
as with hs-to-coq, their translation has to deal with mismatches large and small
between Haskell and Alfa, many of which are reminiscent of the issues we had to
address, such as moving from two namespaces (types and terms) to one. One unusual
difference is the way they had to deal with termination: while Alfa has a termination
checker, they are still able to translate non-structurally recursive functions and simply
obtain a partial correctness result. Like hs-to-coq, they discuss needing to remove

193

syntactic features such as list comprehensions (unlike hs-to-coq, this includes type
classes), as well as the similarity between the input and the output despite this.

hs2alfa. On Thomas Hallgren’s website,53 there is also reference to a tool called
hs2alfa, which may be the same translation tool discussed above. The web page
makes very clear how many of the challenges we faced in developing hs-to-coq are
not unique, but genuine pain points in the translating-Haskell-to-a-theorem-prover
space. The “Limitations” section includes several limitations that are almost identical
to issues we have seen in our exploration of hs-to-coq. Some are features it does not
support that we support but did have trouble with: guards that use pattern-matching;
record field selectors; Haskell names that are keywords in the target language. One
is smaller, but familiar: he mentions the issue of name clashes when combining
mutually-recursive modules into a single module.

Lastly, and to me most strikingly, they too encountered the issue of type variable
name collisions when translating type class instances. The hs2alfa website says,
under “Other problems”:

Name capture can occur, for example, in the translation of

class Functor f where fmap :: (a->b)->f a->f b
instance Ix a => Ix (Array a) where fmap = ...

there will be a problem with capture of the type variable a.
—Thomas Hallgren

(Sic: the typos of Ix instead of Functor on the second line are in the original.) Years
later, without having read this, I documented the internal behavior of the function
HsToCoq.ConvertHaskell.Declarations.Instances.makeInstanceMethodTy with
the following comment:54

Goal: Consider

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor (Either a) where fmap = ...

When desugared naïvely into Coq, this will result in a term with type

forall {a1}, forall {a2 b},
(a2 -> b) -> f (Either a1 a2) -> f (Either a1 b)

Except without the subscripts! So we have to rename either the per-instance
variables (here, a1) or the type class method variables (here, a2 and b). We
pick the per-instance variables, and rename a1 to inst_a1.

Assumption: type variables don’t show up in terms. Broken by
ScopedTypeVariables.

—Antal Spector-Zabusky, the module
HsToCoq.ConvertHaskell.Declarations.Instances,

lines 377–394
It is remarkable how similar these two issues are, down to the choice of example!

53http://ogi.altocumulus.org/~hallgren/Programatica/tools/hs2alfa/
54I have replaced “ALL CAPS” with small caps for legibility.

194

http://ogi.altocumulus.org/~hallgren/Programatica/tools/hs2alfa/

P-logic and Plover. The final form of evidence that Programatica considers is
automatic proofs in P-logic. P-logic is an alternative approach to verifying Haskell
by providing a program logic for it (Harrison and Kieburtz, 2005; Kieburtz, 2002).
P-logic is a program logic specifically for Haskell 98; it takes particular care in
formalizing the notions of strict vs. nonstrict evaluation, particularly in pattern
matching and as regards seq. Harrison and Kieburtz establish both a model for the
logic and its soundness with respect thereto. P-logic can be used to prove properties
of partial Haskell 98 programs, not just total ones. In the context of Programatica’s
evidence (Hallgren et al., 2004), they provide the tool Plover to automatically attempt
to prove the P-logic assertions that have been embedded in the Haskell code. Like
most automated theorem provers, Plover is intended to be sound but not complete;
it attempts to prove as much as it can about the target Haskell programs, but the
presence of other forms of evidence means that there are alternatives if it cannot
automatically find a proof. Plover (as opposed to P-logic itself) does not cover all of
Haskell 98; it cannot reason about recursion or data type declarations, among other
things. Nevertheless, this sort of automated proof is a powerful alternative strategy
for verifying properties of programs in general.

9.2.3.2. Translating Haskell into Agda/Alfa. Other work besides the Programatica
project has enabled verifying Haskell through translation into Agda-family languages.
Dybjer, Haiyan, and Takeyama presented a verification methodology that combines
multiple different forms of validation: property-based random testing, formal mechan-
ical verification by translation into Alfa/Agda, and model checking (Dybjer et al.,
2004). The broad idea is to apply random testing to guide the development of proofs,
and use proofs to guide the application of tests. For example, a top-level function
may have a specification that random testing refutes, but this does not expose where
in the implementation the problem occurred, particularly if the top-level function
is implemented in terms of local functions. In this case, proofs may guide the user
to see the split-up specifications for these local functions, which can then be tested
and produce more informative counterexamples on failure. In the other direction,
getting a counterexample from a random test is a much more efficient way to discover
that a specification is wrong when compared to trying and failing to write a proof,
so ensuring active use of random testing during the verification process is incredibly
helpful.

The random testing is further enhanced by model checking. Dybjer et al. provide
a model checker to determine whether a boolean formula is a tautology, and then
actually use this as the target of random testing. Rather than properties resulting in
a boolean, they instead result in a query, “is this boolean expression a tautology?”.
During the random testing loop, after plugging in the generated parameters, whether
the test passes is determined by whether or not the resulting boolean expression –
which may refer to the generated variables – is in fact a tautology.

Just as with every other translation we have seen, Dybjer et al. need to address
the question of partiality. They take a different tack than any other translation we
have thus far examined, including hs-to-coq: they add an extra proof argument to
every partial function that specifies when it can be called. For example, the Haskell
function fromJust, defined by

195

fromJust :: Maybe a -> a
fromJust (Just x) = x
fromJust Nothing = error "fromJust: Nothing"

is only safe to call on a value of the shape Just x, which is checked by the predicate
isJust. Consequently, the translation to Alfa/Agda would be the equivalent of the
idealized dependent Haskell definition

fromJust :: (mx :: Maybe a) -> (pf :: T (isJust mx)) -> a
fromJust (Just x) = x
fromJust Nothing = case pf of {}

Here, T is a type that is inhabited if and only if its argument is True:
data T :: Bool -> Type where

TT :: T 'True

The translation does not automatically determine these predicates, unsurprisingly;
they must be specified by the user, and then they are propagated throughout the
call chain. Functions may have any number of these proof parameters added, but
otherwise they are not modified.

This approach is in fact dogfooded – the first example they choose to verify in
Alfa/Agda is the model checker that is a part of the system. They then continue by
applying this methodology to a bitonic sorting algorithm. Although this algorithm is
polymorphic, they take advantage of parametricity (proving the appropriate theorem
in Alfa/Agda) to reduce the proof obligation to sorting only lists of booleans. Because
they are then operating over booleans, they can then verify correctness with their
model checker.

9.2.3.3. Translating Haskell into Agda. Finally, we come to a project that involves
a language simply named Agda, albeit a version that is still very different from modern
Agda. Abel et al. present a technique for verifying Haskell programs in Agda through
translation, but this time from Core and not from Haskell (Abel et al., 2005). This
renders a great many problems moot at one stroke: Core is much smaller than Haskell,
so the number of features they need to support is vastly reduced, and leaves out type
classes entirely; everything is explicitly-typed; there is no question about whether or
not they can support all of Haskell; and the need for strict similarity to the input is
reduced. The downside is that strict similarity to the input is reduced – the logical
reasoning must be done in terms of compiled Core, and not the original Haskell
program. Nevertheless, Abel et al. report that in practice, one can still think in
terms of the Haskell code, since the Haskell and Core are semantically equivalent; and
indeed, we have certainly experienced an analogous phenomenon when working with
hs-to-coq, where some of us (myself included) think in terms of the original Haskell
code rather than the generated Coq code.

Even though Core is much simpler, there are still enough differences with Agda
to cause problems. Some are small, such as the Core containing wildcard patterns
and Agda requiring an explicit exhaustive list of patterns. A bigger problem is
that Agda only permits case expressions (1) as the outermost expression in a func-
tion definition, and (2) applied to a single variable. It is not permitted to write

196

f (case x of ...), nor is it permitted to write case (f x) of Thus, every
(non-trivial) case expression has to be translated to a local function: case e of ...
becomes let f x = case x of ... in f e.

Another problem is, of course, partiality. Again, we see that termination is not
an issue when it comes to infinite loops – this version of Agda requires termination
for soundness, but does not check for it. Thus, Abel et al. simply join in with this
situation; absent a separate termination proof, all their results are partial, but they
do not let this worry them. The bigger issue is partiality from sources such as error
or partial pattern matches. Instead of trying to preserve the partiality with minimal
changes, they instead make the most invasive possible change, and make the entire
translation monadic. Function application is replaced with bind everywhere, literals are
wrapped in return, and every type is wrapped in m. This translation is then optimized
slightly further, to avoid too much noise – top-level functions are given simpler types
of the form m a -> m b -> m c, rather than m (m a -> m (m b -> m c)). The
translator then handles adding extra monadic layers if the function is ever used in a
context that expects such a thing.

Another complication, which we have not yet seen, is impredicativity. For this
translation, it is actually an issue that Haskell validates the inconsistent axiom
Type :: Type! This is an issue in a few ways. First, the way that Core encodes
GADTs can lead to instantiating a type variable with a polymorphic type, which is not
permitted in Agda without raising the universe level. This is not a problem Abel et al.
solve, as they find it sufficiently uncommon. However, two problems remain that they
do solve. The first is that type class dictionaries are actually quite similar to GADTs in
this way; for example, a type class like Functor is represented, at the Core level, as a dic-
tionary with the polymorphic field fmap :: forall a b. (a -> b) -> f a -> f b.
Second, because polymorphic types are one universe level higher than the types
they quantify over, the monadic translation would cause impredicativity issues if
it were ever applied to a polymorphic type. If we were translating a Haskell func-
tion of type forall a. P a -> Q a, then naïvely we would end up with the type
m ((a :: Set) -> m (m (P a) -> m (Q a))), since forall is just a type lambda.
But now we see that m is applied to types in Set, like P a, as well as types in the next
universe up, like Set itself.

To resolve these issues of impredicativity, the translation into Core distinguishes
between arrows that can fail and arrows that cannot fail. Given the semantics of
Haskell, it is always safe to apply a function to a type variable; this will never cause
a crash, and so we can eliminate the monadic wrapper after foralls. To resolve
the further issue with type class dictionaries, they observe that the polymorphic
type variables are only ever instantiated with monomorphic types, resolving the
impredicativity.

One important feature of the monadic translation is that it has been left abstract.
Rather than translating into some particular error monad, Abel et al. explicitly left the
translation polymorphic in the monad. This way, one can either work in the identity
monad, if working with total code; or the maybe monad, if working with partial code.
The identity monad they use is the true identity monad without a newtype wrapper,
and so if m is instantiated like that, the monadic noise really disappears. On the other

197

hand, values like undefined must be translated to Nothing, and so sometimes the
specific monad is determined. This monadic structure gives this translation the most
flexibility we have yet seen when it comes to reasoning about partial code.

9.3. Translating functional languages into logical formulæ

A plain shallow embedding is not the only possible way to embed a functional
programming language into a theorem prover. While deep embeddings are of course
always possible, another powerful technique is to translate functional (or other)
programs into logical formulæ in the theorem prover, perhaps in terms of a domain-
specific language, and then reason about these logical formulæ. Though this technique
does not produce as close a correspondence to the original input as the shallow
embedding techniques we have been discussing, theorem provers are very good at
reasoning about logical formulæ.

Thompson describes a translation from the lazy functional language Miranda to
logical formulæ (1995). This translation is presented on paper, as well as formalized
within Isabelle. The formulæ produced specify the particular values functions evaluate
to, equating function applications to their right-hand sides. This naturally necessitates
the statements being phrased as conditionals, in order to encapsulate the effects of
pattern matching and guards (a particularly thorny part of the translation). In order
to capture both the partiality and the laziness of Miranda, this translation works over
bounded partial orders; there is a bottom element in every translated type, allowing
the user both to prove theorems about partially-defined values and to prove theorems
about partial functions.

Thompson also produced a very similar translation for Haskell (1992). This
translation is broadly similar, but does run into some unique-to-Haskell complexities.
The pattern and expression language is richer: for example, irrefutable patterns (such
as ~(Just x)) can cause expressions far away from the pattern to evaluate to ⊥; and
case expressions require axiom schemes to evaluate, rather than all pattern matching
being relegated to functions and thus eliminated by the transformation, as in Miranda.
Type classes also present a challenge, and are handled by introducing “logical classes”,
logic-level classes containing theorems about the Haskell type classes (similar to our
ClassLaws type classes, which we saw back in Section 5.1.1).

