(Embedded) Domain-
Specific Languages

and Free Lite Advice

mailto:leepike@galois.com

halfway home
for recovering academics §

https://commons.wikimedia.org/wiki/File:BlankMap-USA-states-Canada-provinces.svg#file

DSLS

DSLs: Excel, MATLAB, awk, Make, LaTeX, SQL
Non-DSLs: Java, Haskell, C

Embedded DSLs:

DSL library

« ADSL as alibrary

* Fast to build, easy to manipulate General
puUrpose

gl |anguage

DSLs Are Fun

Change the World!

one EDSL at a time

P

FeldSpar

https://picasaweb.google.com/105722675808588603973/FlightTestVideos#5513521823452927794

Domain-Specific Languages and
Code Synthesis Using Haskell

Communications of the ACM, Vol. 57 No. 6, Pages 42-49
10.1145/2605205

Comments

viewas: B [€ Ei SHARE: (&)

Q
)

~

There are many ways to give instructions to a computer: an
electrical engineer might write a MATLAB program; a database
administrator might write an SQL script; a hardware engineer
might write in Verilog; and an accountant might write a
fprcadshcct with _cmbcddcd formulas. Aside trom.thc d'lff(‘rl‘n(‘(Programming Languages
[(in language used in each of these examples, there is an importar
- » 1 1 3 o 1) ' 9 y . 1 [
k[]lllluﬂ ({)LIU dlﬂ(’l‘t-n(‘(‘ in form and idiom. lﬂjach uses a l:uTguagc customfzad May 15, 2014
" el to the job at hand, and each builds computational requests in a .

W Volume 12, issue 4

form both familiar and productive for programmers (although

accountants may not think of themselves as programmers). In

z:l)(;rl‘t‘.)'eachofthosecxamplcsuscsaDomain-Spcciﬁc[.'mguagc Design Exploration th rough Code_
generating DSLs

https://queue.acm.org/detail.cim?id=2617811

High-level DSLs for low-level programming

Bo Joel Svensson, Indiana University
Mary Sheeran, Chalmers University of Technology
Ryan Newton, Indiana University

https://queue.acm.org/detail.cim?id=2626374

https://queue.acm.org/detail.cfm?id=2617811
https://queue.acm.org/detail.cfm?id=2626374

A Calculator

data Expr =
Lit Integer
| Var String
| Add Expr Expr
| Sub Expr Expr
deriving (Show, Read, Eq)

lit :: Integer -> Expr

lit = Lit

var :: String —-> Expr

var = Var

(.+ Expr -> Expr -> Expr

)
a .+ b = Add a b

(.—) :: Expr -> Expr -> EXpr

a b = Sub a b
expr :: ExXpr
expr = 1it 3 .+ wvar "x" .- var "y"

-— > expr
-— Sub (Add (Lit 3) (Var "x")) (Var "y")

Calculating

type Env = Map String Integer

eval :: Env -> Expr -> Integer
eval env e = case e of
Lit x -> X
Var s -> lookup s eny
Add a b -> eval env & bval env b
Sub a b -> eval env & val env b
env :: kEnv
env = insert "x" (insert "y" empty)
expr :: EXpr

1A 1A 1A

expr = 1lit .+ var "x" .- var "y

Meta-Programming

expr2 :: Expr

expr2 = foldl (.+) (lit O) (map 1lit [O0..100])
Add (Add
(Add (Add
(Add (Add

(Add (Add (Add (Add (Add (Lit 0) (Lit 0)) (Lit 1)) (Lit 2)) (Lit 3)) (Lit 4)) (Lit 5)) (Lit 6)) (Lit 7)) (Lit 8)) (Lit 9))
13)) (Lit 14)) (Lit 15)) (Lit 16)) (Lit 17)) (Lit 18)) (Lit 19)) (Lit 20)) (Lit 21)) (Lit 22)) (Lit 23)) (Lit 24)) (Lit 25))
29)) (Lit 30)) (Lit 31)) (Lit 32)) (Lit 33)) (Lit 34)) (Lit 35)) (Lit 36)) (Lit 37)) (Lit 38)) (Lit 39)) (Lit 40)) (Lit 41))
45)) (Lit 46)) (Lit 47)) (Lit 48)) (Lit 49)) (Lit 50)) (Lit 51)) (Lit 52)) (Lit 53)) (Lit 54)) (Lit 55)) (Lit 56)) (Lit 57))
61)) (Lit 62)) (Lit 63)) (Lit 64)) (Lit 65)) (Lit 66)) (Lit 67)) (Lit 68)) (Lit 69)) (Lit 70)) (Lit 71)) (Lit 72)) (Lit 73))
77)) (Lit 78)) (Lit 79)) (Lit 80)) (Lit 81)) (Lit 82)) (Lit 83)) (Lit 84)) (Lit 85)) (Lit 86)) (Lit 87)) (Lit 88)) (Lit 89))
93)) (Lit 94)) (Lit 95)) (Lit 96)) (Lit 97)) (Lit 98)) (Lit 99)) (Lit 100)

