
Locally Nameless at Scale
Stephanie Weirich

University of Pennsylvania
USA

sweirich@cis.upenn.edu

Antoine Voizard
University of Pennsylvania

USA
voizard@seas.upenn.edu

Anastasiya Kravchuk-Kirilyuk
University of Pennsylvania

USA
akravc@sas.upenn.edu

Abstract
The Corespec project is an extensive mechanization in Coq
of the metatheory of System D and System DC, two related,
dependently-typed languages aimed at replacing the GHC’s
internal language, Core [Eisenberg 2015]. In this talk, we take
a retrospective look at our development through the lens of a
recent addition, �-equivalence. In particular, we describe our
experience with the practical application of locally nameless
variable-binding representation for mechanized metatheory,
supported by the Ott and LNgen tools.

1 Corespec
The idea behind the Corespec project is to provide a replace-
ment for GHC’s Core language FC [Sulzmann et al. 2007]
that supports full spectrum dependent types [Weirich et al.
2017] . Speci�cally, this project required untangling the no-
tions of type on the one hand and of erasable component
(computationally irrelevant) on the other - which current
GHC essentially con�ates.

As part of this process, the Corespec project developed two
related dependently-typed languages: System D and System
DC. The former is Curry-style and includes only computa-
tionally relevant information in its syntax; the latter includes
much more: typing annotations, irrelevant arguments, and
coercions in support of decidable type checking. Thus, the
implicit language provides an uncluttered speci�cation of
the semantics of the language as well as a simpli�ed context
for certain parts of the metatheory.
We have shown that these two languages are related via

annotation and erasure theorems. Our progress result about
System D can be translated to System DC through the �rst
theorem, and the preservation result of System DC can be
similarly translated to System D via the second.
Our Coq formalization has been invaluable both in the

con�dence that it gives us in our results, but also in the design
of the system in the �rst place. Although Systems D and DC
draw on prior work [Eisenberg 2016; Gundry 2013; Weirich
et al. 2013], we designed this language in conjunction with
its mechanization.

After completing the initial design, which we reported in
ICFP 2017, we have been extending the equational theory
with rules for �-equivalence. For this part of the project,
we have been joined by Kravchuk-Kirilyuk who did not
participate in the original design.

1.1 Tool support for Locally Nameless
representation

Our formalization of Systems D and DC uses a locally name-
less representation for variable binding, and employs co-
�nite quanti�cation [Aydemir et al. 2008] in the rules that
manipulate binders.

Our choice was strongly in�uenced by the availability of
two tools:
The �rst, Ott [Sewell et al. 2010], is a speci�cation tool

for programming languages semantics. One can think of it
as a compiler for its speci�cation language. It takes as input
rules similar to the one in �gure 1 - that is, a user-de�nable
ASCII representation of the syntax, judgment, and rules of
the language. Ott compiles this to a representation in another
format - for instance, LATEX, or Coq with a locally-nameless
representation (Coq/LN in the following).
For example, here is the inductive type Ott generates to

represent the syntax of the lambda-calculus:

Induction exp :=
| var_f : atom -> exp
| var_b : nat -> exp
| abs : exp -> exp
| app : exp -> exp -> exp

(atom is the set of names used for free variables)
Ott also translates rule speci�cations of inductive de�ni-

tions to Coq inductive datatypes, as in the example below.
In addition, it automatically de�nes operations for free vari-
able calculation (called fv, free variable substitution (called
subst) and bound variable substitution (called open).

The second tool, LNgen [Aydemir and Weirich 2010], is a
complement to Ott when used to output Coq/LN. This tool
uses the same speci�cation to derive additional de�nitions
and helper lemmas about the Coq/LN code generated by Ott.
For example, one lemma generated by LNgen asserts that

Lemma subst_fresh :
forall x, x �notin� fv e -> subst x e = e.

2 Case study: Eta reduction
One part of extending Systems D and DC with eta-
equivalence rules requires proving the con�uence of a paral-
lel reduction system extended with rules for eta-reduction.
This con�uence proof justi�es the consistency of the type
equivalence rules of our language and is the main component
of our canonical forms theorem.

1



Weirich, Voizard, Kravchuk-Kirilyuk

Our Ott speci�cation of this rule, in ASCII syntax, appears
in Figure 1.

|- b => b�
a = b x

----------------------------- :: Eta
|- \ x. a => b�

Figure 1. Ott input for rule Eta

At �rst glance, this rule seems a bit strange. What has
become of the free variable condition (x �notin� fv b)
required by Eta-reduction?
When we look at the generated Coq de�nition, it is also

not immediately obvious that x is not allowed to appear in
b. Here is the case generated for the � rule above:
Par_Eta : forall (L:vars) (a b b� : Exp),

Par b b� ->
(forall x, x notin L -> open a x = app b x) ->
Par (abs a) b�

This rule is the constructor of eta-equivalence within the
parallel reduction relation (Par). It relies on co-�nite quanti�-
cation: the second premise generalizes over the complement
of L, a universally quanti�ed �nite set. This means that the
induction hypothesis generated by this rule is available for
an in�nite number of variables chosen for the binder — all ex-
cept those in L. Furthermore, this quanti�cation enforces the
free variable condition: since b is quanti�ed at the outermost
level of the type, it cannot depend on the variable x.