Finally, Charguéraud produced a translation from pure OCaml programs into logical
formulæ in Coq (2010). Unlike Thompson’s approaches above, the resulting formulæ
are not assertions of equality, but characteristic formulæ: assertions parameterized by
postconditions that totally characterize the behavior of functions. We write JtK for the
characteristic formula corresponding to a pure OCaml term t which when translated
has Coq type T; this characteristic formula then has type (T -> Prop) -> Prop. This
type can be thought of as the set of all valid postconditions for t; naturally, computing
the returned Proposition takes more computation than that might otherwise suggest.
Despite the logical formulation, Charguéraud also takes care to ensure that translated
programs come out as a legible, similar-looking formula through the use of carefully-
designed syntactic sugar. This focus on readable output carries over to the formulation
of specifications and even to the tactic library for working with these characteristic

198

formulæ. Charguéraud was able to apply these techniques to verify more than half of
the data structures from Okasaki’s Purely Functional Data Structures (1999).

9.4. LiquidHaskell: an alternative approach to verifying Haskell
programs

While hs-to-coq presents one means of verifying existing Haskell programs, it
is by no means the only game in town. LiquidHaskell is a verification tool devel-
oped by Vazou, Seidel, Jhala, Vytiniotis, and Peyton Jones (2014); Vazou, Tond-
walkar, Choudhury, Scott, Newton, Wadler, and Jhala (2018b) which builds on the
technique of liquid types (Rondon, Kawaguchi, and Jhala, 2008). Liquid types are
a form of refinement types, allowing the programmer to constrain ordinary type
signatures, such as head :: [a] -> a, to more precise type signatures, such as
head :: {xs : [a] | len xs > 0} -> a. This type signature records that the in-
put to head must be a nonempty list – i.e., its length must be strictly positive –
which is what is required for head to be a safe (that is, total) function. LiquidHaskell
augments Haskell with liquid types (hence the name), and allows for the SMT-aided
automatic verification of the refined Haskell types.55

LiquidHaskell is the ongoing project most related to hs-to-coq, and has also seen
use on real Haskell code bases; while different from hs-to-coq, it is very exciting to
see another project exploring this space. Due to this similarity, I discuss LiquidHaskell
in more detail than other related work, discussing the following in this section.

(1) I begin by contrasting LiquidHaskell and hs-to-coq, exploring the relative
strengths and weaknesses of the two approaches (Section 9.4.1).

(2) Once we have seen this, I explore the way LiquidHaskell works in more detail
(Sections 9.4.2–9.4.4).

(3) Then, now that we know how LiquidHaskell works, I work out a simple
example of verifying that lambda calculus terms are well-scoped (Sections 9.4.5
and 9.4.6).

(4) Finally, I discuss how LiquidHaskell has been applied to larger programs,
focusing on those applications that connect to work that we have done with
hs-to-coq (Section 9.4.7).

9.4.1. Comparing and contrasting LiquidHaskell with hs-to-coq. As
briefly outlined above, LiquidHaskell and hs-to-coq, present two very different
approaches to the same goal. Instead of the automatic verification provided by SMT
solvers that LiquidHaskell has, hs-to-coq has manual Ltac proofs. Instead of rea-
soning about Haskell programs directly, hs-to-coq uses edit files to enable reasoning
about Haskell programs in a foreign language (Coq). These approaches are both
powerful enough to verify real code; at the same time, being so different from each
other, they naturally come with different strengths and weaknesses. While not about
hs-to-coq in particular, Vazou, Lampropoulos, and Polakow (2017) discussed the
core of these differences in “A tale of two provers: verifying monoidal string matching
in Liquid Haskell and Coq” where they verify a parallel string-matching algorithm
both in LiquidHaskell and in Coq. Their paper discusses the tradeoffs from using

55This first paragraph, as well as Sections 9.4.2–9.4.6, are originally from my WPE II.

199

those two languages as provers; while this does not get at the Haskell-specific angle of
hs-to-coq, it nevertheless provides an important perspective on the differences.

On the quantitative side, Vazou et al. (2017) found that both approaches required
similar amounts of specification (285 for LiquidHaskell56 vs. 248 for Coq); it is harder
to compare the size of the executable portions of code, since the Haskell code came
with input/output features such as printing, but given that excess the two seem
comparable (180 for LiquidHaskell vs. 122 for Coq). However, the amount of proof is
a clear win for LiquidHaskell, requiring only 669 lines of proof vs. 766 for Coq, a 1

8
reduction. This makes sense, as one of LiquidHaskell’s advantages is the SMT solver;
using powerful techniques such as proof by logical evaluation (see Section 9.4.3 for
more details) allows it to take advantage of the SMT solver’s ability to do proofs for
us in a wide domain. Because the Coq code was a port of the Haskell code, it is not
useful to compare the time taken to carry out the two different proofs.

On the qualitative side, Vazou et al. (2017) found that LiquidHaskell and Coq
were different experiences. LiquidHaskell’s use of SMT solvers gives it the ability to
complete proofs for you; in my experience, this can feel almost magical. However,
because SMT solvers say only “yes” or “no”, LiquidHaskell can do no more than point
to a failing proof and say “you have an error here”. Working in Coq, on the other
hand, involves live proof development, and while it is possible to get stuck, you can
always see the proof state in order to make decisions about how to move forward.
Coq does have some automation available in Ltac, such as the lia tactic which solves
linear integer arithmetic equations (The Coq Development Team, 2020b, “Micromega:
solvers for arithmetic goals over ordered rings”57). However, these tactics are more
specific and often not as optimized or complete as SMT solvers.

Vazou et al. (2017) also found that writing the code was different. LiquidHaskell
favors an intrinsic verification style, with the refinements attaching proofs directly
to terms; Coq often favors an extrinsic verification style, and hs-to-coq practically
demands it with its separation between translated code (program) and hand-written
code (extrinsic proof). It is thus no wonder that their Coq development, like ours,
required the use of proof irrelevance. And of course, termination checking in Coq was
a problem and appeasing it required complex code transformations; in LiquidHaskell,
only reflected terms needed to be terminating, and all termination is given by a
termination metric, making the situation much simpler.

Finally, one key difference that Vazou et al. (2017) found does not apply for
hs-to-coq: The difference between working in a full-featured general-purpose language
(Haskell) and a language designed for verification purposes (Coq). In their comparison,
LiquidHaskell had to deal with the lack of a library of utilities for writing proofs,
while Coq had to deal with a lack of libraries in the more conventional programming
sense (as well as with having efficiency and true parallelism accessible only through
extraction). By using hs-to-coq, we can get the benefits of both at the same time, by
bringing the libraries of general-purpose Haskell code into Coq. This does not come

56We are using the numbers for “Liquid Haskell with PLE [Proof by Logical Evaluation]”, as we
are interested in comparing with the most powerful form of LiquidHaskell; for more on PLE, see
Section 9.4.3.

57This chapter is available at https://coq.inria.fr/refman/addendum/micromega.html.

200

https://coq.inria.fr/refman/addendum/micromega.html

for free, of course; we must write edit files to get the translation to work. But once we
do, this is the key advantage of hs-to-coq: the ability to live in both worlds, and
to run the original efficient Haskell code having verified it in Coq. One feature they
highlight as a negative of working in Coq, however, we still cannot quite avoid: as a
general-purpose language, Coq had a much harder time dealing with nonstructural
recursion, and hs-to-coq’s edits only partially ameliorate that.

9.4.2. An introduction to LiquidHaskell. Now that we have some context
for how LiquidHaskell compares with hs-to-coq, let’s approach it in more detail on
its own terms. In general, given a Haskell function with a type of the form

func :: A -> B -> C
func x y = ...

LiquidHaskell permits augmenting its type to become
{-@ func :: {x:A | φ1(x)}

-> {y:B | φ2(x, y)}
-> {z:C | φ3(x, y, z)} @-}

func :: A -> B -> C
func x y = ...

The refined LiquidHaskell type is given within the special {-@ ... @-} comment form,
as are all LiquidHaskell directives. Each of the φi is a Boolean-valued formula with
the given free variables. It indicates that the first argument to head is not merely an
A, but an A that satisfies the predicate φ1, and similarly the second argument satisfies
φ2; the result is guaranteed to satisfy φ3. Because the refinement types come with
names, the function arrow here is dependent: we can refer to the first argument in the
refinement of the second. Should we not need to refine a type, we can always drop
the braces, writing just x:A -> ..., or even drop the name as well, simply writing
A ->

However, the refinements φi are, as indicated by the choice of notation, not
simply Haskell terms. Sadly, the halting problem (Turing, 1937) would prevent us
from automatically verifying these arbitrary conditions over Turing-complete terms.
Instead, the refinements are terms that can be fed to an SMT solver, which can
automatically verify or reject them. The grammar of refinements is split into (1)
expressions, and (2) Boolean-valued predicates over expressions; the core of the
grammar is presented in Figure 9.1 (Jhala, Vazou, Seidel, and other contributors,
2020).58

In addition to the integer arithmetic expressions, which SMT solvers can readily
deal with, the powerful features we see are variables and function application. What
names are in scope, and what functions can be applied? Initially, in LiquidHaskell, we
could only use the variables bound by the dependent refinement function arrow, and
a special class of functions called measures. A measure m is a function defined on an
inductive data type T with constructors C_1 through C_N such that m:

58The grammar includes additional productions, such as lambda expressions, but these appear
to be infrequently used; none of them transform the expressive power of the language. (For example,
lambda expressions do not show up in the predicate fragment of the grammar.)

201

expr , e ::= x
| number
| true
| false
| if p then e else e
| -e
| e o e
| e e
| (e)

pred, p, φ ::= true
| false
| if p then p else p
| e r e
| e e
| ~ p | not p
| p b p
| (p)

x ::= variable
op, o ::= +

| -
| *
| /
| mod

rel, r ::= == | =
| /= | != |
| <
| <=
| >
| >=

bop, b ::= &&
| ||
| => | ==>
| <=>

Figure 9.1. Important parts of the grammar of Liquid Haskell refine-
ments. A refinement is a predicate. (Jhala et al., 2020)

(1) is a function of one argument, of type T;
(2) is defined by N equations, one for each constructor of T;
(3) returns refinement expressions; and
(4) obviously terminates, often by structural recursion.

LiquidHaskell provides support for lifting Haskell functions that satisfy this description
to measures automatically;59 for example, we could have

len :: [a] -> Int
len [] = 0
len (_:xs) = 1 + len xs
{-@ measure len @-}

emp :: [a] -> Bool
emp [] = True
emp (_:_) = False

59The Haskell expressions defining the result of the function must be trivially convertible into
refinement expressions.

202

{-@ measure emp @-}

fst :: (a,b) -> a
fst (x,_) = x
{-@ measure fst @-}

Here, we see three measures: the length of a list (available in LiquidHaskell by
default at a more general type); whether or not a list is empty; and accessing the first
component of a tuple (also available by default). This demonstrates that measures are
actually quite flexible, and do not need to “measure” anything in the obvious sense.

While measures are flexible, they are not universal; any slightly complicated
function – such as (++) or map – will quickly become immeasurable. Without the
ability to refer to arbitrary Haskell functions in type signatures, our ability to verify
code is incomplete; we can prove many properties of functions, but we are not capable
of “arbitrary” verification.

9.4.3. Refinement reflection. Thankfully, recent work (Vazou et al., 2018b)
has extended LiquidHaskell to be able to use Haskell functions within the logical
refinements using a technique dubbed refinement reflection. The idea behind this
technique is to treat the equations of a function definition as logical equalities in the
refinement logic. Suppose we have the factorial function;

{-@ fact :: Nat -> Nat @-}
fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)
{-@ reflect fact @-}

It is then reasonable to take, as logical axioms,

fact 0 = 1
∀n : Nat. fact n = n * fact (n-1) if n 6= 0.

The reason we wish to use logical axioms here is that SMT solvers can reason about
uninterpreted functions. If we add fact as an uninterpreted function to the logical
environment, and then provide the two axioms above, we can get the SMT solver to
effectively evaluate fact!

The way we encode these axioms is by automatically enhancing the refined type
of fact. Instead of Nat -> Nat, where Nat is a LiquidHaskell type synonym for
{v:Int | v >= 0}, it becomes

{-@ fact
:: n:Nat
-> { v:Nat

| v = fact n
&& (n = 0 ==> fact n = 1)
&& (n > 0 ==> fact n = n * fact (n-1)) } @-}

203

Now, at each application of fact n, LiquidHaskell can automatically (1) conclude
that the result is equal to fact n; and (2) if n is known, use one of the implications
to “evaluate” fact. If n is unknown, the implications will hang around until more
information about n is known.