(Add

(Add
(Add

(Add

(Add
(Add

(Lit 10))

(Lit

(Add

(Add
(Add

(Add

(Add
(Add

(Lit 11))

(Lit
Lit
Lit
Lit

(
(
(
(Lit

(Add

(Add
(Add

(Add

(Add
(Add

(Lit 12))

(Lit
Lit
Lit
Lit

(
(
(
(Lit

(Add
(Add
(Add

(Lit
(Lit

Don’t-Miss DSL Talks

9:00-10:00 Keynote: Ras Bodik (University of Washington)
Program Synthesis: Opportunities for the next Decade

9:00-10:00 Keynoteude

n ,
S TR 105 AR
Cod® Ge“\‘.‘“ﬁtee_‘n Lee pik St, change the future, FRPNow! P
',\QG Elo™ JIniversity of Technology (Sweden); Koen Claessen, Chalmers.Adaiversity of Technology (Sweden)
V5 or — .

, University of Copenhagen (Denmark); Jost Berthold, Commonwealth Bank of Australia (Australia); Martin Elsman,
versity of Copenhagen (Denmark)

A Fast Compiler for NetKAT

Steffen Smolka, Cornell University (USA); Spiridon Eliopoulos, Inhabited Type LLC (USA); Nate Foster, Cornell University (USA);

Arjun Guha, University of Massachusetts Amherst (USA)

Not FRP

var clicks = 0;

function clickHandler () {
clicks++;
¥ .

element.addEventListeSkr(“click”, clickHandler) ;

function onClick () {
if(clicks > 10) {
document.write (clicks) ;
} else {
document.write (Y“waiting”);

}

FRP (EIM

Mouse.clicks : Signal ()
Signal.map : (a => Db) -> Signal a -> Signal b
Signal.foldp : (a -=> b -> b) -> b -> Signal a -> Signal b

countClick : Signal Int
countClick =
Signal.foldp (\clk count -> count + 1) 0 Mouse.clicks

maln : Signal Element
malin =
let go count =
1if count > 10
then show count
else show "waiting"
in Signal.map go countClick

@ @ @ @

Some ChaHeneS

Feefﬂee

to solve

* Sharing and recursion
e Syntax

e [ypes

Free Advicel

1. Why are you getting a Ph.D?
2. Do you recall the Leslie Lamport’s dissertation”

3. If you don't write it down, it never happened.

Shamless Plug, the Sequel

A Serious Lack of Shame

Software Engineering/Res X

> (@ https://galois.com/careers/software-engineer-interr/

+ Bookmarks MeetingMaker /- Unanet SMACCM Wiki)= Haskell Hierarchica: ghc7.6.2 (local) & HACMS “J SugarcRM 3 P

Current Opening
Software Engineering/Research Intern

Galois is currently seeking software engineering and research interns for
Winter/Spring of 2016 at all educational levels. We are committed to matching interns
with exciting and engaging engineering work that fits their particular interests, creating
lasting value for interns, Galois, and our community. A Galois internship is a chance to
tackle cutting-edge, meaningful problems in a uniguely collaborative environment with
world-leading researchers.

Important Dates

« Applicatons due: October 1st, 2015
« Internship penod (flexible): 12 weeks dunng January - April, 2016

About Galois

Our mission is to create trustworthiness in critical systems. We're in the business of
taking blue-sky ideas and turning them into realworld technology solutions. We've been
developing real-world systems for over ten years using functional programming, language
design, and formal methods.