With this reasoning, we see why the original Ott de�nition
makes sense. The free variable condition is enforced, albeit
indirectly. Notice that, in the conclusion, a appears under the
binder �x. This prompts Ott to output a de�nition in which
x can appear in a, as it is aware that � is a binder. Now, in the
second premise of the rule, no side of the equation is under
a binder. Thus, in the generated de�nition, x can not appear
in b. This results in the proper semantics for the rule.

Although the co�nite version of the rule generates a strong
induction hypothesis, sometimes one might want an exis-
tential version for constructing derivations that mention a
particular name for the bound variable:
Lemma Par_Eta_exists : forall a b b� x,

x �notin� fv b -> x �notin� fv b� ->
Par b b� ->
open a x = app b x ->
Par (abs a) b�

This version of the rule is proven admissible in our develop-
ment. It is both handy for forward reasoning, and a good way
to check that we de�ned the type system we intended. Note
that this rule makes the free variable conditions explicit.

Finally, we have also proven one more version of this rule.
This version relies on the close operation that replaces a
free variable x with a bound one, suitable for abs.
Lemma Par_Eta_close : forall a b x,

x �notin� fv a ->
Par a b ->
Par (abs (close x (app a (var_f x)))) b

While being perhaps the “most obviously correct” version
of �-reduction with this representation, this rule is the least
useful in proof development.

3 Lessons learned
Overall, we have been very happy with the use of Coq and
the related tools for our development. In particular, the mech-
anization of Systems D and DC has made it easier to include
new collaborators when considering extensions of the sys-
tem. In this case, KK couldmake progress on this taskwithout
having to understand the entire development.

Furthermore, we appreciated the con�dence that Coq pro-
vides in our reasoning. For example, our initial design of
our �-equivalence rule depended on the following inversion
lemma, which sadly, does not hold in System D, for subtle
reasons.

Lemma 3.1 (Inversion). if � ✏ �x .b x : ��x : A ! B and
x < fvb then � ✏ b : ��x :A! B.

Thankfully, none of the rest of the metatheory relies on
preservation for parallel reduction.

This development also relies strongly on the tool support
provided by Ott and LNgen. Because we have formalized the
rules of the complete system using the Ott tool, the semantics
that appears typeset in our paper exactly corresponds to the
rules that we proved in Coq. Furthermore, the extensive
library of lemmas and de�nitions provided by LNgen were
essential to our development.
Tool support has been critical to this project’s very exis-

tence. Other sets of tools exist to deal with variable binding
in Coq, such as Autosubst [Schäfer et al. 2015] or Needle and
Knot [Keuchel et al. 2016].

References
Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack,

and Stephanie Weirich. 2008. Engineering Formal Metatheory. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). 3–15.

Brian Aydemir and Stephanie Weirich. 2010. LNgen: Tool Support for Locally
Nameless Representations. Technical Report MS-CIS-10-24. Computer
and Information Science, University of Pennsylvania.

Richard A. Eisenberg. 2015. System FC, as implemented in GHC. Technical
Report MS-CIS-15-09. University of Pennsylvania. h�ps://github.com/
ghc/ghc/blob/master/docs/core-spec/core-spec.pdf

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice.
Ph.D. Dissertation. University of Pennsylvania.

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D.
Dissertation. University of Strathclyde.

Steven Keuchel, Stephanie Weirich, and Tom Schrijvers. 2016. Needle &
Knot: Binder boilerplate tied up. In European Symposium on Programming
Languages and Systems. Springer, 419–445.

Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning
with de Bruijn Terms and Parallel Substitutions. In Interactive Theorem
Proving - 6th International Conference, ITP 2015, Nanjing, China, August

2



Locally Nameless at Scale

24-27, 2015 (LNAI), Xingyuan Zhang and Christian Urban (Eds.). Springer-
Verlag.

Peter Sewell, Francesco ZappaNardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša. 2010. Ott: E�ective tool support
for the working semanticist. Journal of Functional Programming 20, 1
(Jan. 2010).

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. 2007. System F with type equality coercions. In Types
in languages design and implementation (TLDI ’07). ACM.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC
with explicit kind equality. In Proceedings of The 18th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’13). Boston,
MA, 275–286.

Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim,
and Richard A. Eisenberg. 2017. A Speci�cation for Dependent Types
in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017),
29 pages. h�ps://doi.org/10.1145/3110275

3