Thanks to the rich type of fact, we can now prove theorems about it, in a way
we could not before. For example, we can prove that fact 3 = 6:

{-@ fact_3_is_6 :: {_:() | fact 3 = 6} @-}
fact_3_is_6 = ()

Yes, this is a sufficient proof! The SMT solver can string the facts about fact together,
and conclude that

fact 3 = 3 * fact 2 because 3 > 0
= 3 * (2 * fact 1) because 2 > 0
= 3 * (2 * (1 * (fact 0))) because 1 > 0
= 3 * (2 * (1 * 1)) because 0 = 1
= 6.

This uses the algorithm of Proof By Logical Evaluation, or PLE.

9.4.4. Termination and laziness. One important feature we see in Liquid-
Haskell is that, by default, it checks that every Haskell function is total. This is
important for verification, as it means that our conclusions are actually theorems.
Without termination, we cannot conclude that our theorems are actually theorems.
For instance, we can define

{-@ evil :: () -> {false} @-}
evil :: () -> ()
evil u = evil u

where the refinement type {p} is short for {_:() | p}, and then prove anything
we want simply by appeal to evil (). Our theorems thus become merely partial
correctness results. This check is why we needed to annotate, above, that fact
operated only on Nats; without it, LiquidHaskell would have recognized that fact
diverged on negative numbers.

In order to check termination, LiquidHaskell is more flexible than simply checking
that functions are structurally recursive; instead, it can use a well-founded measure in
order to check any argument for termination. We can write

{-@ func :: x:A -> y:B -> C / [m x, y] @-}

to check that the tuple (m x, y) is decreasing for an appropriate m.
However, if we only want partial correctness, then we can leave this check off,

either globally with the --no-termination command-line argument or locally with
the annotation {-@ lazy func @-}. When we do, we must contend with the fact
that Haskell is nonstrict. Recalling evil above, suppose it were marked lazy and
consider the function

204

{-@ not_okay :: {_:() | false} -> {1 = 0} @-}
not_okay :: () -> ()
not_okay _ = ()

This function looks permissible – doesn’t it follow from the principle of explosion?
However, consider the application not_okay (evil ()). Because Haskell is nonstrict,
this is equal to (), and so it would be a terminating term that would prove that 1 = 0.
Instead, the permissible version of this function is

{-@ okay :: {_:() | false} -> {1 = 0} @-}
okay :: () -> ()
okay () = ()

Matching on the argument forces it to be evaluated, and ensures that our precondition
has in fact been proven. We have to make sure that our arguments respect the
partiality of partial correctness!

9.4.5. Example. In order to see these features in action, we can look at verifying
well-scopedness for a simple lambda calculus. For the full code, see Section 9.4.6; the
necessary excerpts are presented along the way.

We take as our object language a simple lambda calculus using de Bruijn indices
for variable binding:

data Expr = Var Int
| Lam Expr
| App Expr Expr
deriving (Eq, Ord, Show, Read)

{-@ Var :: Nat -> Expr @-}

We specify that the type of variables can only contain natural numbers. We then
specify what it means for a lambda expression to be well-scoped, given the number of
current binders:

{-@ wellScoped :: Nat -> e:Expr -> Bool / [size e] @-}
wellScoped :: Int -> Expr -> Bool
wellScoped vars (Var x) = x < vars
wellScoped vars (Lam e) = wellScoped (1+vars) e
wellScoped vars (App e1 e2) = wellScoped vars e1 &&

wellScoped vars e2
{-@ reflect wellScoped @-}

The termination annotation here is in terms of the obvious size measure; without the
annotation, wellScoped will guess that the first argument is the termination measure
instead.

Now consider the lifting operation, which takes a term and increments every binder
above the given threshold. This is used to ensure that substitution is capture-avoiding.

{-@ lift :: Nat -> e:Expr -> Expr / [size e] @-}
lift :: Int -> Expr -> Expr
lift d (Var x)

205

| x < d = Var x
| otherwise = Var (x+1)

lift d (Lam e) = Lam (lift (d+1) e)
lift d (App e1 e2) = App (lift d e1) (lift d e2)
{-@ reflect lift @-}

We want to prove that liftWellScoped preserves well-scopedness, but under one
more binder than before – that if we know that wellScoped k e, then we can conclude
that wellScoped (1+k) (lift d e). We can state this as a theorem, and prove it:

{-@ liftWellScoped ::
k:Nat ->
d:Nat ->
{e:Expr | wellScoped k e} ->
{wellScoped (1+k) (lift d e)}
/ [size e] @-}

liftWellScoped :: Int -> Int -> Expr -> Proof
liftWellScoped _ d (Var x)

| x < d = trivial
| otherwise = trivial

liftWellScoped k d (Lam e) =
liftWellScoped (k+1) (d+1) e

liftWellScoped k d (App e1 e2) =
liftWellScoped k d e1 &&&
liftWellScoped k d e2

Here, Proof is a LiquidHaskell-provided synonym for the type (), and trivial is
a synonym for the value (). The (&&&) function takes two Proof arguments and
conjoins their refinements; the SMT solver and PLE does the rest of the work for
us. We see that the pattern-matching and recursive structure of the code mirrors the
structure of lift; we do not have to do any manual verification work other than to
get the induction right.

The proof for substitution is much the same; again, the details are presented in
Section 9.4.6.

{-@ LIQUID "--reflection" @-}
{-@ LIQUID "--ple" @-}

import Prelude hiding ((!!))
import Language.Haskell.Liquid.ProofCombinators

{-@ (!!) :: xs:[a] -> {i:Nat | i < len xs} -> a @-}
(!!) :: [a] -> Int -> a
(x:_) !! 0 = x
(_:xs) !! i = xs !! (i-1)

206

{-@ reflect !! @-}

data Expr = Var Int
| Lam Expr
| App Expr Expr
deriving (Eq, Ord, Show, Read)

{-@ Var :: Nat -> Expr @-}

{-@ size :: Expr -> Nat @-}
size :: Expr -> Int
size (Var _) = 0
size (Lam e) = 1 + size e
size (App e1 e2) = 1 + size e1 + size e2
{-@ measure size @-}

{-@ wellScoped :: Nat -> e:Expr -> Bool / [size e] @-}
wellScoped :: Int -> Expr -> Bool
wellScoped vars (Var x) = x < vars
wellScoped vars (Lam e) = wellScoped (1+vars) e
wellScoped vars (App e1 e2) = wellScoped vars e1 &&

wellScoped vars e2
{-@ reflect wellScoped @-}

value :: Expr -> Bool
value (Lam _) = True
value _ = False
{-@ reflect value @-}

{-@ lift :: Nat -> e:Expr -> Expr / [size e] @-}
lift :: Int -> Expr -> Expr
lift d (Var x)

| x < d = Var x
| otherwise = Var (x+1)

lift d (Lam e) = Lam (lift (d+1) e)
lift d (App e1 e2) = App (lift d e1) (lift d e2)
{-@ reflect lift @-}

{-@ subst :: Expr -> Nat -> Expr -> Expr @-}
subst :: Expr -> Int -> Expr -> Expr
subst (Var x) y v

| x < y = Var x
| x == y = v

207

| otherwise = Var (x-1)
subst (Lam e) y v = Lam (subst e (y+1) (lift 0 v))
subst (App e1 e2) y v = App (subst e1 y v)

(subst e2 y v)
{-@ reflect subst @-}

{-@ liftWellScoped ::
k:Nat ->
d:Nat ->
{e:Expr | wellScoped k e} ->
{wellScoped (1+k) (lift d e)}
/ [size e] @-}

liftWellScoped :: Int -> Int -> Expr -> Proof
liftWellScoped _ d (Var x)

| x < d = trivial
| otherwise = trivial

liftWellScoped k d (Lam e) =
liftWellScoped (k+1) (d+1) e

liftWellScoped k d (App e1 e2) =
liftWellScoped k d e1 &&&
liftWellScoped k d e2

{-@ substWellScoped ::
k:Nat ->
{e:Expr | wellScoped (k+1) e} ->
{y:Nat | y <= k} ->
{e':Expr | wellScoped k e'} ->
{wellScoped k (subst e y e')}
/ [size e] @-}

substWellScoped :: Int -> Expr -> Int -> Expr -> Proof
substWellScoped _ (Var x) y _

| x < y = trivial
| x == y = trivial
| otherwise = trivial

substWellScoped k (Lam e) y e' =
liftWellScoped k 0 e' &&&
substWellScoped (k+1) e (y+1) (lift 0 e')

substWellScoped k (App e1 e2) y e' =
substWellScoped k e1 y e' &&&
substWellScoped k e2 y e'

208

9.4.7. LiquidHaskell and hs-to-coq. Now that we have seen how Liquid-
Haskell looks when applied to examples that can fit in a paper, it is important to close
out by looking at how LiquidHaskell can be applied to large examples. In particular,
we focus on applications where we have done analogous verification work in hs-to-coq,
to best see the similarity (although of course LiquidHaskell has been applied more
widely). One early example of this is when Vazou, Rondon, and Jhala (2013) applied
their then-latest improvements to LiquidHaskell to verify a range of modules: basic
parametric functions; vectors with known domains and ranges; both textbook and
optimized sorting algorithms; a splay set from llrbtree (Yamamoto, 2012)60; and
finally, the implementation of Maps from containers, which was the largest module
they verified by an order of magnitude (in fact, it was up over 80% of the total lines
of code they verified). This last we also verified (though a different version) with
hs-to-coq, as we discussed in Chapter 6, providing a key point of comparison.

Vazou et al. (2013) found many things in common with what we found: specifying
and verifying top-level functions was often simpler than the specifying and verifying
the auxiliary functions they depend upon; code modification was occasionally necessary
to allow the verification to go through; and they were able to verify the top-level
functions in the implementation of Map. Their specification had many similarities to
ours: we both used unbounded integers, rather than dealing with machine words, and
we both left functions such as showTree unverified. However, our verification provided
a richer specification; while Vazou et al. (2013) verified only that the trees were binary
search trees, we also verified that each operation was semantically correct and that
the trees were weight-balanced as well as binary search trees.

In a similarly related vein, though at a less real-world scale, Vazou, Breitner, Kunkel,
Horn, and Hutton (2018a) verified examples from Programming in Haskell (Hutton,
2016). This was a demonstration of LiquidHaskell’s excellent support for equational
reasoning, showing how LiquidHaskell can make proofs look nice, something out
of reach for Coq. By defining appropriate combinators, proofs in LiquidHaskell
can look remarkably like the sort of proofs by equational reasoning that Haskell
programmers, including Hutton, like to employ. In particular, in Section 5, Vazou
et al. verify “Hutton’s razor”, the simple compiler from an expression-based language
to a stack machine that we also verified (Section 5.2). They too had to face the
question of totality, since the exec function that evaluates the compiler is partial.
LiquidHaskell had an option here we did not: they could have used refinement
types to transparently restrict the domain of exec to well-formed code-stack pairs.
However, this would have involved a complicated binary predicate, and so they chose
to resolve the dilemma the same way we did: by making the code explicitly use
Maybe. The structure of their proof is the same as ours: the same top-level theorem,
that exec (comp e) [] == Just [eval e]; the same inductive form of the theorem,
that exec (comp e) s == Just (eval e : s); and the same distributivity lemma,
that exec (c ++ d) s == exec c s >>= exec d (although here, we used different
variable names and wrote our bind in the other direction, as =<<).

60This appears to be the correct package and version, but they do not provide an explicit
reference.

209

Finally more recent work has brought LiquidHaskell to type classes (Liu, Parker,
Redmond, Kuper, Hicks, and Vazou, 2020). A key component of hs-to-coq has been
our provision of laws for type classes such as Eq, Ord, Semigroup, Monoid, Functor,
Applicative, and Monad, as I discussed in Section 5.1. However, until recently,
LiquidHaskell could not provide laws for type classes. It could verify properties of
individual instances, but not apply general refinements to the types of class methods
themselves. Once Liu et al. (2020) designed implemented support for this, they both:
(1) brought it to bear on the standard type classes Semigroup, Monoid, Functor,
Applicative, and Monad; and (2) used it to verify an implementation of replicated
data types. As with our approach, when providing law-bearing versions of type classes,
they provide a separate set of type classes; they prefix them with V (presumably
for verified) instead of suffixing them with Laws, thus getting type classes such as
VSemigroup.

One wrinkle that both Liu et al. and hs-to-coq had to handle was type class
coherence. In Haskell, type class resolution is coherent, meaning that all solutions of a
type class constraint are the same values. In Coq, this is not the case, and so when
we have the three requirements that

(1) an instance of Applicative is also an instance of Functor;
(2) an instance of FunctorLaws is also an instance of Functor; and
(3) an instance of ApplicativeLaws is also an instance of both Functor and

FunctorLaws,
we naïvely would get two different instances of Functor for the same type. When we
built the Coq libraries for hs-to-coq, we had to avoid that manually; when extending
LiquidHaskell, they leverage Haskell’s constraint solver. However, Haskellers can
use the {-# INCOHERENT #-} pragma to violate coherence for specific instances, and
for a verification tool like LiquidHaskell, this cannot be ignored. Thus, they extend
LiquidHaskell to check that the instance dictionaries they use are coherent, thereby
retaining soundness.

The list of type classes that Liu et al. verify notably left out Eq and Ord. It turns
out that these type classes, as well as Num, were already special-cased in LiquidHaskell,
and linked directly to the appropriate SMT solver primitives; this is more powerful
that the refinement types they would have, since the SMT solver knows how to reason
about those theories. Since making that change would both lose that property and
break existing proofs, Liu et al. left this handling alone, looking to build a hybrid
SMT–type class refinement approach in the future.

Using these techniques, in addition to verifying the standard type classes and
instances, Liu et al. verified a library of replicated data types (RDTs, or VRDTs
when verified), which are data types that can have replicas distributed across multiple
computers, receive unordered update operations, and converge to the same result.
They then used these to implement two applications: “a shared event planner and a
collaborative text editor.” The VRDT development was 5536 lines of code, and featured
something familiar: an implementation of Data.Map. However, in order to verify that
module, Liu et al. had to redefine it so that they could verify the properties they
needed. In particular, they verified that map keys were appropriately sorted, and
not the more comprehensive specification that we verified (Chapter 6). This was not

210

the only code that they had to redefine in order to hang refinements on, but merely
one example that we recognize well. Once they had this version of Data.Map, they
were able to link it to the SMT solver’s theory of sets, gaining a powerful library of
verification (although they experienced some growing pains, having difficulty linking
the SMT theories and their type class refinements).

9.4.8. LiquidHaskell in review. We have thus seen how LiquidHaskell, our
closest neighbor in the space of verifying existing, realistic Haskell programs, is a
powerful and effective tool for carrying out verification. By using SMT solvers and
annotating existing Haskell programs with refinement types, their verification can be
even more transparent and smooth than hs-to-coq can be. However, by working
with Coq, we get the ability to leverage an existing infrastructure and ecosystem
devoted to verification, and can use the full power of the Calculus of (Co-)Inductive
Constructions to verify programs rather than solely the language of an SMT solver.
The tradeoffs that LiquidHaskell and hs-to-coq make do not position either as clearly
a winner in the space, and I look forward to seeing what both they and we will do
next.

9.5. A verified functional language: CakeML 61

One major application of hs-to-coq, as we saw in GHC Chapter 7, was verifying
parts of GHC. There has been a lot of work done on verifying compilers; for instance,
CompCert is a fully formally verified C compiler written in Coq (Leroy, 2009). Within
this field, the CakeML project (Kumar et al., 2014; Tan et al., 2016) has particular
relevance to hs-to-coq. CakeML is a verified compiler and REPL for an ML dialect,
also called CakeML. Its particular connection to hs-to-coq is that both leverage
translation in their compiler verification; the CakeML implementation is a masterful,
tightly-woven application of translation from HOL4 to CakeML. The translation is
different, in that the original code is written in HOL4 and this is where the verification
works takes place; furthermore, their translation is certificate-producing (Myreen and
Owens, 2012), so they do not need to trust it the way that we must trust hs-to-coq.
This also means that they do not need to worry about the legibility of the translation.
On the other hand, there are similarities: the use of verification on a compiler for a
functional language, the verification work happening within a theorem prover, and
the fact that they get both a CakeML and HOL4 (analogous to Haskell and Coq in
our setting) implementation of the compiler.

There are two versions of the CakeML compiler: a 2014 version, which provided a
verified REPL and focused on ease of verification (Kumar et al., 2014); and a 2016
version, built upon the former, which focused on a fully-featured source language and
more efficient code generation (Tan et al., 2016). (And work has not stopped (Abra-
hamsson, Åman Pohjola, Fox, Gómez-Londoño, Kanabar, Kumar, Lööw, Myreen,
Norrish, Owens, Sewell, Syeda, Tan, Tomandl, and other contributors, 2020a) – but
the present model for the project is in the vein of the 2016 paper.) An important key
feature of CakeML is that the compiler is compiled with itself (i.e., it is bootstrapped),

61This text is originally from my WPE II.

211

meaning that we not only know that the source of the compiler is correct, but that
the actual executable is correct as well.

Both versions of CakeML wind up with a high-level correctness theorem that says,
to paraphrase, roughly the following:

If we take a CakeML expression (2014)/program (2016), compile it, and run
the result, either:
(1) the CakeML evaluates successfully and so does the compiled output,

producing the same behavior;
(2) the CakeML crashes and so does the compiled output, producing the

same result before that point; or
(3) the compiled code behaves like the first part of the CakeML program,

and then crashes early with an out-of-memory error.
None of this holds if anything else can interfere with the heap.

Of course, the devil is in the details.
The workflow of producing the CakeML compiler is as follows.
(1) The compiler is written and verified in HOL4.
(2) CakeML code is synthesized automatically from the HOL4 code, using a

certificate-producing algorithm (Myreen and Owens, 2012). This produces a
CakeML implementation of the compiler.

(3) The HOL4 implementation of the compiler is run, inside HOL4, on the
generated CakeML source code for the compiler. This produces, again in
HOL4, a sequence of machine instructions that implements the compiler.

(4) Thanks to the compiler correctness theorem in HOL4, we know that the
sequence of machine instructions does the same thing as the input CakeML
source code.

(5) Thanks again to the compiler correctness theorem, but this time the version
generated with the proof-producing synthesis in step 2, we know that the
thing the input CakeML source code did was correctly compile CakeML.

(6) Therefore, the sequence of machine instructions is a correct CakeML compiler.
At this point, we could run the machine instructions in an executable and provide the
generated CakeML code from step 2 as input if we wanted. This whole workflow is
also drawn out diagrammatically in Figure 9.2.

In many ways, the construction of the CakeML compiler is entirely standard.
The 2014 version consists of four stages:

(1) Parsing;
(2) Type inference;
(3) Conversion to a functional IL; and
(4) Conversion to a bytecode.

In this version, the machine code is generated with some automation, but is specifically
done for the REPL; the compiler itself only goes as far as bytecode, and it is this that
is bootstrapped. The executable REPL, which is specifically for x86-64, is a bespoke
artifact generated from the bootstrapped bytecode.

In the 2016 version of CakeML, there are instead twelve intermediate languages,
multiple target machines, and thirty different passes, from parsing to machine code
generation. This is, in fact, even more standard than the 2014 version, and indeed

212

compiler.hol

proof (compiler.hol)

compiler.cml

proof (compiler.cml)

compiler.o

proof (compiler.o)

synthesizer

Figure 9.2. How to get to CakeML. Arrows represent the flow of values
as inputs and outputs; the “chutes” indicate that the attached block
is being applied to the arrow-fed input to produce the arrow-emitted
output. Plain blocks without chutes, such as compiler.cml, are never
applied, and are only static data.

gives better performance. Here, the bootstrapping goes all the way to the bare metal
and back up to the CakeML.

While the internal details of all these passes are surely interesting, they are not
what we are here for. We are here for the verification. In particular, the verification of
the REPL in the 2014 version of the paper. The formalization of a REPL, as opposed
to a full compiler, is one of the most unusual features of this CakeML formalization.

The specification of the REPL, REPLs, is a HOL relation of type bool list →
string→ repl_result→ bool. It relates three things. Not in order, they are:

(1) The input string, which will hopefully be parsable as a sequence of declara-
tions.

(2) A list of booleans indicating the presence of type errors in those declarations.
(3) The result: a list of printed outputs, followed by “terminates” or “diverges”.

As a REPL, the idea is that each declaration will either print out a result value, print
out a reported error, or diverge entirely. The booleans are necessary because the type
inferencer has only been proven to be sound, but not complete; if the semantics tried
to execute a typeless program, it would get stuck.

This specification is connected both to the operational semantics – which is available
in both big- and small-step styles – and to an HOL implementation of the REPL,
REPLi. This is a total but uncomputable function of type string → repl_result; it is
uncomputable because it must end the list of results with “diverges” if and only if

213

running the input will diverge. This is, of course, undecidable (Turing, 1937). The
ability to work with functions like this is one of the powers of HOL.

The function REPLi – or, more precisely, its subcomponent REPLi_step, the
function which converts an input string to bytecode – is synthesized into CakeML
code, which is then put through the whole involved bootstrapping process. The key
lemma connecting REPLi and REPLs says that for all inputs s, there exists a list e
such that REPLs e s (REPLi s). Combined with the bootstrapping process, this gives
us our correct byte code core of the REPL. This is then translated to x86-64 machine
code, and placed within a main loop, garbage collector, and libraries all additionally
constructed from synthesized machine code with proofs. The result is a verified REPL
whose correctness follows from combining all of the various proofs about code that
have been preserved, synthesized, translated, or even proved manually.

The 2016 formulation (Tan et al., 2016) helps close some of the gaps present above
– although it lacks a REPL, the type inferencer has been proven to be both sound and
complete, the compilation story goes all the way down to machine code, and things
like the garbage collector are now accounted for. It does still rely on assumptions that
any FFI calls are correct and do not hammer on its memory, but this is a much more
mild assumption.

9.5.1. Verifying programs? Because the CakeML compiler is verified against
a semantics, it is possible to use CakeML to write verified programs. However, this is
not the intended use of CakeML; instead, the project’s website says that “[u]sually, we
recommend that verified CakeML code is produced via synthesis using frontend 1 [the
HOL-to-CakeML synthesizer].” (Abrahamsson, Åman Pohjola, Fox, Gómez-Londoño,
Kanabar, Kumar, Lööw, Myreen, Norrish, Owens, Sewell, Syeda, Tan, Tomandl, and
other contributors, 2020b) While it does acknowledge that “in some cases it is more
convenient to do Hoare-style reasoning in the separation logic of CFML [Characteristic
Formulae for ML, specifically a version adapted to CakeML]” (ibid.), the general
approach to verifying CakeML programs is to simply use a theorem prover and generate
verified code from the result – a more powerful form of extraction.

214

CHAPTER 10

Conclusions and Future Work

In this dissertation, I have presented hs-to-coq, a novel tool for faithfully trans-
lating Haskell programs into legible Coq code. We have seen the design of the tool
itself, the design of the edit language that it supports, and the methodology for how to
use it. And we have seen how hs-to-coq can be brought to bear on problems ranging
from the base library, through containers, all the way to GHC itself. Finally, we saw
other work in the same space, and how hs-to-coq has advantages and disadvantages
when contrasted with these other techniques.

At the beginning of this project, we had hoped to build a tool that could translate
Haskell type definitions into Coq, and use that to specify parts of GHC. Very quickly,
I realized hs-to-coq had the potential to apply to terms as well, and the result
gradually became what we have seen here. Yet GHC proved a more slippery target
than we had hoped, in part due to the expansion of our goals for hs-to-coq, and
though we started with small pieces such as Bags early on, it took us some time before
we were able to translate realistic portions of GHC. Happily, this is something we can
now do, and verification work on GHC is continuing to expand.

The design of the edit language was not originally part of our concept of hs-to-coq,
but it became apparent that it was the beating heart of hs-to-coq, the feature without
which we could not do anything we wanted. The edit language enabled us to use
hs-to-coq anywhere on a spectrum from “nearly direct correspondence”, as with our
initial work which we saw in Chapter 5, to “creating a model of the program that
is more amenable to verification”, as with our verification of GHC which we saw in
Chapter 7. This range, combined with the machine-readable nature of the edit files,
gave rise to our concept of the mechanized formalization gap, a novel contribution
of hs-to-coq. There is always a formalization gap in any verified in system; in
hs-to-coq, the domain-specific portion of that gap (beyond hs-to-coq itself) is
recorded, having been written down as edits.

10.1. Edits: a retrospective

The work we have done in all of our projects required edits, ranging from those
that are minimally invasive (such as rename type) to those that are dramatic trans-
formations (such as inline mutual or skip constructor). We chose which edits
to add as part of a feedback-driven design process, adding edits as they were needed
by the translations and proofs. This is why we had a more modest, less invasive set
of edits when doing our initial work (Chapter 5); why we added more complex edits
when verifying containers (Chapter 6); and why we finally built up to our current
set of edits, including those that alter the code the most, when verifying portions of
GHC (Chapter 7). How do these fit into the verification process?

215

The status quo, with Coq verification, is to think of the verification project as
containing three pieces:

(1) The domain objects to be verified;
(2) The theorems about (equivalently, the specifications of) these objects; and
(3) The proofs of these theorems.

These steps are distinct: in order to successfully complete a verification project, you
first have to acquire a Coq model of your domain, either by writing it or using an
existing one (an example of the latter being the natural numbers when verifying a
number-theoretic property); you then have to settle on the desired specification of
these objects; and finally, you have to carry out the proof. There is often feedback
between these steps – for instance, proofs requiring intermediate lemmas, which then
have their own proofs – but they represent three different conceptual activities, each
of which is represented in its own domain in Coq (roughly speaking, (1) Definitions
in Type, (2) Theorems in Prop, and (3) Proofs in Ltac). And each of these pieces is
challenging in its own right (with the possible exception of (1) if you are working with
an existing object such as the natural numbers).

Using hs-to-coq adds a fourth piece:
(4) The formalization gap between the Haskell domain objects and the Coq model

of the domain objects.
This gap is represented, of course, in the edit files written for the particular development.
Because edit files can be written for every project, and because they are usually
necessary, considering the precise details of the formalization is a mandatory part of
using hs-to-coq, and it is a new source of difficulties during a verification project.
Defining the formalization gap is tricky, just like producing the other three pieces
of Coq projects; at the time of writing, our verification of containers contains 672
(nonblank, noncomment) lines of edits, and our verification of GHC contains 1400–
1804 lines of edits (depending on exactly which per-module edits we include, as the
translation is still in progress). However, we believe that the benefits of this approach
are worth it; as we can recall from Section 1.2, these benefits are that edit files enable
us to

(1) verify existing Haskell code;
(2) never edit Haskell code by hand;
(3) get a mechanized formalization gap; and
(4) work anywhere on the spectrum from confidence to perfection.
The volume of edits for containers and GHC – over half of all the edits in our

repository, which weigh in at 4142 lines in total – comes with two quantitative lessons.
On the one hand, edits are challenging to write; we have written literally thousands
of lines of them. On the other hand, edits are simpler than the programs they apply
to; for both containers and GHC, the edits are an order of magnitude smaller than
the translated and verified code. This juxtaposition highlights another reason we
believe that edit files are worth their weight when using hs-to-coq to simplify the
semantics of the translated Coq model, as in the GHC case. While writing edits is
an additional cost incurred by using hs-to-coq, a relatively smaller amount of time
spent on edits can pay tremendous dividends in the amount of time saved during

216

verification. In the case of GHC, verification would simply not have been possible
without our suite of edits; in general, the order of magnitude size difference, along
with our experience during the verification process, points to the cost of writing edits
as being meaningfully less than the amount of work they save.

We found that the edits we needed to write for a verification project were always
highly influenced by inspecting the result of translation; this was especially true at
first, when we still didn’t fully understand how to write effective edit files, but the
bespoke nature of the edits for each project meant that in no case could we design
the formalization gap from first principles. The process of verification was a loop:
translate Haskell, find problems in the resulting Coq code, experiment to determine
what transformations would be necessary, write those transformations down as edits,
and repeat. Finding problems on the Coq side could either happen due to a failed
compilation or later due to difficulties during specification design or proof writing; the
former was more likely to happen during the initial phases of translating and verifying
any individual piece of code, and the latter to happen later, once working with the
core of a translation. Determining the edits sometimes involved manually tweaking
the Coq code to determine what changes would be necessary (e.g., for a rewrite
edit), but the autogeneration of the Coq output meant that we could not keep those
changes and so were unable to take the shortcut of “just editing code”, as desired.

For much of the early part of our work, there was an additional step to this loop:
after determining what transformations would be necessary, we often had to extend
hs-to-coq with a new edit that could perform it. Early projects found me doing
this almost constantly, as this is where the edit language came from; later on, our
development process could often proceed without adding new edits to hs-to-coq, but
the need to add new ones still cropped up regularly. It was only by the time we began
to work on translating and verifying parts of GHC – fairly late in hs-to-coq’s life –
that the edit language truly began to stabilize.

10.2. Evaluating the edit language

The design process of the edit language produced a set of edits that can be thought
of us “two-sided” in the sense of DeepSpec. Recall that “two-sided” means “connected
to both implementations and clients” (Appel et al., 2017). The edit language is not
a specification, but plays a similar role; when thinking about two-sidedness in this
context, we take it to mean “useful for both translation and verification”. And indeed,
the feedback driving the design of the edit language came from both the translation
and verification halves. Some edits were more important for one than the other:
for example, skip constructor was necessary when translating GHC, in order to
remove constructors that trigger unsupported features such as non-strictly-positive
recursion in data types. While those changes also eased verification, our theorems
could alternatively (albeit significantly less elegantly) have been stated to ignore the
skipped cases. On the other hand, the inline mutual edit had to be useful for
both translation, which meant producing correctly mutually-recursive code, as well as
verification, which meant producing code that was pleasant to work with and similar
to the original Haskell.

217

Attribute DeepSpec Edits Success?
Rich “Describing complex com-

ponent behaviors in detail”
Capable of expressing arbi-
trary complex code trans-
formations

X

Two-sided “Connected to both imple-
mentations and clients”

Useful for both translations
and proofs

XX

Formal “Written in a mathemati-
cal notation with clear se-
mantics”

A machine-readable lan-
guage with clear semantics

−

Live “Connected via machine-
checkable proofs to the
implementation and client
code”

Connects the Haskell to
the Coq automatically via
hs-to-coq

XX

Figure 10.1. Are edits a deep language? Evaluating how the attributes
of a deep specification (Appel et al., 2017) correspond to the design and
features of the edit language.

In fact, the whole DeepSpec framework can be reinterpreted from this new perspec-
tive as a guide to understanding how we want to think about edits. Recall that the
four attributes of a deep specification are that it is (1) rich, (2) formal, (3) two-sided,
and (4) live (Appel et al., 2017). We want our edit language to also be “deep” in this
sense. What does that mean for us? In Figure 10.1, we draw analogies between what
these four attributes mean for specifications and what they mean for us.

10.2.1. Are edits rich? Richness is a measure of how expressive specifications
are. For edits, the corresponding richness is in the code transformations that can be
expressed. We have found the collection of edits we’ve come up with to be sufficiently
rich – while rewrite, add, and skip are the most emblematic of this, since they can
transform code in truly unconstrained ways, we have found our collection of edits to
form a useful vocabulary. Edits like skip type and inline mutual express concrete
transformations we want to apply, and can be used widely across different modules
and even projects.

That said, the richness of the edit vocabulary is missing one component: abstraction.
Without a facility for edit abstraction, changes to the edit language need to be made
within hs-to-coq. Adding inline mutual or set type could only be done by writing
new Haskell transformations on the AST, and not from within the edit language itself.

During the verification of GHC, we often saw that we could get very far without
extending hs-to-coq. This was a new experience – our first verification projects,
up through containers, involved producing new edits from the get-go. While we
knew working on GHC would also involve this, the balance had noticeably shifted;
the features we had added to the edit language while working on containers had
dramatically increased the usability of the edit language. This also meant that the

218

new edits we added were targeted precisely at pain points in the translation and
verification processes.

All in all, the edit language is satisfyingly rich; that said, individual complex edits
(e.g., inline mutual) must be added by hand to hs-to-coq, so we cannot ever say
that we are “completely rich” and can stop adding edits.

10.2.2. Are edits two-sided? For a specification to be two-sided, it has to
connect to both the artifact being verified and the proof that the artifact is correct.
We discussed what this means for hs-to-coq earlier, but in some ways, edits have
three sides: first, hs-to-coq (are they implementable?); second, the translation (do
they apply to the artifact?); third, the proof (do they produce verifiable Coq?). As I
discussed above, our feedback-driven process of working on the proofs and hs-to-coq
simultaneously means our edits are very much two- (or three-?) sided.

10.2.3. Are edits formal? Formality is a measure of how “mathematical” spec-
ifications are, in a certain sense – how precise and unambiguous they are, which
usually corresponds to using mathematical notation. Since edits are a programming
language, they automatically have a semantics – it’s the Haskell code of hs-to-coq
that describes the transformation. However, we do not go further than this; there is no
“core calculus” of edits which we reason about, and while we provide documentation
for all the edits (see Chapter 4 and https://hs-to-coq.readthedocs.io/), this
documentation is not itself formal (or deep in general).

Additionally, since our edits grew organically, we don’t have a notion of why this
set of edits is the one to have. The two-sidedness of edits tells us that we have a
useful set of edits. But our set is not privileged in any sense – it is not minimal, or
theoretically nice, or orthogonal. It would be an interesting project to look at the
collection of edits we have accrued over the years and think about how to capture
them as a language that was designed all at once. Until then, our edits are mechanized
and documented, but not truly formal.

10.2.4. Are edits live? A specification is live when it is constantly being vali-
dated. A specification written on paper can get out of date with respect to either the
implementation being verified or the clients of the specification; a live Coq specification
cannot, as it’s validated every time that it’s compiled. This is the hardest property
to consider when looking at the edit language, as the language design itself doesn’t
directly touch either the Haskell code we translate or the Coq code we verify. I believe
the closest analog of “being live” for the edit language is that it should enable a live
translation – it should allow for a machine-run connection between the Haskell artifact,
the Coq translation, and the Coq proofs. And hs-to-coq – in concert with some
Makefiles – provides exactly this by design.

There is certainly room to refine this notion of being live even further. The
Makefiles we use to build our work are hand-crafted and fragile, and hs-to-coq could
track more dependency information on its own. And we have not yet tested how
robust edit files are when we apply them to a project that is changing over time.
But the key piece of a mechanized formalization gap is that we support this sort of

219

https://hs-to-coq.readthedocs.io/

live connection, and this has been a key and successful part of hs-to-coq from the
beginning.

10.2.5. Are edits deep enough? So, having gone through these four attributes,
is the edit language deep, or at least deep enough? I believe it is – we could not have
worked with a project at the scale of GHC without it. One of the biggest weakness of
the edit language as it stands is the somewhat ad-hoc nature of our selection of edits:
we added redefine, and then separately add and skip; we added individual complex
transformations, such as inline mutual, while also supporting the customizable
rewrite edit; and so on. Future work could take the current edit language and
refine it down into something more streamlined, having learned the lessons we took
from designing it this first time. But the key attributes – individual, named code
transformations; being expressive enough to change the semantics of code in arbitrary
ways; and supporting a mechanized formalization gap – coupled with our two-sided
feedback-driven development process are crucial enablers of the style of verification we
outline here. Even in this refined edit language, I believe this key framework would
remain.

10.3. Future work

The story of hs-to-coq doesn’t end here. This work was fundamentally a joint
effort, and the hs-to-coq team has together built hs-to-coq into a powerful tool for
verifying Haskell code. The features it currently has and the applications to which it
has so far been put are only the tip of the iceberg. There is always more work to be
done (as even a cursory glance at our GitHub issues page62 will tell you!).

One key place to consider what could be done is to look at the edit language,
which forms the backbone of hs-to-coq by enabling us to provide a mechanized
formalization gap. As is the case for designing a good specification, designing a good
formalization gap is an art, and one that our work has just begun to scratch the
surface of. The lessons we have learned have taught us a great deal about what to
put in effective edit files: the sorts of code we want to skip; how to handle tricky
termination arguments; aiming for confidence instead of perfection for large projects;
the first “design patterns” such as justified edits (Section 7.7); and more. At the same
time, we have also learned some of the features that make a good edit language that
can underly this art: support for flexible edits, like rewrite and set type; edits that
directly address common pain points, like termination; edits that perform complex
transformations that show up repeatedly, like inline mutual; and edits that perform
basic building-block operation but aren’t flashy, like skip and add.

As this is the first work to introduce a mechanized formalization gap, however, we
don’t believe we have all the answers. Looking forward, there are multiple possible ways
to potentially improve or extend the edit language; it is not clear which approaches
will prove the most fruitful, but the ideas that we have already seen and the problems
we have already had provide signs that point towards promising ideas. The clearest
avenue here (besides fixing bugs) is adding more edits, an endlessly possible task;

62https://github.com/plclub/hs-to-coq/issues

220

https://github.com/plclub/hs-to-coq/issues

however, there are also other, significantly more far-reaching changes that could be
made as well.

The most direct possibility is to completely redesign the edit language to have
a principled core. The edit language has clearly accreted over time, and was not
designed to have a clean core or precise semantics: as an example of the former, we
have the redefine edit, which could be replaced by skip plus add or add type; as an
example of the latter, we have complex code transformations such as inline mutual
or collapse let. This means that understanding the edit language requires under-
standing 34 distinct moving parts, and although they have certain kinds of internal
symmetry (e.g., the various edits to skip code all behave similarly and have sim-
ilar names: skip, skip constructor, skip class, . . .), there is no fundamental
connection going on behind the scenes. This would also potentially simplify the imple-
mentation of hs-to-coq; a more uniform core semantics could perhaps be reflected in
a more uniform implementation strategy.

Relatedly, we also might consider how to give the edit language more features from
full-fledged languages. In particular, we might consider how to support abstraction
within the edit language. This could potentially enable us to define new edits within
edit files, enabling users to define novel edits without extending hs-to-coq. It is not
clear what the correct semantics for such an approach would be, or what other ways
we might give the edit language other “full-fledged” features; developing a precise
semantics could shed light on this approach. One avenue would be to conceptualize
the edit language as a domain-specific language for tree transformations; however,
the high-level nature of the edits means that this may be too detailed to smoothly
support the kinds of transformations we want to express.

Looking in a different direction, we could consider providing different ways
of working with our existing edits, reflecting challenges we faced in our cur-
rent verification efforts. As is often the case, this is well-reflected in consid-
ering design patterns that might benefit from more formal support in the lan-
guage. One pattern we came across frequently is the distinction between “global”
and “local” edits (also discussed in Section 4.4). Certain individual edits, such
as rename type GHC.Base.Maybe = option or skip class GHC.Show.Show, need
to be present when translating every module in a program; other edits, such as
skip Core.tyCoFVsOfType or rename type GHC.Num.Int = nat, are only needed
within the translation of one module. As we can see from these examples, this distinc-
tion is not simply one of “which of the 34 edits is this”; while skip class always needs
to be global and skip can always be local, rename type can be either, depending
on the desired semantics. In fact, the specific edit rename type GHC.Num.Int = nat
could be either local or global, depending on whether this change was intended to
control computation within just one module or to specify a default interpretation!
Thus, determining whether edits are global or local is something that needs to be
controlled by the user, at least sometimes. We currently handle this process by using
one file for our global edits and a bevy of files for our local edits (one per module), but
this is built on top of complex Makefile behavior and not part of the edit language;
we also do propagate some information between translated modules, but not enough

221

to propagate all global edit information. Reifying these distinctions in a way that was
visible to both the user and to hs-to-coq itself could help smooth over this process.

Another design pattern with fertile ground for exploration is the justified edits
technique, discussed in Section 7.7. This technique allows us to increase our confidence
in our translation by providing formal Coq proofs that are informally linked to edits
via comments, where the proofs indicate that the rewritings performed by those edits
do not change the behavior. This technique is one of the most recent developments
for writing edit files, so it has not yet been fully explored. Two potential directions for
future developments here would be (1) providing a way to classify edits as justifiable
or not while extending this pattern to more edits; and (2) replacing the informal,
comment-based form of justifications with a live (in the sense of DeepSpec), mechanized
form of justifications that hs-to-coq understands. Both of these possibilities would
allow us to increase the confidence that we gained from using this design pattern (or
rather, after these changes, this feature); however, both of these require navigating a
complex solution space to determine the correct design. Each has potential benefits,
but is complicated by clear challenges in setting up the design.

How to answer the first question – whether an edit is self-justifying (such as
inline mutual, which is defined not to change semantics), justifiable with a proof
(such as rewrite, as in all our current examples), or unjustifiable (such as axiomatize,
which is intended to change the meaning of the translation) – is already unclear; con-
sider the example of collectNBinders, which closes out Section 7.7.3 and has a
justification theorem which is a disjunction of an equality and a conjunction of two
instances of the custom inductive type panicked. This demonstrates that deter-
mining the meaning of justification for a rewrite edit, even one intended to be
semantics-preserving, is nonobvious. We could also imagine wanting to verify that
a transformation is “close enough” in other ways (not just “up to panicked”); for
instance, close approximations of the same real-valued function, or simplifications that
make assumptions about the input domain.

Extending these questions to other edits exposes other challenges. For instance,
consider the skip edit. In one sense, skip is self-justifying, since skip does not
delete any uses of the skipped value; this means that Coq code that compiles after
a skip must not have referred to the skipped definition. In another sense, skip is
unjustifiable, because it deletes an entire definition! The example of skip can be
used to highlight another challenge with this approach: suppose that we decided
that skip M.x alone is always self-justifying, because if the result compiles no trans-
lated definitions can refer to M.x; similarly, suppose we say that add edits such as
add M Definition M.x := false. alone are always self-justifying, because Coq can-
not shadow names at module scope; this means that if the result compiles there must
not have been an existing M.x and so nothing could have referred to it. But then, if
we started with the definition x = True in Mod.hs, the result of these two edits would
be to invert M.x by effectively redefining it in-place, making these edits unjustified.
It thus seems that the notion of justification is not compositional, and may require
reasoning about the interaction between multiple edits.

Looking instead at the question of how to make the notion of justification live, we
can again consider collectNBinders and its need for disjunction; simply reasoning

222

about equality is not enough. It might be possible have an equality in the edit file
that is both used to rewrite the translated code and also copied to the output as a
theorem; however, we then need to provide a way to prove the theorem, which can
only be done after the translation is complete. This could perhaps be handled in the
same manner as the obligations edit, although the differences between the proofs
could make that harder. This could be enough to provide a potentially useful first
step, but addressing other forms of “close enough to identical” behavior would remain
a challenge.

Moving away from the specifics of the edit language, another direction for extending
this work would be to improve the design of hs-to-coq’s translation. One future
project in this vein that could pay dividends would be converting hs-to-coq to use
the Equations package (Sozeau and Mangin, 2019) to produce more Haskell-like
output and handle mutual recursion more easily.

Another angle of future work is simply the further application of hs-to-coq to
larger projects. While this is not unique to the hs-to-coq team, we have our own
designs: we hope to extend to verifying effectful code, and to verify even more of GHC.
We have proven basic results about monadic functions and verified core pieces of GHC,
but there is more to do in both cases. In the former case, we would like to be able to
reason about IO. In the latter case, it would be wonderful to see our translation and
verification of GHC extended to results about the semantic correctness of optimization
passes, or even the correctness of GHC’s internal “Core lint” pass, which checks the
types of Core programs when debugging GHC. Outside of our team, there is a project
in the Programming Languages and Verification Group at MIT CSAIL to specify the
RISC-V architecture that generates its model using hs-to-coq; their work is available
at https://github.com/mit-plv/riscv-coq.

One final set of exciting possibilities would be to attempt to connect hs-to-coq
output with existing Coq formalisms. Again, one prospect is to do this with our
translation of GHC; there exists ongoing work on producing a mechanized semantics
of System FC (or its new dependently-typed variant), and it would be wonderful to
align our semantics of Core with this mechanized semantics.

10.4. hs-to-coq

As demonstrated by the results in this thesis, hs-to-coq is readily usable today.
The code is available online at https://github.com/plclub/hs-to-coq, and the
documentation is available online at https://hs-to-coq.readthedocs.io/. There,
you can see the complete code that backs this thesis, as well as all the work that has
happened since these words were written. The next time you find yourself wanting to
verify Haskell code or to retain a mechanized formalization gap, I hope you will turn
to hs-to-coq and join us!

223

https://github.com/mit-plv/riscv-coq
https://github.com/plclub/hs-to-coq
https://hs-to-coq.readthedocs.io/

Bibliography

Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. Verifying Haskell
programs using constructive type theory. In Daan Leijen, editor, Proceedings of the
ACM SIGPLAN Workshop on Haskell, Haskell 2005, Tallinn, Estonia, September 30,
2005, pages 62–73. ACM, 2005. ISBN 1-59593-071-X. DOI: 10.1145/1088348.1088355.
URL https://doi.org/10.1145/1088348.1088355. Citations: pp. 32, 196, 196,
196, 197, 197, and 197.

Oskar Abrahamsson (oskarabrahamsson), Johannes Åman Po-
hjola (IlmariReissumies), Anthony Fox (acjf3), Alejandro Gómez-
Londoño (agomezl), Hrutvik Kanabar, Ramana Kumar (xrchz), Andreas
Lööw (AndreasLoow), Magnus Myreen (myreen), Michael Norrish (mn200),
Scott Owens (SOwens), Thomas Sewell (talsewell), Hira Syeda (hirataqdees),
Yong Kiam Tan (tanyongkiam), Timotej Tomandl, and other contributors.
CakeML: A verified implementation of ML (GitHub repository). August 5,
2020a. URL https://github.com/CakeML/cakeml. Date is of last access (commit
c89761b7ef). Contributors are from https://cakeml.org/. Citation: pg. 211.

Oskar Abrahamsson, Johannes Åman Pohjola, Anthony Fox, Alejandro Gómez-
Londoño, Hrutvik Kanabar, Ramana Kumar, Andreas Lööw, Magnus Myreen,
Michael Norrish, Scott Owens, Thomas Sewell, Hira Syeda, Yong Kiam Tan, Timo-
tej Tomandl, and other contributors. CakeML: A verified implementation of ML.
August 5, 2020b. URL https://cakeml.org/. Date is of last access. Citation:
pg. 214.

Stephen Adams. Functional pearls: Efficient sets—a balancing act. Journal of
Functional Programming, 3(4):553–561, 1993. DOI: 10.1017/S0956796800000885.
URL https://doi.org/10.1017/S0956796800000885. Citation: pg. 189.

Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy
Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew Weaver. CertiCoq:
A verified compiler for Coq. In Proceedings of the Third International Workshop on
Coq for Programming Languages (CoqPL ’17). ACM, 2017. URL https://www.cs.
princeton.edu/~appel/papers/certicoq-coqpl.pdf. Citations: pp. 10 and 183.

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong
Shao, Stephanie Weirich, and Steve Zdancewic. Position paper: the science of
deep specification. Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 375(2104):20160331, September 4, 2017.
DOI: 10.1098/rsta.2016.0331. URL https://royalsocietypublishing.org/doi/
10.1098/rsta.2016.0331. Citations: pp. 9, 9, 124, 129, 217, 218, and 218.

Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type systems.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated

224

https://doi.org/10.1145/1088348.1088355
https://github.com/CakeML/cakeml
https://cakeml.org/
https://cakeml.org/
https://doi.org/10.1017/S0956796800000885
https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0331
https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0331

Reasoning (in 2 volumes), pages 1149–1238. Elsevier and MIT Press, 2001. ISBN
0-444-50813-9. DOI: 10.1016/b978-044450813-3/50020-5. URL https://doi.org/
10.1016/b978-044450813-3/50020-5. Citation: pg. 1.

Tobias Baum, Hendrik Leßmann, and Kurt Schneider. The choice of code review
process: A survey on the state of the practice. In Michael Felderer, Daniel Méndez
Fernández, Burak Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar Win-
kler, editors, Product-Focused Software Process Improvement - 18th International
Conference, PROFES 2017, Innsbruck, Austria, November 29 - December 1, 2017,
Proceedings, volume 10611 of Lecture Notes in Computer Science, pages 111–127.
Springer, 2017. ISBN 978-3-319-69925-7. DOI: 10.1007/978-3-319-69926-4_9.
URL https://doi.org/10.1007/978-3-319-69926-4_9. Citation: pg. 1.

Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator
for higher-order logic based on a relational model finder. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 131–146. Springer, 2010. ISBN 978-
3-642-14051-8. DOI: 10.1007/978-3-642-14052-5_11. URL https://doi.org/10.
1007/978-3-642-14052-5_11. Citation: pg. 84.

Joachim Breitner. successors: An applicative functor to manage successors (ver-
sion 0.1.0.1). December 31, 2017. URL http://hackage.haskell.org/package/
successors-0.1.0.1. Citations: pp. 51, 51, 52, 53, and 53.

Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wieg-
ley, and Stephanie Weirich. Ready, Set, verify! Applying hs-to-coq to real-
world Haskell code (experience report). Proceedings of the ACM on Program-
ming Languages, 2(ICFP):89:1–89:16, 2018. DOI: 10.1145/3236784. URL https:
//doi.org/10.1145/3236784. Citations: pp. 11, 21, 34, 48, 71, 71, 92, 95, 175,
and 176.

Lukas Bulwahn. The new Quickcheck for Isabelle: Random, exhaustive and symbolic
testing under one roof. In Chris Hawblitzel and Dale Miller, editors, Certified
Programs and Proofs - Second International Conference, CPP 2012, Kyoto, Japan,
December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer
Science, pages 92–108. Springer, 2012. ISBN 978-3-642-35307-9. DOI: 10.1007/
978-3-642-35308-6_10. URL https://doi.org/10.1007/978-3-642-35308-6_10.
Citations: pp. 84 and 84.

Arthur Charguéraud. Program verification through characteristic formulae. In Paul
Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN inter-
national conference on Functional programming, ICFP 2010, Baltimore, Maryland,
USA, September 27-29, 2010, pages 321–332. ACM, 2010. ISBN 978-1-60558-
794-3. DOI: 10.1145/1863543.1863590. URL https://doi.org/10.1145/1863543.
1863590. Citations: pp. 198, 198, 198, and 199.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing
of Haskell programs. In Martin Odersky and Philip Wadler, editors, Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000, pages 268–279. ACM, 2000.
ISBN 1-58113-202-6. DOI: 10.1145/351240.351266. URL https://doi.org/10.

225

https://doi.org/10.1016/b978-044450813-3/50020-5
https://doi.org/10.1016/b978-044450813-3/50020-5
https://doi.org/10.1007/978-3-319-69926-4_9
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
http://hackage.haskell.org/package/successors-0.1.0.1
http://hackage.haskell.org/package/successors-0.1.0.1
https://doi.org/10.1145/3236784
https://doi.org/10.1145/3236784
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1145/1863543.1863590
https://doi.org/10.1145/1863543.1863590
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266

1145/351240.351266. Citations: pp. 1, 75, 75, 84, 84, 85, and 85.
Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel M. T.
Chakravarty. Running the manual: an approach to high-assurance microkernel
development. In Andres Löh, editor, Proceedings of the ACM SIGPLAN Workshop
on Haskell, Haskell 2006, Portland, Oregon, USA, September 17, 2006, pages
60–71. ACM, 2006. ISBN 1-59593-489-8. DOI: 10.1145/1159842.1159850. URL
https://doi.org/10.1145/1159842.1159850. Citation: pg. 190.

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Verifying Haskell programs by
combining testing, model checking and interactive theorem proving. Information
& Software Technology, 46(15):1011–1025, 2004. DOI: 10.1016/j.infsof.2004.07.002.
URL https://doi.org/10.1016/j.infsof.2004.07.002. Citations: pp. 195, 195,
195, and 195.

Kevin Elphinstone, Gerwin Klein, and Rafal Kolanski. Formalising a high-performance
microkernel. Technical report, Verified Software: Theories, Tools, And Experiments
(VSTTE) 2006 Workshop Proceedings, Microsoft Research (MSR-TR-2006-117),
August 2006. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.61.6433. Citations: pp. 190, 191, and 192.

Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and Gernot Heiser.
Towards a practical, verified kernel. In Galen C. Hunt, editor, Proceedings of
HotOS’07: 11th Workshop on Hot Topics in Operating Systems, May 7-9, 2005, San
Diego, California, USA. USENIX Association, 2007. URL http://www.usenix.
org/events/hotos07/tech/full_papers/elphinstone/elphinstone.pdf. Cita-
tion: pg. 190.

Andy Gill, Simon Marlow, and other contributors. Happy: The parser generator for
Haskell (version 1.18.5). June 17, 2010. URL https://www.haskell.org/happy/.
Citation: pg. 22.

Georges Gonthier. Formal proof—the four-color theorem. Notices of the AMS, 55(11):
1382–1393, 2008. Citation: pg. 2.

Florian Haftmann. From higher-order logic to Haskell: there and back again. In John P.
Gallagher and Janis Voigtländer, editors, Proceedings of the 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2010, Madrid,
Spain, January 18-19, 2010, pages 155–158. ACM, 2010. DOI: 10.1145/1706356.
1706385. URL https://doi.org/10.1145/1706356.1706385. Citations: pp. 188,
189, and 189.

Thomas Hallgren, James Hook, Mark P Jones, and Richard B Kieburtz. An
overview of the Programatica toolset. In Presented at the Fourth Annual High
Confidence Software and Systems Conference (HCSS ’04), 2004. URL http:
//ogi.altocumulus.org/~hallgren/Programatica/HCSS04/. Citations: pp. 192,
193, 193, 193, and 195.

William L. Harrison and Richard B. Kieburtz. The logic of demand in Haskell. Journal
of Functional Programming, 15(5):837–891, 2005. DOI: 10.1017/S0956796805005666.
URL https://doi.org/10.1017/S0956796805005666. Citations: pp. 195 and 195.

HaskellWiki contributors. Functor-applicative-monad proposal - haskellwiki. Octo-
ber 24, 2015. URL https://wiki.haskell.org/Functor-Applicative-Monad_
Proposal. Citation: pg. 49.

226

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1159842.1159850
https://doi.org/10.1016/j.infsof.2004.07.002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.6433
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.6433
http://www.usenix.org/events/hotos07/tech/full_papers/elphinstone/elphinstone.pdf
http://www.usenix.org/events/hotos07/tech/full_papers/elphinstone/elphinstone.pdf
https://www.haskell.org/happy/
https://doi.org/10.1145/1706356.1706385
http://ogi.altocumulus.org/~hallgren/Programatica/HCSS04/
http://ogi.altocumulus.org/~hallgren/Programatica/HCSS04/
https://doi.org/10.1017/S0956796805005666
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal

Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M. Petters.
Towards trustworthy computing systems: taking microkernels to the next level.
ACM SIGOPS Operating Systems Review, 41(4):3–11, 2007. DOI: 10.1145/1278901.
1278904. URL https://doi.org/10.1145/1278901.1278904. Citation: pg. 190.

Hugo Herbelin <Hugo.Herbelin@inria.fr>. Re: [coq-club] termination checking with
nested recursion. September 25, 2010. URL https://sympa.inria.fr/sympa/arc/
coq-club/2010-09/msg00111.html. Originally an email to the “coq-club” mailing
list (https://sympa.inria.fr/sympa/info/coq-club). Citation: pg. 107.

Brian Huffman, John Matthews, and Peter White. Axiomatic constructor classes in
Isabelle/HOLCF. In Joe Hurd and Thomas F. Melham, editors, Theorem Proving
in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK,
August 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer Science,
pages 147–162. Springer, 2005. ISBN 3-540-28372-2. DOI: 10.1007/11541868_10.
URL https://doi.org/10.1007/11541868_10. Citation: pg. 191.

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages
193–206. ACM, 2013. ISBN 978-1-4503-1832-7. DOI: 10.1145/2429069.2429093.
URL https://doi.org/10.1145/2429069.2429093. Citation: pg. 33.

Graham Hutton. Programming in Haskell. Cambridge University Press, 2nd edition,
2016. ISBN 978-1-31-662622-1. DOI: 10.1017/CBO9780511813672. Citations: pp. 55,
57, 209, and 209.

Pepe Iborra. FiniteMap: A finite map implementation, derived from the paper:
Efficient sets: a balancing act, S. Adams, Journal of functional programming 3(4)
Oct 1993, pp553-562 (version 0.1). March 6, 2007. URL http://hackage.haskell.
org/package/FiniteMap-0.1. Citation: pg. 189.

Spencer Janssen, Don Stewart, Adam Vogt, Brent Yorgey, Daniel Wagner, David
Roundy, Daniel Schoepe, Eric Mertens, Nicolas Pouillard, Roman Cheplyaka, Gwern
Branwen, Lukas Mai, Braden Shepherdson, and Devin Mullins. xmonad | the tiling
window manager that rocks. March 6, 2021. URL https://xmonad.org/. Date is
of last access. Citation: pg. 2.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Computing
Surveys, 41(4):21:1–21:54, 2009. DOI: 10.1145/1592434.1592438. URL https:
//doi.org/10.1145/1592434.1592438. Citation: pg. 1.

Ranjit Jhala (ranjitjhala), Niki Vazou (nikivazou), Eric L. Seidel (gridaphobe),
and other contributors. Liquid types for Haskell (GitHub repository). August 5,
2020. URL https://github.com/ucsd-progsys/liquidhaskell. Date is of last
access (commit 1cab7e3758). Citations: pp. 201 and 202.

Richard B. Kieburtz. P-logic: property verification for Haskell programs. Older
version available from http://programatica.cs.pdx.edu/papers.html, August
14, 2002. URL http://https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.13.3152&rep=rep1&type=pdf. Citations: pp. 193 and 195.

Gerwin Klein. Operating system verification—an overview. Sadhana, 34(1):27–69, 2009.
DOI: 10.1007/s12046-009-0002-4. URL https://link.springer.com/article/

227

https://doi.org/10.1145/1278901.1278904
https://sympa.inria.fr/sympa/arc/coq-club/2010-09/msg00111.html
https://sympa.inria.fr/sympa/arc/coq-club/2010-09/msg00111.html
https://sympa.inria.fr/sympa/info/coq-club
https://doi.org/10.1007/11541868_10
https://doi.org/10.1145/2429069.2429093
http://hackage.haskell.org/package/FiniteMap-0.1
http://hackage.haskell.org/package/FiniteMap-0.1
https://xmonad.org/
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://github.com/ucsd-progsys/liquidhaskell
http://programatica.cs.pdx.edu/papers.html
http://https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3152&rep=rep1&type=pdf
http://https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3152&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s12046-009-0002-4
https://link.springer.com/article/10.1007/s12046-009-0002-4

10.1007/s12046-009-0002-4. Citation: pg. 190.
Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an
operating-system kernel. Communications of the ACM, 53(6):107–115, 2010. DOI:
10.1145/1743546.1743574. URL https://doi.org/10.1145/1743546.1743574. Ci-
tation: pg. 190.

Edward A. Kmett. lens: Lenses, folds and traversals (version 4.16.1). March 23, 2018.
URL http://hackage.haskell.org/package/lens-4.16.1. Citation: pg. 22.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a
verified implementation of ML. In Suresh Jagannathan and Peter Sewell, editors, The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 179–
192. ACM, 2014. ISBN 978-1-4503-2544-8. DOI: 10.1145/2535838.2535841. URL
https://doi.org/10.1145/2535838.2535841. Citations: pp. 125, 211, 211, 211,
212, 212, 212, and 213.

Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based Testing
in Coq, volume 4 of Software Foundations. Electronic textbook, version 1.0 edi-
tion, August 9, 2018. URL https://softwarefoundations.cis.upenn.edu/qc-
current/index.html. Citations: pp. 84 and 84.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009. DOI: 10.1145/1538788.1538814. URL https://doi.org/10.
1145/1538788.1538814. Citations: pp. 2, 125, and 211.

Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs, Second International Workshop, TYPES
2002, Berg en Dal, The Netherlands, April 24-28, 2002, Selected Papers, volume 2646
of Lecture Notes in Computer Science, pages 200–219. Springer, 2002. ISBN 3-540-
14031-X. DOI: 10.1007/3-540-39185-1_12. URL https://doi.org/10.1007/3-
540-39185-1_12. Citations: pp. 183, 183, and 183.

Nancy G. Leveson and Clark S. Turner. Investigation of the Therac-25 accidents.
Computer, 26(7):18–41, 1993. DOI: 10.1109/MC.1993.274940. URL https://doi.
org/10.1109/MC.1993.274940. Citation: pg. 1.

Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki
Vazou. Verifying replicated data types with typeclass refinements in Liquid Haskell.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):216:1–216:30,
2020. DOI: 10.1145/3428284. URL https://doi.org/10.1145/3428284. Citations:
pp. 210, 210, 210, 210, 210, 210, and 210.

John MacFarlane. Pandoc user’s guide. Available from https://pandoc.org/, January
21, 2021. URL https://pandoc.org/MANUAL.pdf. Citation: pg. 2.

Simon Marlow and Simon Peyton-Jones. The Glasgow Haskell Compiler. In Amy
Brown and Greg Wilson, editors, The Architecture of Open Source Applications,
volume II. Available online under the Creative Commons Attribution 3.0 Unported
license, March 30, 2012. URL http://www.aosabook.org/en/ghc.html. Citations:
pp. 2 and 87.

228

https://link.springer.com/article/10.1007/s12046-009-0002-4
https://link.springer.com/article/10.1007/s12046-009-0002-4
https://doi.org/10.1145/1743546.1743574
http://hackage.haskell.org/package/lens-4.16.1
https://doi.org/10.1145/2535838.2535841
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3428284
https://pandoc.org/
https://pandoc.org/MANUAL.pdf
http://www.aosabook.org/en/ghc.html

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. Compiling
without continuations. In Albert Cohen and Martin T. Vechev, editors, Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 482–494.
ACM, 2017. ISBN 978-1-4503-4988-8. DOI: 10.1145/3062341.3062380. URL https:
//doi.org/10.1145/3062341.3062380. Citation: pg. 127.

Donald R. Morrison. PATRICIA—Practical Algorithm To Retrieve Information Coded
in Alphanumeric. Journal of the ACM, 15(4):514–534, 1968. DOI: 10.1145/321479.
321481. URL https://doi.org/10.1145/321479.321481. Citation: pg. 71.

Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ML from higher-
order logic. In Peter Thiemann and Robby Bruce Findler, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP’12, Copenhagen, Den-
mark, September 9-15, 2012, pages 115–126. ACM, 2012. ISBN 978-1-4503-1054-
3. DOI: 10.1145/2364527.2364545. URL https://doi.org/10.1145/2364527.
2364545. Citations: pp. 211 and 212.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.
ISBN 978-0-521-66350-2. Citations: pp. 199 and 199.

Chris Okasaki and Andy Gill. Fast mergeable integer maps. In Workshop on ML,
pages 77–86, 1998. URL https://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.37.5452. Citation: pg. 71.

Will Partain (partain). GHC commit 6c381e873e: “simonpj/sansom/partain/dnt 1.3
compiler stuff through 96/03/18”. March 19, 1996. URL https://gitlab.haskell.
org/ghc/ghc/-/commit/6c381e873e222417d9a67aeec77b9555eca7b7a8. Cita-
tion: pg. 62.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In Ralf
Hinze, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell,
Haskell 2001, Firenze, Italy, September 2, 2001. ACM SIGPLAN, 2001. URL
https://www.microsoft.com/en-us/research/publication/playing-by-
the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/.
Citation: pg. 99.

Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
The Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–
202, 1992. DOI: 10.1017/S0956796800000319. URL https://doi.org/10.1017/
S0956796800000319. Citation: pg. 87.

Simon L. Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming, 12(4&5):393–433, 2002. DOI: 10.
1017/S0956796802004331. URL https://doi.org/10.1017/S0956796802004331.
Citation: pg. 88.

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In Rajiv
Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson,
AZ, USA, June 7-13, 2008, pages 159–169. ACM, 2008. ISBN 978-1-59593-860-
2. DOI: 10.1145/1375581.1375602. URL https://doi.org/10.1145/1375581.
1375602. Citation: pg. 199.

229

https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5452
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5452
https://gitlab.haskell.org/ghc/ghc/-/commit/6c381e873e222417d9a67aeec77b9555eca7b7a8
https://gitlab.haskell.org/ghc/ghc/-/commit/6c381e873e222417d9a67aeec77b9555eca7b7a8
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1017/S0956796802004331
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602

Per Runeson. A survey of unit testing practices. IEEE Software, 23(4):22–29, 2006.
DOI: 10.1109/MS.2006.91. URL https://doi.org/10.1109/MS.2006.91. Citation:
pg. 1.

Tom Smalley (tomsmalley). Data.IntMap.restrictKeys and Data.IntMap.withoutKeys
not working (issue #392, haskell/containers). February 6, 2017. URL https:
//github.com/haskell/containers/issues/392. Citation: pg. 84.

Matthieu Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor McBride,
editors, Types for Proofs and Programs, International Workshop, TYPES 2006,
Nottingham, UK, April 18-21, 2006, Revised Selected Papers, volume 4502 of Lecture
Notes in Computer Science, pages 237–252. Springer, 2006. ISBN 978-3-540-74463-4.
DOI: 10.1007/978-3-540-74464-1_16. URL https://doi.org/10.1007/978-3-
540-74464-1_16. Citations: pp. 6, 175, and 179.

Matthieu Sozeau and Cyprien Mangin. Equations reloaded: high-level dependently-
typed functional programming and proving in Coq. Proc. ACM Program. Lang., 3
(ICFP):86:1–86:29, 2019. DOI: 10.1145/3341690. URL https://doi.org/10.1145/
3341690. Citations: pp. 38 and 223.

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie Weirich.
Total Haskell is reasonable Coq. In June Andronick and Amy P. Felty, editors,
Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018,
pages 14–27. ACM, 2018. ISBN 978-1-4503-5586-5. DOI: 10.1145/3167092. URL
https://doi.org/10.1145/3167092. Citations: pp. 11, 12, 21, 33, 45, 45, and 51.

Antal Spector-Zabusky, Joachim Breitner, Yao Li, and Stephanie Weirich. Embracing
a mechanized formalization gap: Pragmatic software system verification (extended
version). Unpublished work, October 25, 2019. URL https://arxiv.org/abs/
1910.11724. Citations: pp. 11, 21, and 33.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin
Donnelly. System F with type equality coercions. In François Pottier and George C.
Necula, editors, Proceedings of TLDI’07: 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Nice, France, January
16, 2007, pages 53–66. ACM, 2007. ISBN 1-59593-393-X. DOI: 10.1145/1190315.
1190324. URL https://doi.org/10.1145/1190315.1190324. Citation: pg. 88.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott
Owens, and Michael Norrish. A new verified compiler backend for CakeML. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, pages 60–73. ACM, 2016. ISBN 978-
1-4503-4219-3. DOI: 10.1145/2951913.2951924. URL https://doi.org/10.1145/
2951913.2951924. Citations: pp. 125, 211, 211, 211, 211, 212, 212, 214, and 214.

The Coq Development Team. The Coq standard library, version 8.11.0. January
2020a. URL https://coq.github.io/doc/v8.11/stdlib/. Citation: pg. 109.

The Coq Development Team. The Coq proof assistant, version 8.11.0. January 30,
2020b. URL https://coq.inria.fr/refman/index.html. Citations: pp. 176, 183,
186, and 200.

230

https://doi.org/10.1109/MS.2006.91
https://github.com/haskell/containers/issues/392
https://github.com/haskell/containers/issues/392
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3167092
https://arxiv.org/abs/1910.11724
https://arxiv.org/abs/1910.11724
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1145/2951913.2951924
https://coq.github.io/doc/v8.11/stdlib/
https://coq.inria.fr/refman/index.html

The Core Libraries Committee. base: Basic libraries (version 4.11.1.0). April 21, 2018.
URL http://hackage.haskell.org/package/base-4.11.1.0. Citations: pp. 46,
46, 50, 51, and 115.

The Programatica Team. Programatica tools for certifiable, auditable develop-
ment of high-assurance systems in Haskell. Available from http://programatica.
cs.pdx.edu/papers.html, 2003. URL http://programatica.cs.pdx.edu/P/
ProgramaticaAssurance.pdf. Citation: pg. 193.

Simon J. Thompson. Formulating Haskell. In John Launchbury and Patrick M.
Sansom, editors, Functional Programming, Glasgow 1992, Proceedings of the 1992
Glasgow Workshop on Functional Programming, Ayr, Scotland, UK, 6-8 July 1992,
Workshops in Computing, pages 258–268. Springer, 1992. ISBN 3-540-19820-2. DOI:
10.1007/978-1-4471-3215-8_23. URL https://doi.org/10.1007/978-1-4471-
3215-8_23. Citations: pp. 198 and 198.

Simon J. Thompson. A logic for Miranda, revisited. Formal Aspects of Computing, 7
(4):412–429, 1995. DOI: 10.1007/BF01211216. URL https://doi.org/10.1007/
BF01211216. Citations: pp. 198, 198, and 198.

Travis CI, GmbH. Travis ci - test and deploy with confidence. 2020. URL https:
//travis-ci.com/. Date is of last access. Citation: pg. 25.

Alan Matheson Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, January 1, 1937. ISSN 0024-6115. DOI: 10.1112/plms/s2-42.1.230. URL
https://doi.org/10.1112/plms/s2-42.1.230. Citations: pp. 201 and 214.

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. Abstract refinement types.
In Matthias Felleisen and Philippa Gardner, editors, Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes
in Computer Science, pages 209–228. Springer, 2013. ISBN 978-3-642-37035-9.
DOI: 10.1007/978-3-642-37036-6_13. URL https://doi.org/10.1007/978-3-
642-37036-6_13. Citations: pp. 209, 209, and 209.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Pey-
ton Jones. Refinement types for Haskell. In Johan Jeuring and Manuel M. T.
Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international confer-
ence on Functional programming (ICFP), Gothenburg, Sweden, September 1-3, 2014,
pages 269–282. ACM, 2014. ISBN 978-1-4503-2873-9. DOI: 10.1145/2628136.2628161.
URL https://doi.org/10.1145/2628136.2628161. Citation: pg. 199.

Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. A tale of two provers: verifying
monoidal string matching in Liquid Haskell and Coq. In Iavor S. Diatchki, editor,
Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell,
Oxford, United Kingdom, September 7-8, 2017, pages 63–74. ACM, 2017. ISBN
978-1-4503-5182-9. DOI: 10.1145/3122955.3122963. URL https://doi.org/10.
1145/3122955.3122963. Citations: pp. 199, 200, 200, 200, and 200.

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton.
Functional pearl: Theorem proving for all: Equational reasoning in Liquid Haskell.
In Nicolas Wu, editor, Proceedings of the 11th ACM SIGPLAN International

231

http://hackage.haskell.org/package/base-4.11.1.0
http://programatica.cs.pdx.edu/papers.html
http://programatica.cs.pdx.edu/papers.html
http://programatica.cs.pdx.edu/P/ProgramaticaAssurance.pdf
http://programatica.cs.pdx.edu/P/ProgramaticaAssurance.pdf
https://doi.org/10.1007/978-1-4471-3215-8_23
https://doi.org/10.1007/978-1-4471-3215-8_23
https://doi.org/10.1007/BF01211216
https://doi.org/10.1007/BF01211216
https://travis-ci.com/
https://travis-ci.com/
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/3122955.3122963

Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-
17, 2018, pages 132–144. ACM, 2018a. DOI: 10.1145/3242744.3242756. URL
https://doi.org/10.1145/3242744.3242756. Citations: pp. 209 and 209.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton,
Philip Wadler, and Ranjit Jhala. Refinement reflection: complete verification
with SMT. Proceedings of the ACM on Programming Languages (PACMPL), 2
(POPL):53:1–53:31, 2018b. DOI: 10.1145/3158141. URL https://doi.org/10.
1145/3158141. Citations: pp. 199 and 203.

Freek Wiedijk, editor. The Seventeen Provers of the World. Springer-Verlag Berlin
Heidelberg, 2006. ISBN 978-3-540-32888-9. DOI: 10.1007/11542384. URL https:
//www.springer.com/gp/book/9783540307044. Citation: pg. 1.

Kazu Yamamoto. llrbtree: Purely functional sets and heaps (version 0.1.1). Jan-
uary 31, 2012. URL http://hackage.haskell.org/package/llrbtree-0.1.1.
Citation: pg. 209.

232

https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3158141
https://www.springer.com/gp/book/9783540307044
https://www.springer.com/gp/book/9783540307044
http://hackage.haskell.org/package/llrbtree-0.1.1

	Title
	Copyright
	Acknowledgments
	Abstract
	Contents
	List of Figures
	Chapter 1. Introduction
	1.1. How to work with hs-to-coq
	1.2. The edit language and the mechanized formalization gap
	1.3. DeepSpec
	1.4. Contributions
	1.5. Outline

	Chapter 2. An Introductory Example: Bags
	2.1. Bags in GHC
	2.2. Translating Bag and its operations
	2.3. Edits for Bags
	2.4. Specifying the behavior of Bags
	2.5. From program to theorem

	Chapter 3. hs-to-coq: Design and Usage
	3.1. How we've used hs-to-coq
	3.2. Desiderata
	3.3. Test suite
	3.4. Mechanized formalization gaps
	3.5. Infix operators
	3.6. Notation for literals
	3.7. Transforming code automatically
	3.8. Partiality
	3.9. Recursion

	Chapter 4. The Edit Language
	4.1. The eight categories of edits
	4.2. The history and design of the edit language
	4.3. The general form of edits
	4.4. The semantics of edits
	4.5. Using edits

	Chapter 5. “Total Haskell is Reasonable Coq”
	5.1. Type class laws
	5.2. Hutton's Razor
	5.3. Bags

	Chapter 6. “Ready, Set, Verify!”
	6.1. Data structures
	6.2. From a test suite to a proof suite

	Chapter 7. “Embracing a Mechanized Formalization Gap”
	7.1. The structure of GHC
	7.2. What is Core?
	7.3. Disentangling GHC
	7.4. Edits for GHC
	7.5. Removing coinduction from GHC
	7.6. Axioms vs. rewrites
	7.7. Justifying edits with proofs
	7.8. Verifying properties of the compiler
	7.9. Gradations of being live

	Chapter 8. A Comprehensive Exposition of the Edit Language
	8.1. The syntax of edits
	8.2. Skipping Haskell code
	8.3. Axiomatizing Haskell code
	8.4. Adding Coq code
	8.5. Changing the structure of the Haskell code
	8.6. Rewriting expressions
	8.7. Providing extra information
	8.8. Proving termination
	8.9. Meta-edits

	Chapter 9. Related Work
	9.1. Extraction
	9.2. Translating Haskell to non-Coq languages
	9.3. Translating functional languages into logical formulæ
	9.4. LiquidHaskell: an alternative approach to verifying Haskell programs
	9.5. A verified functional language: CakeML

	Chapter 10. Conclusions and Future Work
	10.1. Edits: a retrospective
	10.2. Evaluating the edit language
	10.3. Future work
	10.4. hs-to-coq

	Bibliography

